source: src/main/java/weka/classifiers/trees/LMT.java @ 28

Last change on this file since 28 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 24.5 KB
RevLine 
[4]1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    LMT.java
19 *    Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.trees;
24
25import weka.classifiers.Classifier;
26import weka.classifiers.AbstractClassifier;
27import weka.classifiers.trees.j48.C45ModelSelection;
28import weka.classifiers.trees.j48.ModelSelection;
29import weka.classifiers.trees.lmt.LMTNode;
30import weka.classifiers.trees.lmt.ResidualModelSelection;
31import weka.core.AdditionalMeasureProducer;
32import weka.core.Capabilities;
33import weka.core.Drawable;
34import weka.core.Instance;
35import weka.core.Instances;
36import weka.core.Option;
37import weka.core.OptionHandler;
38import weka.core.RevisionUtils;
39import weka.core.TechnicalInformation;
40import weka.core.TechnicalInformationHandler;
41import weka.core.Utils;
42import weka.core.Capabilities.Capability;
43import weka.core.TechnicalInformation.Field;
44import weka.core.TechnicalInformation.Type;
45import weka.filters.Filter;
46import weka.filters.supervised.attribute.NominalToBinary;
47import weka.filters.unsupervised.attribute.ReplaceMissingValues;
48
49import java.util.Enumeration;
50import java.util.Vector;
51
52/**
53 <!-- globalinfo-start -->
54 * Classifier for building 'logistic model trees', which are classification trees with logistic regression functions at the leaves. The algorithm can deal with binary and multi-class target variables, numeric and nominal attributes and missing values.<br/>
55 * <br/>
56 * For more information see: <br/>
57 * <br/>
58 * Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees. Machine Learning. 95(1-2):161-205.<br/>
59 * <br/>
60 * Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model Tree Induction. In: 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, 675-683, 2005.
61 * <p/>
62 <!-- globalinfo-end -->
63 *
64 <!-- technical-bibtex-start -->
65 * BibTeX:
66 * <pre>
67 * &#64;article{Landwehr2005,
68 *    author = {Niels Landwehr and Mark Hall and Eibe Frank},
69 *    journal = {Machine Learning},
70 *    number = {1-2},
71 *    pages = {161-205},
72 *    title = {Logistic Model Trees},
73 *    volume = {95},
74 *    year = {2005}
75 * }
76 *
77 * &#64;inproceedings{Sumner2005,
78 *    author = {Marc Sumner and Eibe Frank and Mark Hall},
79 *    booktitle = {9th European Conference on Principles and Practice of Knowledge Discovery in Databases},
80 *    pages = {675-683},
81 *    publisher = {Springer},
82 *    title = {Speeding up Logistic Model Tree Induction},
83 *    year = {2005}
84 * }
85 * </pre>
86 * <p/>
87 <!-- technical-bibtex-end -->
88 *
89 <!-- options-start -->
90 * Valid options are: <p/>
91 *
92 * <pre> -B
93 *  Binary splits (convert nominal attributes to binary ones)</pre>
94 *
95 * <pre> -R
96 *  Split on residuals instead of class values</pre>
97 *
98 * <pre> -C
99 *  Use cross-validation for boosting at all nodes (i.e., disable heuristic)</pre>
100 *
101 * <pre> -P
102 *  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.</pre>
103 *
104 * <pre> -I &lt;numIterations&gt;
105 *  Set fixed number of iterations for LogitBoost (instead of using cross-validation)</pre>
106 *
107 * <pre> -M &lt;numInstances&gt;
108 *  Set minimum number of instances at which a node can be split (default 15)</pre>
109 *
110 * <pre> -W &lt;beta&gt;
111 *  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.</pre>
112 *
113 * <pre> -A
114 *  The AIC is used to choose the best iteration.</pre>
115 *
116 <!-- options-end -->
117 *
118 * @author Niels Landwehr
119 * @author Marc Sumner
120 * @version $Revision: 6088 $
121 */
122public class LMT 
123  extends AbstractClassifier
124  implements OptionHandler, AdditionalMeasureProducer, Drawable,
125             TechnicalInformationHandler {
126   
127  /** for serialization */
128  static final long serialVersionUID = -1113212459618104943L;
129 
130  /** Filter to replace missing values*/
131  protected ReplaceMissingValues m_replaceMissing;
132   
133  /** Filter to replace nominal attributes*/
134  protected NominalToBinary m_nominalToBinary;
135   
136  /** root of the logistic model tree*/
137  protected LMTNode m_tree;
138   
139  /** use heuristic that determines the number of LogitBoost iterations only once in the beginning?*/
140  protected boolean m_fastRegression;
141
142  /** convert nominal attributes to binary ?*/
143  protected boolean m_convertNominal;
144
145  /** split on residuals?*/
146  protected boolean m_splitOnResiduals;
147   
148  /**use error on probabilties instead of misclassification for stopping criterion of LogitBoost?*/
149  protected boolean m_errorOnProbabilities;
150
151  /**minimum number of instances at which a node is considered for splitting*/
152  protected int m_minNumInstances;
153
154  /**if non-zero, use fixed number of iterations for LogitBoost*/
155  protected int m_numBoostingIterations;
156   
157  /**Threshold for trimming weights. Instances with a weight lower than this (as a percentage
158   * of total weights) are not included in the regression fit.
