1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * M5P.java |
---|
19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees; |
---|
24 | |
---|
25 | import weka.classifiers.trees.m5.M5Base; |
---|
26 | import weka.classifiers.trees.m5.Rule; |
---|
27 | import weka.core.Drawable; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.Utils; |
---|
31 | |
---|
32 | import java.util.Enumeration; |
---|
33 | import java.util.Vector; |
---|
34 | |
---|
35 | /** |
---|
36 | <!-- globalinfo-start --> |
---|
37 | * M5Base. Implements base routines for generating M5 Model trees and rules<br/> |
---|
38 | * The original algorithm M5 was invented by R. Quinlan and Yong Wang made improvements.<br/> |
---|
39 | * <br/> |
---|
40 | * For more information see:<br/> |
---|
41 | * <br/> |
---|
42 | * Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.<br/> |
---|
43 | * <br/> |
---|
44 | * Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997. |
---|
45 | * <p/> |
---|
46 | <!-- globalinfo-end --> |
---|
47 | * |
---|
48 | <!-- technical-bibtex-start --> |
---|
49 | * BibTeX: |
---|
50 | * <pre> |
---|
51 | * @inproceedings{Quinlan1992, |
---|
52 | * address = {Singapore}, |
---|
53 | * author = {Ross J. Quinlan}, |
---|
54 | * booktitle = {5th Australian Joint Conference on Artificial Intelligence}, |
---|
55 | * pages = {343-348}, |
---|
56 | * publisher = {World Scientific}, |
---|
57 | * title = {Learning with Continuous Classes}, |
---|
58 | * year = {1992} |
---|
59 | * } |
---|
60 | * |
---|
61 | * @inproceedings{Wang1997, |
---|
62 | * author = {Y. Wang and I. H. Witten}, |
---|
63 | * booktitle = {Poster papers of the 9th European Conference on Machine Learning}, |
---|
64 | * publisher = {Springer}, |
---|
65 | * title = {Induction of model trees for predicting continuous classes}, |
---|
66 | * year = {1997} |
---|
67 | * } |
---|
68 | * </pre> |
---|
69 | * <p/> |
---|
70 | <!-- technical-bibtex-end --> |
---|
71 | * |
---|
72 | <!-- options-start --> |
---|
73 | * Valid options are: <p/> |
---|
74 | * |
---|
75 | * <pre> -N |
---|
76 | * Use unpruned tree/rules</pre> |
---|
77 | * |
---|
78 | * <pre> -U |
---|
79 | * Use unsmoothed predictions</pre> |
---|
80 | * |
---|
81 | * <pre> -R |
---|
82 | * Build regression tree/rule rather than a model tree/rule</pre> |
---|
83 | * |
---|
84 | * <pre> -M <minimum number of instances> |
---|
85 | * Set minimum number of instances per leaf |
---|
86 | * (default 4)</pre> |
---|
87 | * |
---|
88 | * <pre> -L |
---|
89 | * Save instances at the nodes in |
---|
90 | * the tree (for visualization purposes)</pre> |
---|
91 | * |
---|
92 | <!-- options-end --> |
---|
93 | * |
---|
94 | * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> |
---|
95 | * @version $Revision: 1.10 $ |
---|
96 | */ |
---|
97 | public class M5P |
---|
98 | extends M5Base |
---|
99 | implements Drawable { |
---|
100 | |
---|
101 | /** for serialization */ |
---|
102 | static final long serialVersionUID = -6118439039768244417L; |
---|
103 | |
---|
104 | /** |
---|
105 | * Creates a new <code>M5P</code> instance. |
---|
106 | */ |
---|
107 | public M5P() { |
---|
108 | super(); |
---|
109 | setGenerateRules(false); |
---|
110 | } |
---|
111 | |
---|
112 | /** |
---|
113 | * Returns the type of graph this classifier |
---|
114 | * represents. |
---|
115 | * @return Drawable.TREE |
---|
116 | */ |
---|
117 | public int graphType() { |
---|
118 | return Drawable.TREE; |
---|
119 | } |
---|
120 | |
---|
121 | /** |
---|
122 | * Return a dot style String describing the tree. |
---|
123 | * |
---|
124 | * @return a <code>String</code> value |
---|
125 | * @throws Exception if an error occurs |
---|
126 | */ |
---|
127 | public String graph() throws Exception { |
---|
128 | StringBuffer text = new StringBuffer(); |
---|
129 | |
---|
130 | text.append("digraph M5Tree {\n"); |
---|
131 | Rule temp = (Rule)m_ruleSet.elementAt(0); |
---|
132 | temp.topOfTree().graph(text); |
---|
133 | text.append("}\n"); |
---|
134 | return text.toString(); |
---|
135 | } |
---|
136 | |
---|
137 | /** |
---|
138 | * Returns the tip text for this property |
---|
139 | * |
---|
