[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * M5P.java |
---|
| 19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.trees; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.trees.m5.M5Base; |
---|
| 26 | import weka.classifiers.trees.m5.Rule; |
---|
| 27 | import weka.core.Drawable; |
---|
| 28 | import weka.core.Option; |
---|
| 29 | import weka.core.RevisionUtils; |
---|
| 30 | import weka.core.Utils; |
---|
| 31 | |
---|
| 32 | import java.util.Enumeration; |
---|
| 33 | import java.util.Vector; |
---|
| 34 | |
---|
| 35 | /** |
---|
| 36 | <!-- globalinfo-start --> |
---|
| 37 | * M5Base. Implements base routines for generating M5 Model trees and rules<br/> |
---|
| 38 | * The original algorithm M5 was invented by R. Quinlan and Yong Wang made improvements.<br/> |
---|
| 39 | * <br/> |
---|
| 40 | * For more information see:<br/> |
---|
| 41 | * <br/> |
---|
| 42 | * Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.<br/> |
---|
| 43 | * <br/> |
---|
| 44 | * Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997. |
---|
| 45 | * <p/> |
---|
| 46 | <!-- globalinfo-end --> |
---|
| 47 | * |
---|
| 48 | <!-- technical-bibtex-start --> |
---|
| 49 | * BibTeX: |
---|
| 50 | * <pre> |
---|
| 51 | * @inproceedings{Quinlan1992, |
---|
| 52 | * address = {Singapore}, |
---|
| 53 | * author = {Ross J. Quinlan}, |
---|
| 54 | * booktitle = {5th Australian Joint Conference on Artificial Intelligence}, |
---|
| 55 | * pages = {343-348}, |
---|
| 56 | * publisher = {World Scientific}, |
---|
| 57 | * title = {Learning with Continuous Classes}, |
---|
| 58 | * year = {1992} |
---|
| 59 | * } |
---|
| 60 | * |
---|
| 61 | * @inproceedings{Wang1997, |
---|
| 62 | * author = {Y. Wang and I. H. Witten}, |
---|
| 63 | * booktitle = {Poster papers of the 9th European Conference on Machine Learning}, |
---|
| 64 | * publisher = {Springer}, |
---|
| 65 | * title = {Induction of model trees for predicting continuous classes}, |
---|
| 66 | * year = {1997} |
---|
| 67 | * } |
---|
| 68 | * </pre> |
---|
| 69 | * <p/> |
---|
| 70 | <!-- technical-bibtex-end --> |
---|
| 71 | * |
---|
| 72 | <!-- options-start --> |
---|
| 73 | * Valid options are: <p/> |
---|
| 74 | * |
---|
| 75 | * <pre> -N |
---|
| 76 | * Use unpruned tree/rules</pre> |
---|
| 77 | * |
---|
| 78 | * <pre> -U |
---|
| 79 | * Use unsmoothed predictions</pre> |
---|
| 80 | * |
---|
| 81 | * <pre> -R |
---|
| 82 | * Build regression tree/rule rather than a model tree/rule</pre> |
---|
| 83 | * |
---|
| 84 | * <pre> -M <minimum number of instances> |
---|
| 85 | * Set minimum number of instances per leaf |
---|
| 86 | * (default 4)</pre> |
---|
| 87 | * |
---|
| 88 | * <pre> -L |
---|
| 89 | * Save instances at the nodes in |
---|
| 90 | * the tree (for visualization purposes)</pre> |
---|
| 91 | * |
---|
| 92 | <!-- options-end --> |
---|
| 93 | * |
---|
| 94 | * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> |
---|
| 95 | * @version $Revision: 1.10 $ |
---|
| 96 | */ |
---|
| 97 | public class M5P |
---|
| 98 | extends M5Base |
---|
| 99 | implements Drawable { |
---|
| 100 | |
---|
| 101 | /** for serialization */ |
---|
| 102 | static final long serialVersionUID = -6118439039768244417L; |
---|
| 103 | |
---|
| 104 | /** |
---|
| 105 | * Creates a new <code>M5P</code> instance. |
---|
| 106 | */ |
---|
| 107 | public M5P() { |
---|
| 108 | super(); |
---|
| 109 | setGenerateRules(false); |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | /** |
---|
| 113 | * Returns the type of graph this classifier |
---|
| 114 | * represents. |
---|
| 115 | * @return Drawable.TREE |
---|
| 116 | */ |
---|
| 117 | public int graphType() { |
---|
| 118 | return Drawable.TREE; |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | /** |
---|
| 122 | * Return a dot style String describing the tree. |
---|
| 123 | * |
---|
| 124 | * @return a <code>String</code> value |
---|
| 125 | * @throws Exception if an error occurs |
---|
| 126 | */ |
---|
| 127 | public String graph() throws Exception { |
---|
| 128 | StringBuffer text = new StringBuffer(); |
---|
| 129 | |
---|
| 130 | text.append("digraph M5Tree {\n"); |
---|
| 131 | Rule temp = (Rule)m_ruleSet.elementAt(0); |
---|
| 132 | temp.topOfTree().graph(text); |
---|
| 133 | text.append("}\n"); |
---|
| 134 | return text.toString(); |
---|
| 135 | } |
---|
| 136 | |
---|
| 137 | /** |
---|
| 138 | * Returns the tip text for this property |
---|
| 139 | * |
---|
| 140 | * @return tip text for this property suitable for |