159   **/
160  protected double m_weightTrimBeta;
161 
162  /** If true, the AIC is used to choose the best LogitBoost iteration*/
163  private boolean m_useAIC = false;
164 
165  /**
166   * Creates an instance of LMT with standard options
167   */
168  public LMT() {
169    m_fastRegression = true;
170    m_numBoostingIterations = -1;
171    m_minNumInstances = 15;
172    m_weightTrimBeta = 0;
173    m_useAIC = false;
174  }   
175
176  /**
177   * Returns default capabilities of the classifier.
178   *
179   * @return      the capabilities of this classifier
180   */
181  public Capabilities getCapabilities() {
182    Capabilities result = super.getCapabilities();
183    result.disableAll();
184
185    // attributes
186    result.enable(Capability.NOMINAL_ATTRIBUTES);
187    result.enable(Capability.NUMERIC_ATTRIBUTES);
188    result.enable(Capability.DATE_ATTRIBUTES);
189    result.enable(Capability.MISSING_VALUES);
190
191    // class
192    result.enable(Capability.NOMINAL_CLASS);
193    result.enable(Capability.MISSING_CLASS_VALUES);
194   
195    return result;
196  }
197
198  /**
199   * Builds the classifier.
200   *
201   * @param data the data to train with
202   * @throws Exception if classifier can't be built successfully
203   */
204  public void buildClassifier(Instances data) throws Exception{
205       
206    // can classifier handle the data?
207    getCapabilities().testWithFail(data);
208
209    // remove instances with missing class
210    Instances filteredData = new Instances(data);
211    filteredData.deleteWithMissingClass();
212   
213    //replace missing values
214    m_replaceMissing = new ReplaceMissingValues();
215    m_replaceMissing.setInputFormat(filteredData);     
216    filteredData = Filter.useFilter(filteredData, m_replaceMissing);   
217       
218    //possibly convert nominal attributes globally
219    if (m_convertNominal) {         
220      m_nominalToBinary = new NominalToBinary();
221      m_nominalToBinary.setInputFormat(filteredData);   
222      filteredData = Filter.useFilter(filteredData, m_nominalToBinary);
223    }
224
225    int minNumInstances = 2;
226       
227    //create ModelSelection object, either for splits on the residuals or for splits on the class value
228    ModelSelection modSelection;       
229    if (m_splitOnResiduals) {
230      modSelection = new ResidualModelSelection(minNumInstances);
231    } else {
232      modSelection = new C45ModelSelection(minNumInstances, filteredData, true);
233    }
234       
235    //create tree root
236    m_tree = new LMTNode(modSelection, m_numBoostingIterations, m_fastRegression, 
237                         m_errorOnProbabilities, m_minNumInstances, m_weightTrimBeta, m_useAIC);
238    //build tree
239    m_tree.buildClassifier(filteredData);
240
241    if (modSelection instanceof C45ModelSelection) ((C45ModelSelection)modSelection).cleanup();
242  }
243
244  /**
245   * Returns class probabilities for an instance.
