1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ADTree.java |
---|
19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.IterativeClassifier; |
---|
28 | import weka.classifiers.trees.adtree.PredictionNode; |
---|
29 | import weka.classifiers.trees.adtree.ReferenceInstances; |
---|
30 | import weka.classifiers.trees.adtree.Splitter; |
---|
31 | import weka.classifiers.trees.adtree.TwoWayNominalSplit; |
---|
32 | import weka.classifiers.trees.adtree.TwoWayNumericSplit; |
---|
33 | import weka.core.AdditionalMeasureProducer; |
---|
34 | import weka.core.Attribute; |
---|
35 | import weka.core.Capabilities; |
---|
36 | import weka.core.Drawable; |
---|
37 | import weka.core.FastVector; |
---|
38 | import weka.core.Instance; |
---|
39 | import weka.core.Instances; |
---|
40 | import weka.core.Option; |
---|
41 | import weka.core.OptionHandler; |
---|
42 | import weka.core.RevisionUtils; |
---|
43 | import weka.core.SelectedTag; |
---|
44 | import weka.core.SerializedObject; |
---|
45 | import weka.core.Tag; |
---|
46 | import weka.core.TechnicalInformation; |
---|
47 | import weka.core.TechnicalInformationHandler; |
---|
48 | import weka.core.Utils; |
---|
49 | import weka.core.WeightedInstancesHandler; |
---|
50 | import weka.core.Capabilities.Capability; |
---|
51 | import weka.core.TechnicalInformation.Field; |
---|
52 | import weka.core.TechnicalInformation.Type; |
---|
53 | |
---|
54 | import java.util.Enumeration; |
---|
55 | import java.util.Random; |
---|
56 | import java.util.Vector; |
---|
57 | |
---|
58 | /** |
---|
59 | <!-- globalinfo-start --> |
---|
60 | * Class for generating an alternating decision tree. The basic algorithm is based on:<br/> |
---|
61 | * <br/> |
---|
62 | * Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 124-133, 1999.<br/> |
---|
63 | * <br/> |
---|
64 | * This version currently only supports two-class problems. The number of boosting iterations needs to be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic search methods have been introduced to speed learning. |
---|
65 | * <p/> |
---|
66 | <!-- globalinfo-end --> |
---|
67 | * |
---|
68 | <!-- technical-bibtex-start --> |
---|
69 | * BibTeX: |
---|
70 | * <pre> |
---|
71 | * @inproceedings{Freund1999, |
---|
72 | * address = {Bled, Slovenia}, |
---|
73 | * author = {Freund, Y. and Mason, L.}, |
---|
74 | * booktitle = {Proceeding of the Sixteenth International Conference on Machine Learning}, |
---|
75 | * pages = {124-133}, |
---|
76 | * title = {The alternating decision tree learning algorithm}, |
---|
77 | * year = {1999} |
---|
78 | * } |
---|
79 | * </pre> |
---|
80 | * <p/> |
---|
81 | <!-- technical-bibtex-end --> |
---|
82 | * |
---|
83 | <!-- options-start --> |
---|
84 | * Valid options are: <p/> |
---|
85 | * |
---|
86 | * <pre> -B <number of boosting iterations> |
---|
87 | * Number of boosting iterations. |
---|
88 | * (Default = 10)</pre> |
---|
89 | * |
---|
90 | * <pre> -E <-3|-2|-1|>=0> |
---|
91 | * Expand nodes: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk |
---|
92 | * (Default = -3)</pre> |
---|
93 | * |
---|
94 | * <pre> -D |
---|
95 | * Save the instance data with the model</pre> |
---|
96 | * |
---|
97 | <!-- options-end --> |
---|
98 | * |
---|
99 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
100 | * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) |
---|
101 | * @version $Revision: 5928 $ |
---|
102 | */ |
---|
103 | public class ADTree |
---|
104 | extends AbstractClassifier |
---|
105 | implements OptionHandler, Drawable, AdditionalMeasureProducer, |
---|
106 | WeightedInstancesHandler, IterativeClassifier, |
---|
107 | TechnicalInformationHandler { |
---|
108 | |
---|
109 | /** for serialization */ |
