[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * FT.java |
---|
| 19 | * Copyright (C) 2007 University of Porto, Porto, Portugal |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.trees; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.trees.ft.FTInnerNode; |
---|
| 28 | import weka.classifiers.trees.ft.FTLeavesNode; |
---|
| 29 | import weka.classifiers.trees.ft.FTNode; |
---|
| 30 | import weka.classifiers.trees.ft.FTtree; |
---|
| 31 | import weka.core.AdditionalMeasureProducer; |
---|
| 32 | import weka.core.Capabilities; |
---|
| 33 | import weka.core.Drawable; |
---|
| 34 | import weka.core.Instance; |
---|
| 35 | import weka.core.Instances; |
---|
| 36 | import weka.core.Option; |
---|
| 37 | import weka.core.OptionHandler; |
---|
| 38 | import weka.core.RevisionUtils; |
---|
| 39 | import weka.core.SelectedTag; |
---|
| 40 | import weka.core.Tag; |
---|
| 41 | import weka.core.TechnicalInformation; |
---|
| 42 | import weka.core.TechnicalInformationHandler; |
---|
| 43 | import weka.core.Utils; |
---|
| 44 | import weka.core.Capabilities.Capability; |
---|
| 45 | import weka.core.TechnicalInformation.Field; |
---|
| 46 | import weka.core.TechnicalInformation.Type; |
---|
| 47 | import weka.filters.Filter; |
---|
| 48 | import weka.filters.supervised.attribute.NominalToBinary; |
---|
| 49 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
| 50 | |
---|
| 51 | import java.util.Enumeration; |
---|
| 52 | import java.util.Vector; |
---|
| 53 | |
---|
| 54 | /** |
---|
| 55 | <!-- globalinfo-start --> |
---|
| 56 | * Classifier for building 'Functional trees', which are classification trees that could have logistic regression functions at the inner nodes and/or leaves. The algorithm can deal with binary and multi-class target variables, numeric and nominal attributes and missing values.<br/> |
---|
| 57 | * <br/> |
---|
| 58 | * For more information see: <br/> |
---|
| 59 | * <br/> |
---|
| 60 | * Joao Gama (2004). Functional Trees.<br/> |
---|
| 61 | * <br/> |
---|
| 62 | * Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees. |
---|
| 63 | * <p/> |
---|
| 64 | <!-- globalinfo-end --> |
---|
| 65 | * |
---|
| 66 | <!-- technical-bibtex-start --> |
---|
| 67 | * BibTeX: |
---|
| 68 | * <pre> |
---|
| 69 | * @article{Gama2004, |
---|
| 70 | * author = {Joao Gama}, |
---|
| 71 | * booktitle = {Machine Learning}, |
---|
| 72 | * number = {3}, |
---|
| 73 | * pages = {219-250}, |
---|
| 74 | * title = {Functional Trees}, |
---|
| 75 | * volume = {55}, |
---|
| 76 | * year = {2004} |
---|
| 77 | * } |
---|
| 78 | * |
---|
| 79 | * @article{Landwehr2005, |
---|
| 80 | * author = {Niels Landwehr and Mark Hall and Eibe Frank}, |
---|
| 81 | * booktitle = {Machine Learning}, |
---|
| 82 | * number = {1-2}, |
---|
| 83 | * pages = {161-205}, |
---|
| 84 | * title = {Logistic Model Trees}, |
---|
| 85 | * volume = {95}, |
---|
| 86 | * year = {2005} |
---|
| 87 | * } |
---|
| 88 | * </pre> |
---|
| 89 | * <p/> |
---|
| 90 | <!-- technical-bibtex-end --> |
---|
| 91 | * |
---|
| 92 | <!-- options-start --> |
---|
| 93 | * Valid options are: <p/> |
---|
| 94 | * |
---|
| 95 | * <pre> -B |
---|
| 96 | * Binary splits (convert nominal attributes to binary ones) </pre> |
---|
| 97 | * |
---|
| 98 | * <pre> -P |
---|
| 99 | * Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.</pre> |
---|
| 100 | * |
---|
| 101 | * <pre> -I <numIterations> |
---|
| 102 | * Set fixed number of iterations for LogitBoost (instead of using cross-validation)</pre> |
---|
| 103 | * |
---|
| 104 | * <pre> -F <modelType> |
---|
| 105 | * Set Funtional Tree type to be generate: 0 for FT, 1 for FTLeaves and 2 for FTInner</pre> |
---|
| 106 | * |
---|
| 107 | * <pre> -M <numInstances> |
---|
| 108 | * Set minimum number of instances at which a node can be split (default 15)</pre> |
---|
| 109 | * |
---|
| 110 | * <pre> -W <beta> |
---|
| 111 | * Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.</pre> |
---|
| 112 | * |