246   *
247   * @param instance the instance to compute the distribution for
248   * @return the class probabilities
249   * @throws Exception if distribution can't be computed successfully
250   */
251  public double [] distributionForInstance(Instance instance) throws Exception {
252       
253    //replace missing values
254    m_replaceMissing.input(instance);
255    instance = m_replaceMissing.output();       
256       
257    //possibly convert nominal attributes
258    if (m_convertNominal) {
259      m_nominalToBinary.input(instance);
260      instance = m_nominalToBinary.output();
261    }
262       
263    return m_tree.distributionForInstance(instance);
264  }
265
266  /**
267   * Classifies an instance.
268   *
269   * @param instance the instance to classify
270   * @return the classification
271   * @throws Exception if instance can't be classified successfully
272   */
273  public double classifyInstance(Instance instance) throws Exception {
274
275    double maxProb = -1;
276    int maxIndex = 0;
277     
278    //classify by maximum probability
279    double[] probs = distributionForInstance(instance);       
280    for (int j = 0; j < instance.numClasses(); j++) {
281      if (Utils.gr(probs[j], maxProb)) {
282        maxIndex = j;
283        maxProb = probs[j];
284      }
285    }     
286    return (double)maxIndex;     
287  }   
288     
289  /**
290   * Returns a description of the classifier.
291   *
292   * @return a string representation of the classifier
293   */
294  public String toString() {
295    if (m_tree!=null) {
296      return "Logistic model tree \n------------------\n" + m_tree.toString();
297    } else {
298      return "No tree build";
299    }
300  }   
301   
302  /**
303   * Returns an enumeration describing the available options.
304   *
305   * @return an enumeration of all the available options.
306   */
307  public Enumeration listOptions() {
308    Vector newVector = new Vector(8);
309   
310    newVector.addElement(new Option("\tBinary splits (convert nominal attributes to binary ones)",
311                                    "B", 0, "-B"));
312   
313    newVector.addElement(new Option("\tSplit on residuals instead of class values",
314                                    "R", 0, "-R"));
315   
316    newVector.addElement(new Option("\tUse cross-validation for boosting at all nodes (i.e., disable heuristic)",
317                                    "C", 0, "-C"));
318   
319    newVector.addElement(new Option("\tUse error on probabilities instead of misclassification error "+
320                                    "for stopping criterion of LogitBoost.",
321                                    "P", 0, "-P"));
322   
323    newVector.addElement(new Option("\tSet fixed number of iterations for LogitBoost (instead of using "+
324                                    "cross-validation)",
325                                    "I",1,"-I <numIterations>"));
326   
327    newVector.addElement(new Option("\tSet minimum number of instances at which a node can be split (default 15)",
328                                    "M",1,"-M <numInstances>"));
329   
330    newVector.addElement(new Option("\tSet beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.",
331                                    "W",1,"-W <beta>"));
332   
333    newVector.addElement(new Option("\tThe AIC is used to choose the best iteration.",
334                                    "A", 0, "-A"));
335   
336    return newVector.elements();
337  }
338   
339  /**
340   * Parses a given list of options. <p/>
341   *
342   <!-- options-start -->
343   * Valid options are: <p/>
344   *
345   * <pre> -B
346   *  Binary splits (convert nominal attributes to binary ones)</pre>
347   *
348   * <pre> -R
349   *  Split on residuals instead of class values</pre>
350   *
351   * <pre> -C
352   *  Use cross-validation for boosting at all nodes (i.e., disable heuristic)</pre>
353   *
354   * <pre> -P
355   *  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.</pre>
356   *
357   * <pre> -I &lt;numIterations&gt;
358   *  Set fixed number of iterations for LogitBoost (instead of using cross-validation)</pre>
359   *
360   * <pre> -M &lt;numInstances&gt;
361   *  Set minimum number of instances at which a node can be split (default 15)</pre>
362   *
363   * <pre> -W &lt;beta&gt;
364   *  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.</pre>
365   *
366   * <pre> -A
367   *  The AIC is used to choose the best iteration.</pre>
368   *
369   <!-- options-end -->
370   *
371   * @param options the list of options as an array of strings
372   * @throws Exception if an option is not supported
373   */
374  public void setOptions(String[] options) throws Exception {
375
376    setConvertNominal(Utils.getFlag('B', options));
377    setSplitOnResiduals(Utils.getFlag('R', options));
378    setFastRegression(!Utils.getFlag('C', options));
379    setErrorOnProbabilities(Utils.getFlag('P', options));
380
381    String optionString = Utils.getOption('I', options);
382    if (optionString.length() != 0) {
383      setNumBoostingIterations((new Integer(optionString)).intValue());
384    }
385       
386    optionString = Utils.getOption('M', options);
387    if (optionString.length() != 0) {
388      setMinNumInstances((new Integer(optionString)).intValue());
389    }
390
391    optionString = Utils.getOption('W', options);
392    if (optionString.length() != 0) {
393      setWeightTrimBeta((new Double(optionString)).doubleValue());
394    }
395   
396    setUseAIC(Utils.getFlag('A', options));       
397   
398    Utils.checkForRemainingOptions(options);
399       
400  } 
401   
402  /**
403   * Gets the current settings of the Classifier.
