/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * J48graft.java * Copyright (C) 2007 Geoff Webb & Janice Boughton * (adapted from code written by Eibe Frank). */ package weka.classifiers.trees; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.classifiers.Sourcable; import weka.classifiers.trees.j48.BinC45ModelSelection; import weka.classifiers.trees.j48.C45ModelSelection; import weka.classifiers.trees.j48.C45PruneableClassifierTreeG; import weka.classifiers.trees.j48.ClassifierTree; import weka.classifiers.trees.j48.ModelSelection; import weka.core.AdditionalMeasureProducer; import weka.core.Capabilities; import weka.core.Drawable; import weka.core.Instance; import weka.core.Instances; import weka.core.Matchable; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.Summarizable; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.util.Enumeration; import java.util.Vector; /** * Class for generating a grafted (pruned or unpruned) C4.5 decision tree. For more information, see
*
* Geoff Webb: Decision Tree Grafting From the All-Tests-But-One Partition. In: , San Francisco, CA, 1999. *

* * BibTeX: *

 * @inproceedings{Webb1999,
 *    address = {San Francisco, CA},
 *    author = {Geoff Webb},
 *    publisher = {Morgan Kaufmann},
 *    title = {Decision Tree Grafting From the All-Tests-But-One Partition},
 *    year = {1999}
 * }
 * 
*

* * Valid options are:

* *

 -U
 *  Use unpruned tree.
* *
 -C <pruning confidence>
 *  Set confidence threshold for pruning.
 *  (default 0.25)
* *
 -M <minimum number of instances>
 *  Set minimum number of instances per leaf.
 *  (default 2)
* *
 -B
 *  Use binary splits only.
* *
 -S
 *  Don't perform subtree raising.
* *
 -L
 *  Do not clean up after the tree has been built.
* *
 -A
 *  Laplace smoothing for predicted probabilities.  (note: this option only affects initial tree; grafting process always uses laplace).
* *
 -E
 *  Relabel when grafting.
* * * @author Janice Boughton (jrbought@csse.monash.edu.au) * (based on J48.java written by Eibe Frank) * @version $Revision: 6088 $ */ public class J48graft extends AbstractClassifier implements OptionHandler, Drawable, Matchable, Sourcable, WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 8823716098042427799L; /** The decision tree */ private ClassifierTree m_root; /** Unpruned tree? */ private boolean m_unpruned = false; /** Confidence level */ private float m_CF = 0.25f; /** Minimum number of instances */ private int m_minNumObj = 2; /** Determines whether probabilities are smoothed using Laplace correction when predictions are generated */ private boolean m_useLaplace = false; /** Number of folds for reduced error pruning. */ private int m_numFolds = 3; /** Binary splits on nominal attributes? */ private boolean m_binarySplits = false; /** Subtree raising to be performed? */ private boolean m_subtreeRaising = true; /** Cleanup after the tree has been built. */ private boolean m_noCleanup = false; /** relabel instances when grafting */ private boolean m_relabel = false; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for generating a grafted (pruned or unpruned) C4.5 " + "decision tree. For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Geoff Webb"); result.setValue(Field.YEAR, "1999"); result.setValue(Field.TITLE, "Decision Tree Grafting From the All-Tests-But-One Partition"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); result.setValue(Field.ADDRESS, "San Francisco, CA"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result; try { result = new C45PruneableClassifierTreeG(null, !m_unpruned, m_CF, m_subtreeRaising, m_relabel, !m_noCleanup).getCapabilities(); } catch (Exception e) { result = new Capabilities(this); result.disableAll(); } result.setOwner(this); return result; } /** * Generates the classifier. * * @param instances the data to train the classifier with * @throws Exception if classifier can't be built successfully */ public void buildClassifier(Instances instances) throws Exception { ModelSelection modSelection; if (m_binarySplits) modSelection = new BinC45ModelSelection(m_minNumObj, instances, true); else modSelection = new C45ModelSelection(m_minNumObj, instances, true); m_root = new C45PruneableClassifierTreeG(modSelection, !m_unpruned, m_CF, m_subtreeRaising, m_relabel, !m_noCleanup); m_root.buildClassifier(instances); if (m_binarySplits) { ((BinC45ModelSelection)modSelection).cleanup(); } else { ((C45ModelSelection)modSelection).cleanup(); } } /** * Classifies an instance. * * @param instance the instance to classify * @return the classification for the instance * @throws Exception if instance can't be classified successfully */ public double classifyInstance(Instance instance) throws Exception { return m_root.classifyInstance(instance); } /** * Returns class probabilities for an instance. * * @param instance the instance to calculate the class probabilities for * @return the class probabilities * @throws Exception if distribution can't be computed successfully */ public final double [] distributionForInstance(Instance instance) throws Exception { return m_root.distributionForInstance(instance, m_useLaplace); } /** * Returns the type of graph this classifier * represents. * @return Drawable.TREE */ public int graphType() { return Drawable.TREE; } /** * Returns graph describing the tree. * * @return the graph describing the tree * @throws Exception if graph can't be computed */ public String graph() throws Exception { return m_root.graph(); } /** * Returns tree in prefix order. * * @return the tree in prefix order * @throws Exception if something goes wrong */ public String prefix() throws Exception { return m_root.prefix(); } /** * Returns tree as an if-then statement. * * @param className the name of the Java class * @return the tree as a Java if-then type statement * @throws Exception if something goes wrong */ public String toSource(String className) throws Exception { StringBuffer [] source = m_root.toSource(className); return "class " + className + " {\n\n" +" public static double classify(Object [] i)\n" +" throws Exception {\n\n" +" double p = Double.NaN;\n" + source[0] // Assignment code +" return p;\n" +" }\n" + source[1] // Support code +"}\n"; } /** * Returns an enumeration describing the available options. * * Valid options are:

* * -U
* Use unpruned tree.

* * -C confidence
* Set confidence threshold for pruning. (Default: 0.25)

* * -M number
* Set minimum number of instances per leaf. (Default: 2)

* * -B
* Use binary splits for nominal attributes.

* * -S
* Don't perform subtree raising.

* * -L
* Do not clean up after the tree has been built. * * -A
* If set, Laplace smoothing is used for predicted probabilites. * (note: this option only affects initial tree; grafting process always uses laplace).

* * -E
* Allow relabelling when grafting.

* * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(9); newVector. addElement(new Option("\tUse unpruned tree.", "U", 0, "-U")); newVector. addElement(new Option("\tSet confidence threshold for pruning.\n" + "\t(default 0.25)", "C", 1, "-C ")); newVector. addElement(new Option("\tSet minimum number of instances per leaf.\n" + "\t(default 2)", "M", 1, "-M ")); newVector. addElement(new Option("\tUse binary splits only.", "B", 0, "-B")); newVector. addElement(new Option("\tDon't perform subtree raising.", "S", 0, "-S")); newVector. addElement(new Option("\tDo not clean up after the tree has been built.", "L", 0, "-L")); newVector. addElement(new Option("\tLaplace smoothing for predicted probabilities. (note: this option only affects initial tree; grafting process always uses laplace).", "A", 0, "-A")); newVector. addElement(new Option("\tRelabel when grafting.", "E", 0, "-E")); return newVector.elements(); } /** * Parses a given list of options. * * Valid options are:

* *

 -U
   *  Use unpruned tree.
* *
 -C <pruning confidence>
   *  Set confidence threshold for pruning.
   *  (default 0.25)
* *
 -M <minimum number of instances>
   *  Set minimum number of instances per leaf.
   *  (default 2)
* *
 -B
   *  Use binary splits only.
* *
 -S
   *  Don't perform subtree raising.
* *
 -L
   *  Do not clean up after the tree has been built.
* *
 -A
   *  Laplace smoothing for predicted probabilities.  (note: this option only affects initial tree; grafting process always uses laplace).
* *
 -E
   *  Relabel when grafting.
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { // Other options String minNumString = Utils.getOption('M', options); if (minNumString.length() != 0) { m_minNumObj = Integer.parseInt(minNumString); } else { m_minNumObj = 2; } m_binarySplits = Utils.getFlag('B', options); m_useLaplace = Utils.getFlag('A', options); // Pruning options m_unpruned = Utils.getFlag('U', options); m_subtreeRaising = !Utils.getFlag('S', options); m_noCleanup = Utils.getFlag('L', options); if ((m_unpruned) && (!m_subtreeRaising)) { throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!"); } m_relabel = Utils.getFlag('E', options); String confidenceString = Utils.getOption('C', options); if (confidenceString.length() != 0) { if (m_unpruned) { throw new Exception("Doesn't make sense to change confidence for unpruned " +"tree!"); } else { m_CF = (new Float(confidenceString)).floatValue(); if ((m_CF <= 0) || (m_CF >= 1)) { throw new Exception("Confidence has to be greater than zero and smaller " + "than one!"); } } } else { m_CF = 0.25f; } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [10]; int current = 0; if (m_noCleanup) { options[current++] = "-L"; } if (m_unpruned) { options[current++] = "-U"; } else { if (!m_subtreeRaising) { options[current++] = "-S"; } options[current++] = "-C"; options[current++] = "" + m_CF; } if (m_binarySplits) { options[current++] = "-B"; } options[current++] = "-M"; options[current++] = "" + m_minNumObj; if (m_useLaplace) { options[current++] = "-A"; } if(m_relabel) { options[current++] = "-E"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useLaplaceTipText() { return "Whether counts at leaves are smoothed based on Laplace."; } /** * Get the value of useLaplace. * * @return Value of useLaplace. */ public boolean getUseLaplace() { return m_useLaplace; } /** * Set the value of useLaplace. * * @param newuseLaplace Value to assign to useLaplace. */ public void setUseLaplace(boolean newuseLaplace) { m_useLaplace = newuseLaplace; } /** * Returns a description of the classifier. * * @return a description of the classifier */ public String toString() { if (m_root == null) { return "No classifier built"; } if (m_unpruned) return "J48graft unpruned tree\n------------------\n" + m_root.toString(); else return "J48graft pruned tree\n------------------\n" + m_root.toString(); } /** * Returns a superconcise version of the model * * @return a summary of the model */ public String toSummaryString() { return "Number of leaves: " + m_root.numLeaves() + "\n" + "Size of the tree: " + m_root.numNodes() + "\n"; } /** * Returns the size of the tree * @return the size of the tree */ public double measureTreeSize() { return m_root.numNodes(); } /** * Returns the number of leaves * @return the number of leaves */ public double measureNumLeaves() { return m_root.numLeaves(); } /** * Returns the number of rules (same as number of leaves) * @return the number of rules */ public double measureNumRules() { return m_root.numLeaves(); } /** * Returns an enumeration of the additional measure names * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(3); newVector.addElement("measureTreeSize"); newVector.addElement("measureNumLeaves"); newVector.addElement("measureNumRules"); return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareTo("measureNumRules") == 0) { return measureNumRules(); } else if (additionalMeasureName.compareTo("measureTreeSize") == 0) { return measureTreeSize(); } else if (additionalMeasureName.compareTo("measureNumLeaves") == 0) { return measureNumLeaves(); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (j48)"); } } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String unprunedTipText() { return "Whether pruning is performed."; } /** * Get the value of unpruned. * * @return Value of unpruned. */ public boolean getUnpruned() { return m_unpruned; } /** * Set the value of unpruned. * @param v Value to assign to unpruned. */ public void setUnpruned(boolean v) { m_unpruned = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String relabelTipText() { return "Whether relabelling is allowed during grafting."; } /** * Get the value of relabelling * * @return Value of relabelling. */ public boolean getRelabel() { return m_relabel; } /** * Set the value of relabelling. * * @param v Value to assign to relabelling flag. */ public void setRelabel(boolean v) { m_relabel = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String confidenceFactorTipText() { return "The confidence factor used for pruning (smaller values incur " + "more pruning)."; } /** * Get the value of CF. * * @return Value of CF. */ public float getConfidenceFactor() { return m_CF; } /** * Set the value of CF. * * @param v Value to assign to CF. */ public void setConfidenceFactor(float v) { m_CF = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNumObjTipText() { return "The minimum number of instances per leaf."; } /** * Get the value of minNumObj. * * @return Value of minNumObj. */ public int getMinNumObj() { return m_minNumObj; } /** * Set the value of minNumObj. * * @param v Value to assign to minNumObj. */ public void setMinNumObj(int v) { m_minNumObj = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binarySplitsTipText() { return "Whether to use binary splits on nominal attributes when " + "building the trees."; } /** * Get the value of binarySplits. * * @return Value of binarySplits. */ public boolean getBinarySplits() { return m_binarySplits; } /** * Set the value of binarySplits. * * @param v Value to assign to binarySplits. */ public void setBinarySplits(boolean v) { m_binarySplits = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String subtreeRaisingTipText() { return "Whether to consider the subtree raising operation when pruning."; } /** * Get the value of subtreeRaising. * * @return Value of subtreeRaising. */ public boolean getSubtreeRaising() { return m_subtreeRaising; } /** * Set the value of subtreeRaising. * * @param v Value to assign to subtreeRaising. */ public void setSubtreeRaising(boolean v) { m_subtreeRaising = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String saveInstanceDataTipText() { return "Whether to save the training data for visualization."; } /** * Check whether instance data is to be saved. * * @return true if instance data is saved */ public boolean getSaveInstanceData() { return m_noCleanup; } /** * Set whether instance data is to be saved. * @param v true if instance data is to be saved */ public void setSaveInstanceData(boolean v) { m_noCleanup = v; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6088 $"); } /** * Main method for testing this class * * @param argv the commandline options */ public static void main(String [] argv){ runClassifier(new J48graft(), argv); } }