---|
| 113 | * <pre> -A |
---|
| 114 | * The AIC is used to choose the best iteration.</pre> |
---|
| 115 | * |
---|
| 116 | <!-- options-end --> |
---|
| 117 | * |
---|
| 118 | * @author Jo\~{a}o Gama |
---|
| 119 | * @author Carlos Ferreira |
---|
| 120 | * @version $Revision: 5928 $ |
---|
| 121 | */ |
---|
| 122 | public class FT |
---|
| 123 | extends AbstractClassifier |
---|
| 124 | implements OptionHandler, AdditionalMeasureProducer, Drawable, |
---|
| 125 | TechnicalInformationHandler { |
---|
| 126 | |
---|
| 127 | /** for serialization */ |
---|
| 128 | static final long serialVersionUID = -1113212459618105000L; |
---|
| 129 | |
---|
| 130 | /** Filter to replace missing values*/ |
---|
| 131 | protected ReplaceMissingValues m_replaceMissing; |
---|
| 132 | |
---|
| 133 | /** Filter to replace nominal attributes*/ |
---|
| 134 | protected NominalToBinary m_nominalToBinary; |
---|
| 135 | |
---|
| 136 | /** root of the logistic model tree*/ |
---|
| 137 | protected FTtree m_tree; |
---|
| 138 | |
---|
| 139 | /** convert nominal attributes to binary ?*/ |
---|
| 140 | protected boolean m_convertNominal; |
---|
| 141 | |
---|
| 142 | /**use error on probabilties instead of misclassification for stopping criterion of LogitBoost?*/ |
---|
| 143 | protected boolean m_errorOnProbabilities; |
---|
| 144 | |
---|
| 145 | /**minimum number of instances at which a node is considered for splitting*/ |
---|
| 146 | protected int m_minNumInstances; |
---|
| 147 | |
---|
| 148 | /**if non-zero, use fixed number of iterations for LogitBoost*/ |
---|
| 149 | protected int m_numBoostingIterations; |
---|
| 150 | |
---|
| 151 | /**Model Type, value: 0 is FT, 1 is FTLeaves, 2 is FTInner*/ |
---|
| 152 | protected int m_modelType; |
---|
| 153 | |
---|
| 154 | /**Threshold for trimming weights. Instances with a weight lower than this (as a percentage |
---|
| 155 | * of total weights) are not included in the regression fit. |
---|
| 156 | **/ |
---|
| 157 | protected double m_weightTrimBeta; |
---|
| 158 | |
---|
| 159 | /** If true, the AIC is used to choose the best LogitBoost iteration*/ |
---|
| 160 | protected boolean m_useAIC ; |
---|
| 161 | |
---|
| 162 | /** model types */ |
---|
| 163 | public static final int MODEL_FT = 0; |
---|
| 164 | public static final int MODEL_FTLeaves = 1; |
---|
| 165 | public static final int MODEL_FTInner = 2; |
---|
| 166 | |
---|
| 167 | /** possible model types. */ |
---|
| 168 | public static final Tag [] TAGS_MODEL = { |
---|
| 169 | new Tag(MODEL_FT, "FT"), |
---|
| 170 | new Tag(MODEL_FTLeaves, "FTLeaves"), |
---|
| 171 | new Tag(MODEL_FTInner, "FTInner") |
---|
| 172 | }; |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | /** |
---|
| 176 | * Creates an instance of FT with standard options |
---|
| 177 | */ |
---|
| 178 | public FT() { |
---|
| 179 | m_numBoostingIterations=15; |
---|
| 180 | m_minNumInstances = 15; |
---|
| 181 | m_weightTrimBeta = 0; |
---|
| 182 | m_useAIC = false; |
---|
| 183 | m_modelType=0; |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | /** |
---|
| 187 | * Returns default capabilities of the classifier. |
---|
| 188 | * |
---|
| 189 | * @return the capabilities of this classifier |
---|
| 190 | */ |
---|
| 191 | public Capabilities getCapabilities() { |
---|
| 192 | Capabilities result = super.getCapabilities(); |
---|
| 193 | result.disableAll(); |
---|
| 194 | |
---|
| 195 | // attributes |
---|
| 196 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 197 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 198 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 199 | result.enable(Capability.MISSING_VALUES); |
---|
| 200 | |
---|
| 201 | // class |
---|
| 202 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 203 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 204 | |
---|
| 205 | return result; |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | /** |
---|
| 209 | * Builds the classifier. |
---|