404   *
405   * @return an array of strings suitable for passing to setOptions
406   */
407  public String[] getOptions() {
408    String[] options = new String[11];
409    int current = 0;
410
411    if (getConvertNominal()) {
412      options[current++] = "-B";
413    } 
414
415    if (getSplitOnResiduals()) {
416      options[current++] = "-R";
417    }
418
419    if (!getFastRegression()) {
420      options[current++] = "-C";
421    } 
422       
423    if (getErrorOnProbabilities()) {
424      options[current++] = "-P";
425    } 
426       
427    options[current++] = "-I"; 
428    options[current++] = ""+getNumBoostingIterations();
429
430    options[current++] = "-M"; 
431    options[current++] = ""+getMinNumInstances();
432       
433    options[current++] = "-W";
434    options[current++] = ""+getWeightTrimBeta();
435   
436    if (getUseAIC()) {
437      options[current++] = "-A";
438    }
439   
440    while (current < options.length) {
441      options[current++] = "";
442    } 
443    return options;
444  } 
445
446  /**
447   * Get the value of weightTrimBeta.
448   */
449  public double getWeightTrimBeta(){
450    return m_weightTrimBeta;
451  }
452 
453  /**
454   * Get the value of useAIC.
455   *
456   * @return Value of useAIC.
457   */
458  public boolean getUseAIC(){
459    return m_useAIC;
460  }
461   
462  /**
463   * Set the value of weightTrimBeta.
464   */
465  public void setWeightTrimBeta(double n){
466    m_weightTrimBeta = n;
467  }
468 
469  /**
470   * Set the value of useAIC.
471   *
472   * @param c Value to assign to useAIC.
473   */
474  public void setUseAIC(boolean c){
475    m_useAIC = c;
476  }
477 
478  /**
479   * Get the value of convertNominal.
480   *
481   * @return Value of convertNominal.
482   */
483  public boolean getConvertNominal(){
484    return m_convertNominal;
485  }
486
487  /**
488   * Get the value of splitOnResiduals.
489   *
490   * @return Value of splitOnResiduals.
491   */
492  public boolean getSplitOnResiduals(){
493    return m_splitOnResiduals;
494  }
495
496  /**
497   * Get the value of fastRegression.
498   *
499   * @return Value of fastRegression.
500   */
501  public boolean getFastRegression(){
502    return m_fastRegression;
503  }
504   
505  /**
506   * Get the value of errorOnProbabilities.
507   *
508   * @return Value of errorOnProbabilities.
509   */
510  public boolean getErrorOnProbabilities(){
511    return m_errorOnProbabilities;
512  }
513
514  /**
515   * Get the value of numBoostingIterations.
516   *
517   * @return Value of numBoostingIterations.
518   */
519  public int getNumBoostingIterations(){
520    return m_numBoostingIterations;
521  }
522   
523  /**
524   * Get the value of minNumInstances.
525   *
526   * @return Value of minNumInstances.
527   */
528  public int getMinNumInstances(){
529    return m_minNumInstances;
530  }
531   
532  /**
533   * Set the value of convertNominal.
534   *
535   * @param c Value to assign to convertNominal.
536   */
537  public void setConvertNominal(boolean c){
538    m_convertNominal = c;
539  }
540
541  /**
542   * Set the value of splitOnResiduals.
543   *
544   * @param c Value to assign to splitOnResiduals.
545   */
546  public void setSplitOnResiduals(boolean c){
547    m_splitOnResiduals = c;
548  }
549
550  /**
551   * Set the value of fastRegression.