---|
110 | static final long serialVersionUID = -1532264837167690683L; |
---|
111 | |
---|
112 | /** |
---|
113 | * Returns a string describing classifier |
---|
114 | * @return a description suitable for |
---|
115 | * displaying in the explorer/experimenter gui |
---|
116 | */ |
---|
117 | public String globalInfo() { |
---|
118 | |
---|
119 | return "Class for generating an alternating decision tree. The basic " |
---|
120 | + "algorithm is based on:\n\n" |
---|
121 | + getTechnicalInformation().toString() + "\n\n" |
---|
122 | + "This version currently only supports two-class problems. The number of boosting " |
---|
123 | + "iterations needs to be manually tuned to suit the dataset and the desired " |
---|
124 | + "complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic " |
---|
125 | + "search methods have been introduced to speed learning."; |
---|
126 | } |
---|
127 | |
---|
128 | /** search mode: Expand all paths */ |
---|
129 | public static final int SEARCHPATH_ALL = 0; |
---|
130 | /** search mode: Expand the heaviest path */ |
---|
131 | public static final int SEARCHPATH_HEAVIEST = 1; |
---|
132 | /** search mode: Expand the best z-pure path */ |
---|
133 | public static final int SEARCHPATH_ZPURE = 2; |
---|
134 | /** search mode: Expand a random path */ |
---|
135 | public static final int SEARCHPATH_RANDOM = 3; |
---|
136 | /** The search modes */ |
---|
137 | public static final Tag [] TAGS_SEARCHPATH = { |
---|
138 | new Tag(SEARCHPATH_ALL, "Expand all paths"), |
---|
139 | new Tag(SEARCHPATH_HEAVIEST, "Expand the heaviest path"), |
---|
140 | new Tag(SEARCHPATH_ZPURE, "Expand the best z-pure path"), |
---|
141 | new Tag(SEARCHPATH_RANDOM, "Expand a random path") |
---|
142 | }; |
---|
143 | |
---|
144 | /** The instances used to train the tree */ |
---|
145 | protected Instances m_trainInstances; |
---|
146 | |
---|
147 | /** The root of the tree */ |
---|
148 | protected PredictionNode m_root = null; |
---|
149 | |
---|
150 | /** The random number generator - used for the random search heuristic */ |
---|
151 | protected Random m_random = null; |
---|
152 | |
---|
153 | /** The number of the last splitter added to the tree */ |
---|
154 | protected int m_lastAddedSplitNum = 0; |
---|
155 | |
---|
156 | /** An array containing the inidices to the numeric attributes in the data */ |
---|
157 | protected int[] m_numericAttIndices; |
---|
158 | |
---|
159 | /** An array containing the inidices to the nominal attributes in the data */ |
---|
160 | protected int[] m_nominalAttIndices; |
---|
161 | |
---|
162 | /** The total weight of the instances - used to speed Z calculations */ |
---|
163 | protected double m_trainTotalWeight; |
---|
164 | |
---|
165 | /** The training instances with positive class - referencing the training dataset */ |
---|
166 | protected ReferenceInstances m_posTrainInstances; |
---|
167 | |
---|
168 | /** The training instances with negative class - referencing the training dataset */ |
---|
169 | protected ReferenceInstances m_negTrainInstances; |
---|
170 | |
---|
171 | /** The best node to insert under, as found so far by the latest search */ |
---|
172 | protected PredictionNode m_search_bestInsertionNode; |
---|
173 | |
---|
174 | /** The best splitter to insert, as found so far by the latest search */ |
---|
175 | protected Splitter m_search_bestSplitter; |
---|
176 | |
---|
177 | /** The smallest Z value found so far by the latest search */ |
---|
178 | protected double m_search_smallestZ; |
---|
179 | |
---|
180 | /** The positive instances that apply to the best path found so far */ |
---|
181 | protected Instances m_search_bestPathPosInstances; |
---|
182 | |
---|