140 | * @return tip text for this property suitable for |
---|
141 | * displaying in the explorer/experimenter gui |
---|
142 | */ |
---|
143 | public String saveInstancesTipText() { |
---|
144 | return |
---|
145 | "Whether to save instance data at each node in the tree for " |
---|
146 | + "visualization purposes."; |
---|
147 | } |
---|
148 | |
---|
149 | /** |
---|
150 | * Set whether to save instance data at each node in the |
---|
151 | * tree for visualization purposes |
---|
152 | * |
---|
153 | * @param save a <code>boolean</code> value |
---|
154 | */ |
---|
155 | public void setSaveInstances(boolean save) { |
---|
156 | m_saveInstances = save; |
---|
157 | } |
---|
158 | |
---|
159 | /** |
---|
160 | * Get whether instance data is being save. |
---|
161 | * |
---|
162 | * @return a <code>boolean</code> value |
---|
163 | */ |
---|
164 | public boolean getSaveInstances() { |
---|
165 | return m_saveInstances; |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | * Returns an enumeration describing the available options |
---|
170 | * |
---|
171 | * @return an enumeration of all the available options |
---|
172 | */ |
---|
173 | public Enumeration listOptions() { |
---|
174 | Enumeration superOpts = super.listOptions(); |
---|
175 | |
---|
176 | Vector newVector = new Vector(); |
---|
177 | while (superOpts.hasMoreElements()) { |
---|
178 | newVector.addElement((Option)superOpts.nextElement()); |
---|
179 | } |
---|
180 | |
---|
181 | newVector.addElement(new Option("\tSave instances at the nodes in\n" |
---|
182 | +"\tthe tree (for visualization purposes)", |
---|
183 | "L", 0, "-L")); |
---|
184 | return newVector.elements(); |
---|
185 | } |
---|
186 | |
---|
187 | /** |
---|
188 | * Parses a given list of options. <p/> |
---|
189 | * |
---|
190 | <!-- options-start --> |
---|
191 | * Valid options are: <p/> |
---|
192 | * |
---|
193 | * <pre> -N |
---|
194 | * Use unpruned tree/rules</pre> |
---|
195 | * |
---|
196 | * <pre> -U |
---|
197 | * Use unsmoothed predictions</pre> |
---|
198 | * |
---|
199 | * <pre> -R |
---|
200 | * Build regression tree/rule rather than a model tree/rule</pre> |
---|
201 | * |
---|
202 | * <pre> -M <minimum number of instances> |
---|
203 | * Set minimum number of instances per leaf |
---|
204 | * (default 4)</pre> |
---|
205 | * |
---|
206 | * <pre> -L |
---|
207 | * Save instances at the nodes in |
---|
208 | * the tree (for visualization purposes)</pre> |
---|
209 | * |
---|
210 | <!-- options-end --> |
---|
211 | * |
---|
212 | * @param options the list of options as an array of strings |
---|
213 | * @throws Exception if an option is not supported |
---|
214 | */ |
---|
215 | public void setOptions(String[] options) throws Exception { |
---|
216 | setSaveInstances(Utils.getFlag('L', options)); |
---|
217 | super.setOptions(options); |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Gets the current settings of the classifier. |
---|
222 | * |
---|
223 | * @return an array of strings suitable for passing to setOptions |
---|
224 | */ |
---|
225 | public String [] getOptions() { |
---|
226 | String[] superOpts = super.getOptions(); |
---|
227 | String [] options = new String [superOpts.length+1]; |
---|
228 | int current = superOpts.length; |
---|
229 | for (int i = 0; i < current; i++) { |
---|
230 | options[i] = superOpts[i]; |
---|
231 | } |
---|
232 | |
---|
233 | if (getSaveInstances()) { |
---|
234 | options[current++] = "-L"; |
---|
235 | } |
---|
236 | |
---|
237 | while (current < options.length) { |
---|
238 | options[current++] = ""; |
---|
239 | } |
---|
240 | |
---|
241 | return options; |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Returns the revision string. |
---|
246 | * |
---|
247 | * @return the revision |
---|
248 | */ |
---|
249 | public String getRevision() { |
---|
250 | return RevisionUtils.extract("$Revision: 1.10 $"); |
---|
251 | } |
---|
252 | |
---|
253 | /** |
---|
254 | * Main method by which this class can be tested |
---|
255 | * |
---|
256 | * @param args an array of options |
---|
257 | */ |
---|
258 | public static void main(String[] args) { |
---|
259 | runClassifier(new M5P(), args); |
---|
260 | } |
---|
261 | } |
---|