| 210 | * |
---|
| 211 | * @param data the data to train with |
---|
| 212 | * @throws Exception if classifier can't be built successfully |
---|
| 213 | */ |
---|
| 214 | public void buildClassifier(Instances data) throws Exception{ |
---|
| 215 | |
---|
| 216 | |
---|
| 217 | // can classifier handle the data? |
---|
| 218 | getCapabilities().testWithFail(data); |
---|
| 219 | |
---|
| 220 | // remove instances with missing class |
---|
| 221 | Instances filteredData = new Instances(data); |
---|
| 222 | filteredData.deleteWithMissingClass(); |
---|
| 223 | |
---|
| 224 | //replace missing values |
---|
| 225 | m_replaceMissing = new ReplaceMissingValues(); |
---|
| 226 | m_replaceMissing.setInputFormat(filteredData); |
---|
| 227 | filteredData = Filter.useFilter(filteredData, m_replaceMissing); |
---|
| 228 | |
---|
| 229 | //possibly convert nominal attributes globally |
---|
| 230 | if (m_convertNominal) { |
---|
| 231 | m_nominalToBinary = new NominalToBinary(); |
---|
| 232 | m_nominalToBinary.setInputFormat(filteredData); |
---|
| 233 | filteredData = Filter.useFilter(filteredData, m_nominalToBinary); |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | int minNumInstances = 2; |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | //create a FT tree root |
---|
| 240 | if (m_modelType==0) |
---|
| 241 | m_tree = new FTNode( m_errorOnProbabilities, m_numBoostingIterations, m_minNumInstances, |
---|
| 242 | m_weightTrimBeta, m_useAIC); |
---|
| 243 | |
---|
| 244 | //create a FTLeaves tree root |
---|
| 245 | if (m_modelType==1){ |
---|
| 246 | m_tree = new FTLeavesNode(m_errorOnProbabilities, m_numBoostingIterations, m_minNumInstances, |
---|
| 247 | m_weightTrimBeta, m_useAIC); |
---|
| 248 | } |
---|
| 249 | //create a FTInner tree root |
---|
| 250 | if (m_modelType==2) |
---|
| 251 | m_tree = new FTInnerNode(m_errorOnProbabilities, m_numBoostingIterations, m_minNumInstances, |
---|
| 252 | m_weightTrimBeta, m_useAIC); |
---|
| 253 | |
---|
| 254 | //build tree |
---|
| 255 | m_tree.buildClassifier(filteredData); |
---|
| 256 | // prune tree |
---|
| 257 | m_tree.prune(); |
---|
| 258 | m_tree.assignIDs(0); |
---|
| 259 | m_tree.cleanup(); |
---|
| 260 | } |
---|
| 261 | |
---|
| 262 | /** |
---|
| 263 | * Returns class probabilities for an instance. |
---|
| 264 | * |
---|
| 265 | * @param instance the instance to compute the distribution for |
---|
| 266 | * @return the class probabilities |
---|
| 267 | * @throws Exception if distribution can't be computed successfully |
---|
| 268 | */ |
---|
| 269 | public double [] distributionForInstance(Instance instance) throws Exception { |
---|
| 270 | |
---|
| 271 | //replace missing values |
---|
| 272 | m_replaceMissing.input(instance); |
---|
| 273 | instance = m_replaceMissing.output(); |
---|
| 274 | |
---|
| 275 | //possibly convert nominal attributes |
---|
| 276 | if (m_convertNominal) { |
---|
| 277 | m_nominalToBinary.input(instance); |
---|
| 278 | instance = m_nominalToBinary.output(); |
---|
| 279 | } |
---|
| 280 | return m_tree.distributionForInstance(instance); |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | /** |
---|
| 284 | * Classifies an instance. |
---|
| 285 | * |
---|
| 286 | * @param instance the instance to classify |
---|
| 287 | * @return the classification |
---|
| 288 | * @throws Exception if instance can't be classified successfully |
---|
| 289 | */ |
---|
| 290 | public double classifyInstance(Instance instance) throws Exception { |
---|
| 291 | |
---|
| 292 | double maxProb = -1; |
---|
| 293 | int maxIndex = 0; |
---|
| 294 | |
---|
| 295 | //classify by maximum probability |
---|
| 296 | double[] probs = distributionForInstance(instance); |
---|
| 297 | for (int j = 0; j < instance.numClasses(); j++) { |
---|
| 298 | if (Utils.gr(probs[j], maxProb)) { |
---|
| 299 | maxIndex = j; |
---|
| 300 | maxProb = probs[j]; |
---|
| 301 | } |
---|
| 302 | } |
---|
| 303 | return (double)maxIndex; |
---|
| 304 | } |