---|
| 141 | * displaying in the explorer/experimenter gui |
---|
| 142 | */ |
---|
| 143 | public String saveInstancesTipText() { |
---|
| 144 | return |
---|
| 145 | "Whether to save instance data at each node in the tree for " |
---|
| 146 | + "visualization purposes."; |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | /** |
---|
| 150 | * Set whether to save instance data at each node in the |
---|
| 151 | * tree for visualization purposes |
---|
| 152 | * |
---|
| 153 | * @param save a <code>boolean</code> value |
---|
| 154 | */ |
---|
| 155 | public void setSaveInstances(boolean save) { |
---|
| 156 | m_saveInstances = save; |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | /** |
---|
| 160 | * Get whether instance data is being save. |
---|
| 161 | * |
---|
| 162 | * @return a <code>boolean</code> value |
---|
| 163 | */ |
---|
| 164 | public boolean getSaveInstances() { |
---|
| 165 | return m_saveInstances; |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | /** |
---|
| 169 | * Returns an enumeration describing the available options |
---|
| 170 | * |
---|
| 171 | * @return an enumeration of all the available options |
---|
| 172 | */ |
---|
| 173 | public Enumeration listOptions() { |
---|
| 174 | Enumeration superOpts = super.listOptions(); |
---|
| 175 | |
---|
| 176 | Vector newVector = new Vector(); |
---|
| 177 | while (superOpts.hasMoreElements()) { |
---|
| 178 | newVector.addElement((Option)superOpts.nextElement()); |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | newVector.addElement(new Option("\tSave instances at the nodes in\n" |
---|
| 182 | +"\tthe tree (for visualization purposes)", |
---|
| 183 | "L", 0, "-L")); |
---|
| 184 | return newVector.elements(); |
---|
| 185 | } |
---|
| 186 | |
---|
| 187 | /** |
---|
| 188 | * Parses a given list of options. <p/> |
---|
| 189 | * |
---|
| 190 | <!-- options-start --> |
---|
| 191 | * Valid options are: <p/> |
---|
| 192 | * |
---|
| 193 | * <pre> -N |
---|
| 194 | * Use unpruned tree/rules</pre> |
---|
| 195 | * |
---|
| 196 | * <pre> -U |
---|
| 197 | * Use unsmoothed predictions</pre> |
---|
| 198 | * |
---|
| 199 | * <pre> -R |
---|
| 200 | * Build regression tree/rule rather than a model tree/rule</pre> |
---|
| 201 | * |
---|
| 202 | * <pre> -M <minimum number of instances> |
---|
| 203 | * Set minimum number of instances per leaf |
---|
| 204 | * (default 4)</pre> |
---|
| 205 | * |
---|
| 206 | * <pre> -L |
---|
| 207 | * Save instances at the nodes in |
---|
| 208 | * the tree (for visualization purposes)</pre> |
---|
| 209 | * |
---|
| 210 | <!-- options-end --> |
---|
| 211 | * |
---|
| 212 | * @param options the list of options as an array of strings |
---|
| 213 | * @throws Exception if an option is not supported |
---|
| 214 | */ |
---|
| 215 | public void setOptions(String[] options) throws Exception { |
---|
| 216 | setSaveInstances(Utils.getFlag('L', options)); |
---|
| 217 | super.setOptions(options); |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | /** |
---|
| 221 | * Gets the current settings of the classifier. |
---|
| 222 | * |
---|
| 223 | * @return an array of strings suitable for passing to setOptions |
---|
| 224 | */ |
---|
| 225 | public String [] getOptions() { |
---|
| 226 | String[] superOpts = super.getOptions(); |
---|
| 227 | String [] options = new String [superOpts.length+1]; |
---|
| 228 | int current = superOpts.length; |
---|
| 229 | for (int i = 0; i < current; i++) { |
---|
| 230 | options[i] = superOpts[i]; |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | if (getSaveInstances()) { |
---|
| 234 | options[current++] = "-L"; |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | while (current < options.length) { |
---|
| 238 | options[current++] = ""; |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | return options; |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | /** |
---|
| 245 | * Returns the revision string. |
---|
| 246 | * |
---|
| 247 | * @return the revision |
---|
| 248 | */ |
---|
| 249 | public String getRevision() { |
---|
| 250 | return RevisionUtils.extract("$Revision: 1.10 $"); |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | /** |
---|
| 254 | * Main method by which this class can be tested |
---|
| 255 | * |
---|
| 256 | * @param args an array of options |
---|
| 257 | */ |
---|
| 258 | public static void main(String[] args) { |
---|
| 259 | runClassifier(new M5P(), args); |
---|
| 260 | } |
---|
| 261 | } |
---|