183 | /** The negative instances that apply to the best path found so far */ |
---|
184 | protected Instances m_search_bestPathNegInstances; |
---|
185 | |
---|
186 | /** Statistics - the number of prediction nodes investigated during search */ |
---|
187 | protected int m_nodesExpanded = 0; |
---|
188 | |
---|
189 | /** Statistics - the number of instances processed during search */ |
---|
190 | protected int m_examplesCounted = 0; |
---|
191 | |
---|
192 | /** Option - the number of boosting iterations o perform */ |
---|
193 | protected int m_boostingIterations = 10; |
---|
194 | |
---|
195 | /** Option - the search mode */ |
---|
196 | protected int m_searchPath = 0; |
---|
197 | |
---|
198 | /** Option - the seed to use for a random search */ |
---|
199 | protected int m_randomSeed = 0; |
---|
200 | |
---|
201 | /** Option - whether the tree should remember the instance data */ |
---|
202 | protected boolean m_saveInstanceData = false; |
---|
203 | |
---|
204 | /** |
---|
205 | * Returns an instance of a TechnicalInformation object, containing |
---|
206 | * detailed information about the technical background of this class, |
---|
207 | * e.g., paper reference or book this class is based on. |
---|
208 | * |
---|
209 | * @return the technical information about this class |
---|
210 | */ |
---|
211 | public TechnicalInformation getTechnicalInformation() { |
---|
212 | TechnicalInformation result; |
---|
213 | |
---|
214 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
215 | result.setValue(Field.AUTHOR, "Freund, Y. and Mason, L."); |
---|
216 | result.setValue(Field.YEAR, "1999"); |
---|
217 | result.setValue(Field.TITLE, "The alternating decision tree learning algorithm"); |
---|
218 | result.setValue(Field.BOOKTITLE, "Proceeding of the Sixteenth International Conference on Machine Learning"); |
---|
219 | result.setValue(Field.ADDRESS, "Bled, Slovenia"); |
---|
220 | result.setValue(Field.PAGES, "124-133"); |
---|
221 | |
---|
222 | return result; |
---|
223 | } |
---|
224 | |
---|
225 | /** |
---|
226 | * Sets up the tree ready to be trained, using two-class optimized method. |
---|
227 | * |
---|
228 | * @param instances the instances to train the tree with |
---|
229 | * @exception Exception if training data is unsuitable |
---|
230 | */ |
---|
231 | public void initClassifier(Instances instances) throws Exception { |
---|
232 | |
---|
233 | // clear stats |
---|
234 | m_nodesExpanded = 0; |
---|
235 | m_examplesCounted = 0; |
---|
236 | m_lastAddedSplitNum = 0; |
---|
237 | |
---|
238 | // prepare the random generator |
---|
239 | m_random = new Random(m_randomSeed); |
---|
240 | |
---|
241 | // create training set |
---|
242 | m_trainInstances = new Instances(instances); |
---|
243 | |
---|
244 | // create positive/negative subsets |
---|
245 | m_posTrainInstances = new ReferenceInstances(m_trainInstances, |
---|
246 | m_trainInstances.numInstances()); |
---|
247 | m_negTrainInstances = new ReferenceInstances(m_trainInstances, |
---|
248 | m_trainInstances.numInstances()); |
---|
249 | for (Enumeration e = m_trainInstances.enumerateInstances(); e.hasMoreElements(); ) { |
---|
250 | Instance inst = (Instance) e.nextElement(); |
---|
251 | if ((int) inst.classValue() == 0) |
---|
252 | m_negTrainInstances.addReference(inst); // belongs in negative class |
---|
253 | else |
---|
254 | m_posTrainInstances.addReference(inst); // belongs in positive class |
---|
255 | } |
---|
256 | m_posTrainInstances.compactify(); |
---|
257 | m_negTrainInstances.compactify(); |
---|
258 | |
---|
259 | // create the root prediction node |
---|
260 | double rootPredictionValue = calcPredictionValue(m_posTrainInstances, |
---|
261 | m_negTrainInstances); |
