/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* M5P.java
* Copyright (C) 2001 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees;
import weka.classifiers.trees.m5.M5Base;
import weka.classifiers.trees.m5.Rule;
import weka.core.Drawable;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Utils;
import java.util.Enumeration;
import java.util.Vector;
/**
* M5Base. Implements base routines for generating M5 Model trees and rules
* The original algorithm M5 was invented by R. Quinlan and Yong Wang made improvements.
*
* For more information see:
*
* Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.
*
* Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997.
*
* @inproceedings{Quinlan1992, * address = {Singapore}, * author = {Ross J. Quinlan}, * booktitle = {5th Australian Joint Conference on Artificial Intelligence}, * pages = {343-348}, * publisher = {World Scientific}, * title = {Learning with Continuous Classes}, * year = {1992} * } * * @inproceedings{Wang1997, * author = {Y. Wang and I. H. Witten}, * booktitle = {Poster papers of the 9th European Conference on Machine Learning}, * publisher = {Springer}, * title = {Induction of model trees for predicting continuous classes}, * year = {1997} * } ** * * Valid options are: * *
-N * Use unpruned tree/rules* *
-U * Use unsmoothed predictions* *
-R * Build regression tree/rule rather than a model tree/rule* *
-M <minimum number of instances> * Set minimum number of instances per leaf * (default 4)* *
-L * Save instances at the nodes in * the tree (for visualization purposes)* * * @author Mark Hall * @version $Revision: 1.10 $ */ public class M5P extends M5Base implements Drawable { /** for serialization */ static final long serialVersionUID = -6118439039768244417L; /** * Creates a new
M5P
instance.
*/
public M5P() {
super();
setGenerateRules(false);
}
/**
* Returns the type of graph this classifier
* represents.
* @return Drawable.TREE
*/
public int graphType() {
return Drawable.TREE;
}
/**
* Return a dot style String describing the tree.
*
* @return a String
value
* @throws Exception if an error occurs
*/
public String graph() throws Exception {
StringBuffer text = new StringBuffer();
text.append("digraph M5Tree {\n");
Rule temp = (Rule)m_ruleSet.elementAt(0);
temp.topOfTree().graph(text);
text.append("}\n");
return text.toString();
}
/**
* Returns the tip text for this property
*
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String saveInstancesTipText() {
return
"Whether to save instance data at each node in the tree for "
+ "visualization purposes.";
}
/**
* Set whether to save instance data at each node in the
* tree for visualization purposes
*
* @param save a boolean
value
*/
public void setSaveInstances(boolean save) {
m_saveInstances = save;
}
/**
* Get whether instance data is being save.
*
* @return a boolean
value
*/
public boolean getSaveInstances() {
return m_saveInstances;
}
/**
* Returns an enumeration describing the available options
*
* @return an enumeration of all the available options
*/
public Enumeration listOptions() {
Enumeration superOpts = super.listOptions();
Vector newVector = new Vector();
while (superOpts.hasMoreElements()) {
newVector.addElement((Option)superOpts.nextElement());
}
newVector.addElement(new Option("\tSave instances at the nodes in\n"
+"\tthe tree (for visualization purposes)",
"L", 0, "-L"));
return newVector.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -N * Use unpruned tree/rules* *
-U * Use unsmoothed predictions* *
-R * Build regression tree/rule rather than a model tree/rule* *
-M <minimum number of instances> * Set minimum number of instances per leaf * (default 4)* *
-L * Save instances at the nodes in * the tree (for visualization purposes)* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setSaveInstances(Utils.getFlag('L', options)); super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String[] superOpts = super.getOptions(); String [] options = new String [superOpts.length+1]; int current = superOpts.length; for (int i = 0; i < current; i++) { options[i] = superOpts[i]; } if (getSaveInstances()) { options[current++] = "-L"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.10 $"); } /** * Main method by which this class can be tested * * @param args an array of options */ public static void main(String[] args) { runClassifier(new M5P(), args); } }