---|
| 305 | |
---|
| 306 | /** |
---|
| 307 | * Returns a description of the classifier. |
---|
| 308 | * |
---|
| 309 | * @return a string representation of the classifier |
---|
| 310 | */ |
---|
| 311 | public String toString() { |
---|
| 312 | if (m_tree!=null) { |
---|
| 313 | if (m_modelType==0) |
---|
| 314 | return "FT tree \n------------------\n" + m_tree.toString(); |
---|
| 315 | else { |
---|
| 316 | if (m_modelType==1) |
---|
| 317 | return "FT Leaves tree \n------------------\n" + m_tree.toString(); |
---|
| 318 | else |
---|
| 319 | return "FT Inner tree \n------------------\n" + m_tree.toString(); |
---|
| 320 | } |
---|
| 321 | }else{ |
---|
| 322 | return "No tree built"; |
---|
| 323 | } |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | /** |
---|
| 327 | * Returns an enumeration describing the available options. |
---|
| 328 | * |
---|
| 329 | * @return an enumeration of all the available options. |
---|
| 330 | */ |
---|
| 331 | public Enumeration listOptions() { |
---|
| 332 | Vector newVector = new Vector(8); |
---|
| 333 | |
---|
| 334 | newVector.addElement(new Option("\tBinary splits (convert nominal attributes to binary ones) ", |
---|
| 335 | "B", 0, "-B")); |
---|
| 336 | |
---|
| 337 | newVector.addElement(new Option("\tUse error on probabilities instead of misclassification error "+ |
---|
| 338 | "for stopping criterion of LogitBoost.", |
---|
| 339 | "P", 0, "-P")); |
---|
| 340 | |
---|
| 341 | newVector.addElement(new Option("\tSet fixed number of iterations for LogitBoost (instead of using "+ |
---|
| 342 | "cross-validation)", |
---|
| 343 | "I",1,"-I <numIterations>")); |
---|
| 344 | |
---|
| 345 | newVector.addElement(new Option("\tSet Funtional Tree type to be generate: "+ |
---|
| 346 | " 0 for FT, 1 for FTLeaves and 2 for FTInner", |
---|
| 347 | "F",1,"-F <modelType>")); |
---|
| 348 | |
---|
| 349 | newVector.addElement(new Option("\tSet minimum number of instances at which a node can be split (default 15)", |
---|
| 350 | "M",1,"-M <numInstances>")); |
---|
| 351 | |
---|
| 352 | newVector.addElement(new Option("\tSet beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.", |
---|
| 353 | "W",1,"-W <beta>")); |
---|
| 354 | |
---|
| 355 | newVector.addElement(new Option("\tThe AIC is used to choose the best iteration.", |
---|
| 356 | "A", 0, "-A")); |
---|
| 357 | |
---|
| 358 | return newVector.elements(); |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | /** |
---|
| 362 | * Parses a given list of options. <p/> |
---|
| 363 | * |
---|
| 364 | <!-- options-start --> |
---|
| 365 | * Valid options are: <p/> |
---|
| 366 | * |
---|
| 367 | * <pre> -B |
---|
| 368 | * Binary splits (convert nominal attributes to binary ones) </pre> |
---|
| 369 | * |
---|
| 370 | * <pre> -P |
---|
| 371 | * Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.</pre> |
---|
| 372 | * |
---|
| 373 | * <pre> -I <numIterations> |
---|
| 374 | * Set fixed number of iterations for LogitBoost (instead of using cross-validation)</pre> |
---|
| 375 | * |
---|
| 376 | * <pre> -F <modelType> |
---|
| 377 | * Set Funtional Tree type to be generate: 0 for FT, 1 for FTLeaves and 2 for FTInner</pre> |
---|
| 378 | * |
---|
| 379 | * <pre> -M <numInstances> |
---|
| 380 | * Set minimum number of instances at which a node can be split (default 15)</pre> |
---|
| 381 | * |
---|
| 382 | * <pre> -W <beta> |
---|
| 383 | * Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.</pre> |
---|
| 384 | * |
---|
| 385 | * <pre> -A |
---|
| 386 | * The AIC is used to choose the best iteration.</pre> |
---|
| 387 | * |
---|
| 388 | <!-- options-end --> |
---|
| 389 | * |
---|
| 390 | * @param options the list of options as an array of strings |
---|
| 391 | * @throws Exception if an option is not supported |
---|
| 392 | */ |
---|
| 393 | public void setOptions(String[] options) throws Exception { |
---|
| 394 | |
---|
| 395 | setBinSplit(Utils.getFlag('B', options)); |
---|