---|
262 | m_root = new PredictionNode(rootPredictionValue); |
---|
263 | |
---|
264 | // pre-adjust weights |
---|
265 | updateWeights(m_posTrainInstances, m_negTrainInstances, rootPredictionValue); |
---|
266 | |
---|
267 | // pre-calculate what we can |
---|
268 | generateAttributeIndicesSingle(); |
---|
269 | } |
---|
270 | |
---|
271 | /** |
---|
272 | * Performs one iteration. |
---|
273 | * |
---|
274 | * @param iteration the index of the current iteration (0-based) |
---|
275 | * @exception Exception if this iteration fails |
---|
276 | */ |
---|
277 | public void next(int iteration) throws Exception { |
---|
278 | |
---|
279 | boost(); |
---|
280 | } |
---|
281 | |
---|
282 | /** |
---|
283 | * Performs a single boosting iteration, using two-class optimized method. |
---|
284 | * Will add a new splitter node and two prediction nodes to the tree |
---|
285 | * (unless merging takes place). |
---|
286 | * |
---|
287 | * @exception Exception if try to boost without setting up tree first or there are no |
---|
288 | * instances to train with |
---|
289 | */ |
---|
290 | public void boost() throws Exception { |
---|
291 | |
---|
292 | if (m_trainInstances == null || m_trainInstances.numInstances() == 0) |
---|
293 | throw new Exception("Trying to boost with no training data"); |
---|
294 | |
---|
295 | // perform the search |
---|
296 | searchForBestTestSingle(); |
---|
297 | |
---|
298 | if (m_search_bestSplitter == null) return; // handle empty instances |
---|
299 | |
---|
300 | // create the new nodes for the tree, updating the weights |
---|
301 | for (int i=0; i<2; i++) { |
---|
302 | Instances posInstances = |
---|
303 | m_search_bestSplitter.instancesDownBranch(i, m_search_bestPathPosInstances); |
---|
304 | Instances negInstances = |
---|
305 | m_search_bestSplitter.instancesDownBranch(i, m_search_bestPathNegInstances); |
---|
306 | double predictionValue = calcPredictionValue(posInstances, negInstances); |
---|
307 | PredictionNode newPredictor = new PredictionNode(predictionValue); |
---|
308 | updateWeights(posInstances, negInstances, predictionValue); |
---|
309 | m_search_bestSplitter.setChildForBranch(i, newPredictor); |
---|
310 | } |
---|
311 | |
---|
312 | // insert the new nodes |
---|
313 | m_search_bestInsertionNode.addChild((Splitter) m_search_bestSplitter, this); |
---|
314 | |
---|
315 | // free memory |
---|
316 | m_search_bestPathPosInstances = null; |
---|
317 | m_search_bestPathNegInstances = null; |
---|
318 | m_search_bestSplitter = null; |
---|
319 | } |
---|
320 | |
---|
321 | /** |
---|
322 | * Generates the m_nominalAttIndices and m_numericAttIndices arrays to index |
---|
323 | * the respective attribute types in the training data. |
---|
324 | * |
---|
325 | */ |
---|
326 | private void generateAttributeIndicesSingle() { |
---|
327 | |
---|
328 | // insert indices into vectors |
---|
329 | FastVector nominalIndices = new FastVector(); |
---|
330 | FastVector numericIndices = new FastVector(); |
---|
331 | |
---|
332 | for (int i=0; i<m_trainInstances.numAttributes(); i++) { |
---|
333 | if (i != m_trainInstances.classIndex()) { |
---|
334 | if (m_trainInstances.attribute(i).isNumeric()) |
---|
335 | numericIndices.addElement(new Integer(i)); |
---|
336 | else |
---|
337 | nominalIndices.addElement(new Integer(i)); |
---|
338 | } |
---|
339 | } |
---|
340 | |
---|
341 | // create nominal array |
---|
342 | m_nominalAttIndices = new int[nominalIndices.size()]; |
---|
343 | for (int i=0; i<nominalIndices.size(); i++) |
---|
344 | m_nominalAttIndices[i] = ((Integer)nominalIndices.elementAt(i)).intValue(); |
---|
345 | |
---|
346 | // create numeric array |
---|
347 | m_numericAttIndices = new int[numericIndices.size()]; |
