source: src/main/java/weka/classifiers/trees/NBTree.java @ 16

Last change on this file since 16 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 8.3 KB
RevLine 
[4]1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    NBTree.java
19 *    Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.trees;
24
25import weka.classifiers.Classifier;
26import weka.classifiers.AbstractClassifier;
27import weka.classifiers.trees.j48.NBTreeClassifierTree;
28import weka.classifiers.trees.j48.NBTreeModelSelection;
29import weka.core.AdditionalMeasureProducer;
30import weka.core.Capabilities;
31import weka.core.Drawable;
32import weka.core.Instance;
33import weka.core.Instances;
34import weka.core.RevisionUtils;
35import weka.core.Summarizable;
36import weka.core.TechnicalInformation;
37import weka.core.TechnicalInformationHandler;
38import weka.core.WeightedInstancesHandler;
39import weka.core.TechnicalInformation.Field;
40import weka.core.TechnicalInformation.Type;
41
42import java.util.Enumeration;
43import java.util.Vector;
44
45/**
46 <!-- globalinfo-start -->
47 * Class for generating a decision tree with naive Bayes classifiers at the leaves.<br/>
48 * <br/>
49 * For more information, see<br/>
50 * <br/>
51 * Ron Kohavi: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: Second International Conference on Knoledge Discovery and Data Mining, 202-207, 1996.
52 * <p/>
53 <!-- globalinfo-end -->
54 *
55 <!-- technical-bibtex-start -->
56 * BibTeX:
57 * <pre>
58 * &#64;inproceedings{Kohavi1996,
59 *    author = {Ron Kohavi},
60 *    booktitle = {Second International Conference on Knoledge Discovery and Data Mining},
61 *    pages = {202-207},
62 *    title = {Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid},
63 *    year = {1996}
64 * }
65 * </pre>
66 * <p/>
67 <!-- technical-bibtex-end -->
68 *
69 <!-- options-start -->
70 * Valid options are: <p/>
71 *
72 * <pre> -D
73 *  If set, classifier is run in debug mode and
74 *  may output additional info to the console</pre>
75 *
76 <!-- options-end -->
77 *
78 * @author Mark Hall
79 * @version $Revision: 5928 $
80 */
81public class NBTree 
82  extends AbstractClassifier
83  implements WeightedInstancesHandler, Drawable, Summarizable,
84             AdditionalMeasureProducer, TechnicalInformationHandler {
85
86  /** for serialization */
87  static final long serialVersionUID = -4716005707058256086L;
88
89  /** Minimum number of instances */
90  private int m_minNumObj = 30;
91
92  /** The root of the tree */
93  private NBTreeClassifierTree m_root;
94 
95  /**
96   * Returns a string describing classifier
97   * @return a description suitable for
98   * displaying in the explorer/experimenter gui
99   */
100  public String globalInfo() {
101    return "Class for generating a decision tree with naive Bayes classifiers at "
102      + "the leaves.\n\n"
103      + "For more information, see\n\n"
104      + getTechnicalInformation().toString();
105  }
106
107  /**
108   * Returns an instance of a TechnicalInformation object, containing
109   * detailed information about the technical background of this class,
110   * e.g., paper reference or book this class is based on.
111   *
112   * @return the technical information about this class
113   */
114  public TechnicalInformation getTechnicalInformation() {
115    TechnicalInformation        result;
116   
117    result = new TechnicalInformation(Type.INPROCEEDINGS);
118    result.setValue(Field.AUTHOR, "Ron Kohavi");
119    result.setValue(Field.TITLE, "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid");
120    result.setValue(Field.BOOKTITLE, "Second International Conference on Knoledge Discovery and Data Mining");
121    result.setValue(Field.YEAR, "1996");
122    result.setValue(Field.PAGES, "202-207");
123   
124    return result;
125  }
126
127  /**
128   * Returns default capabilities of the classifier.
129   *
130   * @return      the capabilities of this classifier
131   */
132  public Capabilities getCapabilities() {
133    return new NBTreeClassifierTree(null).getCapabilities();
134  }
135
136  /**
137   * Generates the classifier.