| 396 | setErrorOnProbabilities(Utils.getFlag('P', options)); |
---|
| 397 | |
---|
| 398 | String optionString = Utils.getOption('I', options); |
---|
| 399 | if (optionString.length() != 0) { |
---|
| 400 | setNumBoostingIterations((new Integer(optionString)).intValue()); |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | optionString = Utils.getOption('F', options); |
---|
| 404 | if (optionString.length() != 0) { |
---|
| 405 | setModelType(new SelectedTag(Integer.parseInt(optionString), TAGS_MODEL)); |
---|
| 406 | // setModelType((new Integer(optionString)).intValue()); |
---|
| 407 | } |
---|
| 408 | |
---|
| 409 | optionString = Utils.getOption('M', options); |
---|
| 410 | if (optionString.length() != 0) { |
---|
| 411 | setMinNumInstances((new Integer(optionString)).intValue()); |
---|
| 412 | } |
---|
| 413 | |
---|
| 414 | optionString = Utils.getOption('W', options); |
---|
| 415 | if (optionString.length() != 0) { |
---|
| 416 | setWeightTrimBeta((new Double(optionString)).doubleValue()); |
---|
| 417 | } |
---|
| 418 | |
---|
| 419 | setUseAIC(Utils.getFlag('A', options)); |
---|
| 420 | |
---|
| 421 | Utils.checkForRemainingOptions(options); |
---|
| 422 | |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | /** |
---|
| 426 | * Gets the current settings of the Classifier. |
---|
| 427 | * |
---|
| 428 | * @return an array of strings suitable for passing to setOptions |
---|
| 429 | */ |
---|
| 430 | public String[] getOptions() { |
---|
| 431 | String[] options = new String[11]; |
---|
| 432 | int current = 0; |
---|
| 433 | |
---|
| 434 | if (getBinSplit()) { |
---|
| 435 | options[current++] = "-B"; |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | if (getErrorOnProbabilities()) { |
---|
| 439 | options[current++] = "-P"; |
---|
| 440 | } |
---|
| 441 | |
---|
| 442 | options[current++] = "-I"; |
---|
| 443 | options[current++] = ""+getNumBoostingIterations(); |
---|
| 444 | |
---|
| 445 | options[current++] = "-F"; |
---|
| 446 | // options[current++] = ""+getModelType(); |
---|
| 447 | options[current++] = ""+getModelType().getSelectedTag().getID(); |
---|
| 448 | |
---|
| 449 | options[current++] = "-M"; |
---|
| 450 | options[current++] = ""+getMinNumInstances(); |
---|
| 451 | |
---|
| 452 | options[current++] = "-W"; |
---|
| 453 | options[current++] = ""+getWeightTrimBeta(); |
---|
| 454 | |
---|
| 455 | if (getUseAIC()) { |
---|
| 456 | options[current++] = "-A"; |
---|
| 457 | } |
---|
| 458 | |
---|
| 459 | while (current < options.length) { |
---|
| 460 | options[current++] = ""; |
---|
| 461 | } |
---|
| 462 | return options; |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | |
---|
| 466 | /** |
---|
| 467 | * Get the value of weightTrimBeta. |
---|
| 468 | */ |
---|
| 469 | public double getWeightTrimBeta(){ |
---|
| 470 | return m_weightTrimBeta; |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | /** |
---|
| 474 | * Get the value of useAIC. |
---|
| 475 | * |
---|
| 476 | * @return Value of useAIC. |
---|
| 477 | */ |
---|
| 478 | public boolean getUseAIC(){ |
---|
| 479 | return m_useAIC; |
---|
| 480 | } |
---|
| 481 | |
---|
| 482 | |
---|
| 483 | /** |
---|
| 484 | * Set the value of weightTrimBeta. |
---|
| 485 | */ |
---|
| 486 | public void setWeightTrimBeta(double n){ |
---|
| 487 | m_weightTrimBeta = n; |
---|
| 488 | } |
---|
| 489 | |
---|
| 490 | /** |
---|
| 491 | * Set the value of useAIC. |
---|
| 492 | * |
---|
| 493 | * @param c Value to assign to useAIC. |
---|
| 494 | */ |
---|
| 495 | public void setUseAIC(boolean c){ |
---|
| 496 | m_useAIC = c; |
---|
| 497 | } |
---|
| 498 | |
---|
| 499 | /** |
---|
| 500 | * Get the value of binarySplits. |
---|
| 501 | * |
---|
| 502 | * @return Value of binarySplits. |
---|
| 503 | */ |
---|
| 504 | public boolean getBinSplit(){ |
---|
| 505 | return m_convertNominal; |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | /** |
---|
| 509 | * Get the value of errorOnProbabilities. |
---|
| 510 | * |