---|
348 | for (int i=0; i<numericIndices.size(); i++) |
---|
349 | m_numericAttIndices[i] = ((Integer)numericIndices.elementAt(i)).intValue(); |
---|
350 | } |
---|
351 | |
---|
352 | /** |
---|
353 | * Performs a search for the best test (splitter) to add to the tree, by aiming to |
---|
354 | * minimize the Z value. |
---|
355 | * |
---|
356 | * @exception Exception if search fails |
---|
357 | */ |
---|
358 | private void searchForBestTestSingle() throws Exception { |
---|
359 | |
---|
360 | // keep track of total weight for efficient wRemainder calculations |
---|
361 | m_trainTotalWeight = m_trainInstances.sumOfWeights(); |
---|
362 | |
---|
363 | m_search_smallestZ = Double.POSITIVE_INFINITY; |
---|
364 | searchForBestTestSingle(m_root, m_posTrainInstances, m_negTrainInstances); |
---|
365 | } |
---|
366 | |
---|
367 | /** |
---|
368 | * Recursive function that carries out search for the best test (splitter) to add to |
---|
369 | * this part of the tree, by aiming to minimize the Z value. Performs Z-pure cutoff to |
---|
370 | * reduce search space. |
---|
371 | * |
---|
372 | * @param currentNode the root of the subtree to be searched, and the current node |
---|
373 | * being considered as parent of a new split |
---|
374 | * @param posInstances the positive-class instances that apply at this node |
---|
375 | * @param negInstances the negative-class instances that apply at this node |
---|
376 | * @exception Exception if search fails |
---|
377 | */ |
---|
378 | private void searchForBestTestSingle(PredictionNode currentNode, |
---|
379 | Instances posInstances, Instances negInstances) |
---|
380 | throws Exception { |
---|
381 | |
---|
382 | // don't investigate pure or empty nodes any further |
---|
383 | if (posInstances.numInstances() == 0 || negInstances.numInstances() == 0) return; |
---|
384 | |
---|
385 | // do z-pure cutoff |
---|
386 | if (calcZpure(posInstances, negInstances) >= m_search_smallestZ) return; |
---|
387 | |
---|
388 | // keep stats |
---|
389 | m_nodesExpanded++; |
---|
390 | m_examplesCounted += posInstances.numInstances() + negInstances.numInstances(); |
---|
391 | |
---|
392 | // evaluate static splitters (nominal) |
---|
393 | for (int i=0; i<m_nominalAttIndices.length; i++) |
---|
394 | evaluateNominalSplitSingle(m_nominalAttIndices[i], currentNode, |
---|
395 | posInstances, negInstances); |
---|
396 | |
---|
397 | // evaluate dynamic splitters (numeric) |
---|
398 | if (m_numericAttIndices.length > 0) { |
---|
399 | |
---|
400 | // merge the two sets of instances into one |
---|
401 | Instances allInstances = new Instances(posInstances); |
---|
402 | for (Enumeration e = negInstances.enumerateInstances(); e.hasMoreElements(); ) |
---|
403 | allInstances.add((Instance) e.nextElement()); |
---|
404 | |
---|
405 | // use method of finding the optimal Z split-point |
---|
406 | for (int i=0; i<m_numericAttIndices.length; i++) |
---|
407 | evaluateNumericSplitSingle(m_numericAttIndices[i], currentNode, |
---|
408 | posInstances, negInstances, allInstances); |
---|
409 | } |
---|
410 | |
---|
411 | if (currentNode.getChildren().size() == 0) return; |
---|
412 | |
---|
413 | // keep searching |
---|
414 | switch (m_searchPath) { |
---|
415 | case SEARCHPATH_ALL: |
---|
416 | goDownAllPathsSingle(currentNode, posInstances, negInstances); |
---|
417 | break; |
---|
418 | case SEARCHPATH_HEAVIEST: |
---|
419 | goDownHeaviestPathSingle(currentNode, posInstances, negInstances); |
---|
420 | break; |
---|
421 | case SEARCHPATH_ZPURE: |
---|
422 | goDownZpurePathSingle(currentNode, posInstances, negInstances); |
---|
423 | break; |
---|
424 | case SEARCHPATH_RANDOM: |
---|