552   *
553   * @param c Value to assign to fastRegression.
554   */
555  public void setFastRegression(boolean c){
556    m_fastRegression = c;
557  }
558
559  /**
560   * Set the value of errorOnProbabilities.
561   *
562   * @param c Value to assign to errorOnProbabilities.
563   */
564  public void setErrorOnProbabilities(boolean c){
565    m_errorOnProbabilities = c;
566  }
567
568  /**
569   * Set the value of numBoostingIterations.
570   *
571   * @param c Value to assign to numBoostingIterations.
572   */
573  public void setNumBoostingIterations(int c){
574    m_numBoostingIterations = c;
575  } 
576
577  /**
578   * Set the value of minNumInstances.
579   *
580   * @param c Value to assign to minNumInstances.
581   */
582  public void setMinNumInstances(int c){
583    m_minNumInstances = c;
584  }
585   
586  /**
587   *  Returns the type of graph this classifier
588   *  represents.
589   *  @return Drawable.TREE
590   */   
591  public int graphType() {
592    return Drawable.TREE;
593  }
594
595  /**
596   * Returns graph describing the tree.
597   *
598   * @return the graph describing the tree
599   * @throws Exception if graph can't be computed
600   */
601  public String graph() throws Exception {
602
603    return m_tree.graph();
604  }
605
606  /**
607   * Returns the size of the tree
608   * @return the size of the tree
609   */
610  public int measureTreeSize(){
611    return m_tree.numNodes();
612  }
613   
614  /**
615   * Returns the number of leaves in the tree
616   * @return the number of leaves in the tree
617   */
618  public int measureNumLeaves(){
619    return m_tree.numLeaves();
620  }
621     
622  /**
623   * Returns an enumeration of the additional measure names
624   * @return an enumeration of the measure names
625   */
626  public Enumeration enumerateMeasures() {
627    Vector newVector = new Vector(2);
628    newVector.addElement("measureTreeSize");
629    newVector.addElement("measureNumLeaves");
630       
631    return newVector.elements();
632  }
633   
634
635  /**
636   * Returns the value of the named measure
637   * @param additionalMeasureName the name of the measure to query for its value
638   * @return the value of the named measure
639   * @throws IllegalArgumentException if the named measure is not supported
640   */
641  public double getMeasure(String additionalMeasureName) {
642    if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) {
643      return measureTreeSize();
644    } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) {
645      return measureNumLeaves();
646    } else {
647      throw new IllegalArgumentException(additionalMeasureName
648                                         + " not supported (LMT)");
649    }
650  }   
651   
652  /**
653   * Returns a string describing classifier
654   * @return a description suitable for
655   * displaying in the explorer/experimenter gui
656   */
657  public String globalInfo() {
658    return "Classifier for building 'logistic model trees', which are classification trees with "
659      +"logistic regression functions at the leaves. The algorithm can deal with binary and multi-class "
660      +"target variables, numeric and nominal attributes and missing values.\n\n"
661      +"For more information see: \n\n"
662      + getTechnicalInformation().toString();
663  }
664
665  /**
666   * Returns an instance of a TechnicalInformation object, containing
667   * detailed information about the technical background of this class,
668   * e.g., paper reference or book this class is based on.