138   *
139   * @param instances the data to train with
140   * @throws Exception if classifier can't be built successfully
141   */
142  public void buildClassifier(Instances instances) throws Exception {
143   
144    NBTreeModelSelection modSelection = 
145      new NBTreeModelSelection(m_minNumObj, instances);
146
147    m_root = new NBTreeClassifierTree(modSelection);
148    m_root.buildClassifier(instances);
149  }
150
151  /**
152   * Classifies an instance.
153   *
154   * @param instance the instance to classify
155   * @return the classification
156   * @throws Exception if instance can't be classified successfully
157   */
158  public double classifyInstance(Instance instance) throws Exception {
159
160    return m_root.classifyInstance(instance);
161  }
162
163  /**
164   * Returns class probabilities for an instance.
165   *
166   * @param instance the instance to get the distribution for
167   * @return the class probabilities
168   * @throws Exception if distribution can't be computed successfully
169   */
170  public final double[] distributionForInstance(Instance instance) 
171       throws Exception {
172
173    return m_root.distributionForInstance(instance, false);
174  }
175
176  /**
177   * Returns a description of the classifier.
178   *
179   * @return a string representation of the classifier
180   */
181  public String toString() {
182
183    if (m_root == null) {
184      return "No classifier built";
185    }
186    return "NBTree\n------------------\n" + m_root.toString();
187  }
188
189  /**
190   *  Returns the type of graph this classifier
191   *  represents.
192   *  @return Drawable.TREE
193   */   
194  public int graphType() {
195      return Drawable.TREE;
196  }
197
198  /**
199   * Returns graph describing the tree.
200   *
201   * @return the graph describing the tree
202   * @throws Exception if graph can't be computed
203   */
204  public String graph() throws Exception {
205
206    return m_root.graph();
207  }
208
209  /**
210   * Returns a superconcise version of the model
211   *
212   * @return a description of the model
213   */
214  public String toSummaryString() {
215
216    return "Number of leaves: " + m_root.numLeaves() + "\n"
217         + "Size of the tree: " + m_root.numNodes() + "\n";
218  }
219
220  /**
221   * Returns the size of the tree
222   * @return the size of the tree
223   */
224  public double measureTreeSize() {
225    return m_root.numNodes();
226  }
227
228  /**
229   * Returns the number of leaves
230   * @return the number of leaves
231   */
232  public double measureNumLeaves() {
233    return m_root.numLeaves();
234  }
235
236  /**
237   * Returns the number of rules (same as number of leaves)
238   * @return the number of rules
239   */
240  public double measureNumRules() {
241    return m_root.numLeaves();
242  }
243
244  /**
245   * Returns the value of the named measure
246   * @param additionalMeasureName the name of the measure to query for its value
247   * @return the value of the named measure
248   * @throws IllegalArgumentException if the named measure is not supported
249   */
250  public double getMeasure(String additionalMeasureName) {
251    if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) {
252      return measureNumRules();
253    } else if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) {
254      return measureTreeSize();
255    } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) {
256      return measureNumLeaves();
257    } else {
258      throw new IllegalArgumentException(additionalMeasureName
259                          + " not supported (j48)");
260    }
261  }
262 
263  /**
264   * Returns an enumeration of the additional measure names
265   * @return an enumeration of the measure names
266   */
267  public Enumeration enumerateMeasures() {
268    Vector newVector = new Vector(3);
269    newVector.addElement("measureTreeSize");
270    newVector.addElement("measureNumLeaves");
271    newVector.addElement("measureNumRules");
272    return newVector.elements();
273  }
274 
275  /**
276   * Returns the revision string.
277   *
278   * @return            the revision
279   */
280  public String getRevision() {
281    return RevisionUtils.extract("$Revision: 5928 $");
282  }
283
284  /**
285   * Main method for testing this class
286   *
287   * @param argv the commandline options
288   */
289  public static void main(String[] argv){
290    runClassifier(new NBTree(), argv);
291  }
292}
Note: See TracBrowser for help on using the repository browser.