---|
| 511 | * @return Value of errorOnProbabilities. |
---|
| 512 | */ |
---|
| 513 | public boolean getErrorOnProbabilities(){ |
---|
| 514 | return m_errorOnProbabilities; |
---|
| 515 | } |
---|
| 516 | |
---|
| 517 | /** |
---|
| 518 | * Get the value of numBoostingIterations. |
---|
| 519 | * |
---|
| 520 | * @return Value of numBoostingIterations. |
---|
| 521 | */ |
---|
| 522 | public int getNumBoostingIterations(){ |
---|
| 523 | return m_numBoostingIterations; |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | /** |
---|
| 527 | * Get the type of functional tree model being used. |
---|
| 528 | * |
---|
| 529 | * @return the type of functional tree model. |
---|
| 530 | */ |
---|
| 531 | public SelectedTag getModelType() { |
---|
| 532 | return new SelectedTag(m_modelType, TAGS_MODEL); |
---|
| 533 | } |
---|
| 534 | |
---|
| 535 | /** |
---|
| 536 | * Set the Functional Tree type. |
---|
| 537 | * |
---|
| 538 | * @param newMethod Value corresponding to tree type. |
---|
| 539 | */ |
---|
| 540 | public void setModelType(SelectedTag newMethod){ |
---|
| 541 | if (newMethod.getTags() == TAGS_MODEL) { |
---|
| 542 | int c = newMethod.getSelectedTag().getID(); |
---|
| 543 | if (c==0 || c==1 || c==2) { |
---|
| 544 | m_modelType = c; |
---|
| 545 | } else { |
---|
| 546 | throw new IllegalArgumentException("Wrong model type, -F value should be: 0, for FT, 1, " + |
---|
| 547 | "for FTLeaves, and 2, for FTInner "); |
---|
| 548 | } |
---|
| 549 | } |
---|
| 550 | } |
---|
| 551 | |
---|
| 552 | /** |
---|
| 553 | * Get the value of minNumInstances. |
---|
| 554 | * |
---|
| 555 | * @return Value of minNumInstances. |
---|
| 556 | */ |
---|
| 557 | public int getMinNumInstances(){ |
---|
| 558 | return m_minNumInstances; |
---|
| 559 | } |
---|
| 560 | |
---|
| 561 | /** |
---|
| 562 | * Set the value of binarySplits. |
---|
| 563 | * |
---|
| 564 | * @param c Value to assign to binarySplits. |
---|
| 565 | */ |
---|
| 566 | public void setBinSplit(boolean c){ |
---|
| 567 | m_convertNominal=c; |
---|
| 568 | } |
---|
| 569 | |
---|
| 570 | /** |
---|
| 571 | * Set the value of errorOnProbabilities. |
---|
| 572 | * |
---|
| 573 | * @param c Value to assign to errorOnProbabilities. |
---|
| 574 | */ |
---|
| 575 | public void setErrorOnProbabilities(boolean c){ |
---|
| 576 | m_errorOnProbabilities = c; |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | /** |
---|
| 580 | * Set the value of numBoostingIterations. |
---|
| 581 | * |
---|
| 582 | * @param c Value to assign to numBoostingIterations. |
---|
| 583 | */ |
---|
| 584 | public void setNumBoostingIterations(int c){ |
---|
| 585 | m_numBoostingIterations = c; |
---|
| 586 | } |
---|
| 587 | |
---|
| 588 | /** |
---|
| 589 | * Set the value of minNumInstances. |
---|
| 590 | * |
---|
| 591 | * @param c Value to assign to minNumInstances. |
---|
| 592 | */ |
---|
| 593 | public void setMinNumInstances(int c){ |
---|
| 594 | m_minNumInstances = c; |
---|
| 595 | } |
---|
| 596 | |
---|
| 597 | /** |
---|
| 598 | * Returns the type of graph this classifier |
---|
| 599 | * represents. |
---|
| 600 | * @return Drawable.TREE |
---|
| 601 | */ |
---|
| 602 | public int graphType() { |
---|
| 603 | return Drawable.TREE; |
---|
| 604 | } |
---|
| 605 | |
---|
| 606 | /** |
---|
| 607 | * Returns graph describing the tree. |
---|
| 608 | * |
---|
| 609 | * @return the graph describing the tree |
---|
| 610 | * @throws Exception if graph can't be computed |
---|
| 611 | */ |
---|
| 612 | public String graph() throws Exception { |
---|
| 613 | |
---|
| 614 | return m_tree.graph(); |
---|
| 615 | } |
---|
| 616 | |
---|
| 617 | /** |
---|
| 618 | * Returns the size of the tree |
---|
| 619 | * @return the size of the tree |
---|
| 620 | */ |
---|
| 621 | public int measureTreeSize(){ |
---|
| 622 | return m_tree.numNodes(); |
---|
| 623 | } |
---|
| 624 | |
---|
| 625 | /** |
---|
| 626 | * Returns the number of leaves in the tree |
---|