669   *
670   * @return the technical information about this class
671   */
672  public TechnicalInformation getTechnicalInformation() {
673    TechnicalInformation        result;
674    TechnicalInformation        additional;
675     
676    result = new TechnicalInformation(Type.ARTICLE);
677    result.setValue(Field.AUTHOR, "Niels Landwehr and Mark Hall and Eibe Frank");
678    result.setValue(Field.TITLE, "Logistic Model Trees");
679    result.setValue(Field.JOURNAL, "Machine Learning");
680    result.setValue(Field.YEAR, "2005");
681    result.setValue(Field.VOLUME, "95");
682    result.setValue(Field.PAGES, "161-205");
683    result.setValue(Field.NUMBER, "1-2");
684   
685    additional = result.add(Type.INPROCEEDINGS);
686    additional.setValue(Field.AUTHOR, "Marc Sumner and Eibe Frank and Mark Hall");
687    additional.setValue(Field.TITLE, "Speeding up Logistic Model Tree Induction");
688    additional.setValue(Field.BOOKTITLE, "9th European Conference on Principles and Practice of Knowledge Discovery in Databases");
689    additional.setValue(Field.YEAR, "2005");
690    additional.setValue(Field.PAGES, "675-683");
691    additional.setValue(Field.PUBLISHER, "Springer");
692   
693    return result;
694  }
695
696  /**
697   * Returns the tip text for this property
698   * @return tip text for this property suitable for
699   * displaying in the explorer/experimenter gui
700   */
701  public String convertNominalTipText() {
702    return "Convert all nominal attributes to binary ones before building the tree. "
703      +"This means that all splits in the final tree will be binary.";
704  }
705   
706  /**
707   * Returns the tip text for this property
708   * @return tip text for this property suitable for
709   * displaying in the explorer/experimenter gui
710   */
711  public String splitOnResidualsTipText() {
712    return "Set splitting criterion based on the residuals of LogitBoost. "
713      +"There are two possible splitting criteria for LMT: the default is to use the C4.5 "
714      +"splitting criterion that uses information gain on the class variable. The other splitting "
715      +"criterion tries to improve the purity in the residuals produces when fitting the logistic "
716      +"regression functions. The choice of the splitting criterion does not usually affect classification "
717      +"accuracy much, but can produce different trees.";
718  } 
719
720  /**
721   * Returns the tip text for this property
722   * @return tip text for this property suitable for
723   * displaying in the explorer/experimenter gui
724   */
725  public String fastRegressionTipText() {
726    return "Use heuristic that avoids cross-validating the number of Logit-Boost iterations at every node. "
727      +"When fitting the logistic regression functions at a node, LMT has to determine the number of LogitBoost "
728      +"iterations to run. Originally, this number was cross-validated at every node in the tree. "
729      +"To save time, this heuristic cross-validates the number only once and then uses that number at every "
730      +"node in the tree. Usually this does not decrease accuracy but improves runtime considerably.";
731  } 
732
733
734  /**
735   * Returns the tip text for this property
736   * @return tip text for this property suitable for
737   * displaying in the explorer/experimenter gui
738   */
739  public String errorOnProbabilitiesTipText() {
740    return "Minimize error on probabilities instead of misclassification error when cross-validating the number "
741      +"of LogitBoost iterations. When set, the number of LogitBoost iterations is chosen that minimizes "
742      +"the root mean squared error instead of the misclassification error.";     
743  } 
744
745  /**
746   * Returns the tip text for this property
747   * @return tip text for this property suitable for
748   * displaying in the explorer/experimenter gui
749   */
750  public String numBoostingIterationsTipText() {
751    return "Set a fixed number of iterations for LogitBoost. If >= 0, this sets a fixed number of LogitBoost "
752      +"iterations that is used everywhere in the tree. If < 0, the number is cross-validated.";
753  } 
754
755  /**
756   * Returns the tip text for this property
757   * @return tip text for this property suitable for
758   * displaying in the explorer/experimenter gui
759   */
760  public String minNumInstancesTipText() {
761    return "Set the minimum number of instances at which a node is considered for splitting. "
762      +"The default value is 15.";
763  } 
764
765  /**
766   * Returns the tip text for this property
767   * @return tip text for this property suitable for
768   * displaying in the explorer/experimenter gui
769   */
770  public String weightTrimBetaTipText() {
771    return "Set the beta value used for weight trimming in LogitBoost. "
772    +"Only instances carrying (1 - beta)% of the weight from previous iteration "
773    +"are used in the next iteration. Set to 0 for no weight trimming. "
774    +"The default value is 0.";
775  }
776
777  /**
778   * Returns the tip text for this property
779   * @return tip text for this property suitable for
780   * displaying in the explorer/experimenter gui
781   */
782  public String useAICTipText() {
783    return "The AIC is used to determine when to stop LogitBoost iterations. "
784    +"The default is not to use AIC.";
785  }
786
787  /**
788   * Returns the revision string.
789   *
790   * @return            the revision
791   */
792  public String getRevision() {
793    return RevisionUtils.extract("$Revision: 6088 $");
794  }
795
796  /**
797   * Main method for testing this class
798   *
799   * @param argv the commandline options
800   */
801  public static void main (String [] argv) {   
802    runClassifier(new LMT(), argv);
803  } 
804}
Note: See TracBrowser for help on using the repository browser.