| 627 | * @return the number of leaves in the tree |
---|
| 628 | */ |
---|
| 629 | public int measureNumLeaves(){ |
---|
| 630 | return m_tree.numLeaves(); |
---|
| 631 | } |
---|
| 632 | |
---|
| 633 | /** |
---|
| 634 | * Returns an enumeration of the additional measure names |
---|
| 635 | * @return an enumeration of the measure names |
---|
| 636 | */ |
---|
| 637 | public Enumeration enumerateMeasures() { |
---|
| 638 | Vector newVector = new Vector(2); |
---|
| 639 | newVector.addElement("measureTreeSize"); |
---|
| 640 | newVector.addElement("measureNumLeaves"); |
---|
| 641 | |
---|
| 642 | return newVector.elements(); |
---|
| 643 | } |
---|
| 644 | |
---|
| 645 | |
---|
| 646 | /** |
---|
| 647 | * Returns the value of the named measure |
---|
| 648 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 649 | * @return the value of the named measure |
---|
| 650 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 651 | */ |
---|
| 652 | public double getMeasure(String additionalMeasureName) { |
---|
| 653 | if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { |
---|
| 654 | return measureTreeSize(); |
---|
| 655 | } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) { |
---|
| 656 | return measureNumLeaves(); |
---|
| 657 | } else { |
---|
| 658 | throw new IllegalArgumentException(additionalMeasureName |
---|
| 659 | + " not supported (FT)"); |
---|
| 660 | } |
---|
| 661 | } |
---|
| 662 | |
---|
| 663 | /** |
---|
| 664 | * Returns a string describing classifier |
---|
| 665 | * @return a description suitable for |
---|
| 666 | * displaying in the explorer/experimenter gui |
---|
| 667 | */ |
---|
| 668 | public String globalInfo() { |
---|
| 669 | return "Classifier for building 'Functional trees', which are classification trees that could have " |
---|
| 670 | +"logistic regression functions at the inner nodes and/or leaves. The algorithm can deal with " |
---|
| 671 | +"binary and multi-class target variables, numeric and nominal attributes and missing values.\n\n" |
---|
| 672 | +"For more information see: \n\n" |
---|
| 673 | + getTechnicalInformation().toString(); |
---|
| 674 | } |
---|
| 675 | |
---|
| 676 | |
---|
| 677 | /** |
---|
| 678 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 679 | * detailed information about the technical background of this class, |
---|
| 680 | * e.g., paper reference or book this class is based on. |
---|
| 681 | * |
---|
| 682 | * @return the technical information about this class |
---|
| 683 | */ |
---|
| 684 | public TechnicalInformation getTechnicalInformation() { |
---|
| 685 | TechnicalInformation result; |
---|
| 686 | TechnicalInformation additional; |
---|
| 687 | |
---|
| 688 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 689 | result.setValue(Field.AUTHOR, "Joao Gama"); |
---|
| 690 | result.setValue(Field.TITLE, "Functional Trees"); |
---|
| 691 | result.setValue(Field.BOOKTITLE, "Machine Learning"); |
---|
| 692 | result.setValue(Field.YEAR, "2004"); |
---|
| 693 | result.setValue(Field.VOLUME, "55"); |
---|
| 694 | result.setValue(Field.PAGES, "219-250"); |
---|
| 695 | result.setValue(Field.NUMBER, "3"); |
---|
| 696 | |
---|
| 697 | additional = result.add(Type.ARTICLE); |
---|
| 698 | additional.setValue(Field.AUTHOR, "Niels Landwehr and Mark Hall and Eibe Frank"); |
---|
| 699 | additional.setValue(Field.TITLE, "Logistic Model Trees"); |
---|
| 700 | additional.setValue(Field.BOOKTITLE, "Machine Learning"); |
---|
| 701 | additional.setValue(Field.YEAR, "2005"); |
---|
| 702 | additional.setValue(Field.VOLUME, "95"); |
---|
| 703 | additional.setValue(Field.PAGES, "161-205"); |
---|
| 704 | additional.setValue(Field.NUMBER, "1-2"); |
---|
| 705 | |
---|
| 706 | return result; |
---|
| 707 | } |
---|
| 708 | |
---|
| 709 | /** |
---|
| 710 | * Returns the tip text for this property |
---|
| 711 | * @return tip text for this property suitable for |
---|
| 712 | * displaying in the explorer/experimenter gui |
---|
| 713 | */ |
---|
| 714 | public String modelTypeTipText() { |
---|
| 715 | return "The type of FT model. 0, for FT, 1, " + |
---|
| 716 | "for FTLeaves, and 2, for FTInner"; |
---|
| 717 | } |
---|
| 718 | |
---|
| 719 | /** |
---|
| 720 | * Returns the tip text for this property |
---|
| 721 | * @return tip text for this property suitable for |
---|
| 722 | * displaying in the explorer/experimenter gui |
---|
| 723 | */ |
---|
| 724 | public String binSplitTipText() { |
---|
| 725 | return "Convert all nominal attributes to binary ones before building the tree. " |
---|
| 726 | +"This means that all splits in the final tree will be binary."; |
---|
| 727 | |
---|
| 728 | } |
---|
| 729 | |
---|
| 730 | /** |
---|
| 731 | * Returns the tip text for this property |
---|
| 732 | * @return tip text for this property suitable for |
---|
| 733 | * displaying in the explorer/experimenter gui |
---|
| 734 | */ |
---|
| 735 | public String errorOnProbabilitiesTipText() { |
---|
| 736 | return "Minimize error on probabilities instead of misclassification error when cross-validating the number " |
---|
| 737 | +"of LogitBoost iterations. When set, the number of LogitBoost iterations is chosen that minimizes " |
---|
| 738 | +"the root mean squared error instead of the misclassification error."; |
---|
| 739 | } |
---|
| 740 | |
---|
| 741 | /** |
---|
| 742 | * Returns the tip text for this property |
---|
| 743 | * @return tip text for this property suitable for |
---|
| 744 | * displaying in the explorer/experimenter gui |
---|
| 745 | */ |
---|
| 746 | public String numBoostingIterationsTipText() { |
---|
| 747 | return "Set a fixed number of iterations for LogitBoost. If >= 0, this sets a fixed number of LogitBoost " |
---|
| 748 | +"iterations that is used everywhere in the tree. If < 0, the number is cross-validated."; |
---|
| 749 | } |
---|
| 750 | |
---|
| 751 | /** |
---|
| 752 | * Returns the tip text for this property |
---|
| 753 | * @return tip text for this property suitable for |
---|
| 754 | * displaying in the explorer/experimenter gui |
---|
| 755 | */ |
---|
| 756 | public String minNumInstancesTipText() { |
---|
| 757 | return "Set the minimum number of instances at which a node is considered for splitting. " |
---|
| 758 | +"The default value is 15."; |
---|
| 759 | } |
---|
| 760 | |
---|
| 761 | /** |
---|
| 762 | * Returns the tip text for this property |
---|
| 763 | * @return tip text for this property suitable for |
---|
| 764 | * displaying in the explorer/experimenter gui |
---|
| 765 | */ |
---|
| 766 | public String weightTrimBetaTipText() { |
---|
| 767 | return "Set the beta value used for weight trimming in LogitBoost. " |
---|
| 768 | +"Only instances carrying (1 - beta)% of the weight from previous iteration " |
---|
| 769 | +"are used in the next iteration. Set to 0 for no weight trimming. " |
---|
| 770 | +"The default value is 0."; |
---|
| 771 | } |
---|
| 772 | |
---|
| 773 | /** |
---|
| 774 | * Returns the tip text for this property |
---|
| 775 | * @return tip text for this property suitable for |
---|
| 776 | * displaying in the explorer/experimenter gui |
---|
| 777 | */ |
---|
| 778 | public String useAICTipText() { |
---|
| 779 | return "The AIC is used to determine when to stop LogitBoost iterations. " |
---|
| 780 | +"The default is not to use AIC."; |
---|
| 781 | } |
---|
| 782 | |
---|
| 783 | /** |
---|
| 784 | * Returns the revision string. |
---|
| 785 | * |
---|
| 786 | * @return the revision |
---|
| 787 | */ |
---|
| 788 | public String getRevision() { |
---|
| 789 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 790 | } |
---|
| 791 | |
---|
| 792 | /** |
---|
| 793 | * Main method for testing this class |
---|
| 794 | * |
---|
| 795 | * @param argv the commandline options |
---|
| 796 | */ |
---|
| 797 | public static void main (String [] argv) { |
---|
| 798 | runClassifier(new FT(), argv); |
---|
| 799 | } |
---|
| 800 | } |
---|
| 801 | |
---|