425 | goDownRandomPathSingle(currentNode, posInstances, negInstances); |
---|
426 | break; |
---|
427 | } |
---|
428 | } |
---|
429 | |
---|
430 | /** |
---|
431 | * Continues single (two-class optimized) search by investigating every node in the |
---|
432 | * subtree under currentNode. |
---|
433 | * |
---|
434 | * @param currentNode the root of the subtree to be searched |
---|
435 | * @param posInstances the positive-class instances that apply at this node |
---|
436 | * @param negInstances the negative-class instances that apply at this node |
---|
437 | * @exception Exception if search fails |
---|
438 | */ |
---|
439 | private void goDownAllPathsSingle(PredictionNode currentNode, |
---|
440 | Instances posInstances, Instances negInstances) |
---|
441 | throws Exception { |
---|
442 | |
---|
443 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
444 | Splitter split = (Splitter) e.nextElement(); |
---|
445 | for (int i=0; i<split.getNumOfBranches(); i++) |
---|
446 | searchForBestTestSingle(split.getChildForBranch(i), |
---|
447 | split.instancesDownBranch(i, posInstances), |
---|
448 | split.instancesDownBranch(i, negInstances)); |
---|
449 | } |
---|
450 | } |
---|
451 | |
---|
452 | /** |
---|
453 | * Continues single (two-class optimized) search by investigating only the path |
---|
454 | * with the most heavily weighted instances. |
---|
455 | * |
---|
456 | * @param currentNode the root of the subtree to be searched |
---|
457 | * @param posInstances the positive-class instances that apply at this node |
---|
458 | * @param negInstances the negative-class instances that apply at this node |
---|
459 | * @exception Exception if search fails |
---|
460 | */ |
---|
461 | private void goDownHeaviestPathSingle(PredictionNode currentNode, |
---|
462 | Instances posInstances, Instances negInstances) |
---|
463 | throws Exception { |
---|
464 | |
---|
465 | Splitter heaviestSplit = null; |
---|
466 | int heaviestBranch = 0; |
---|
467 | double largestWeight = 0.0; |
---|
468 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
469 | Splitter split = (Splitter) e.nextElement(); |
---|
470 | for (int i=0; i<split.getNumOfBranches(); i++) { |
---|
471 | double weight = |
---|
472 | split.instancesDownBranch(i, posInstances).sumOfWeights() + |
---|
473 | split.instancesDownBranch(i, negInstances).sumOfWeights(); |
---|
474 | if (weight > largestWeight) { |
---|
475 | heaviestSplit = split; |
---|
476 | heaviestBranch = i; |
---|
477 | largestWeight = weight; |
---|
478 | } |
---|
479 | } |
---|
480 | } |
---|
481 | if (heaviestSplit != null) |
---|
482 | searchForBestTestSingle(heaviestSplit.getChildForBranch(heaviestBranch), |
---|
483 | heaviestSplit.instancesDownBranch(heaviestBranch, |
---|
484 | posInstances), |
---|
485 | heaviestSplit.instancesDownBranch(heaviestBranch, |
---|
486 | negInstances)); |
---|
487 | } |
---|
488 | |
---|
489 | /** |
---|
490 | * Continues single (two-class optimized) search by investigating only the path |
---|
491 | * with the best Z-pure value at each branch. |
---|
492 | * |
---|
493 | * @param currentNode the root of the subtree to be searched |
---|
494 | * @param posInstances the positive-class instances that apply at this node |
---|
495 | * @param negInstances the negative-class instances that apply at this node |
---|
496 | * @exception Exception if search fails |
---|
497 | */ |
---|
498 | private void goDownZpurePathSingle(PredictionNode currentNode, |
---|
499 | Instances posInstances, Instances negInstances) |
---|
500 | throws Exception { |
---|
501 | |
---|
502 | double lowestZpure = m_search_smallestZ; // do z-pure cutoff |
---|
503 | PredictionNode bestPath = null; |
---|
504 | Instances bestPosSplit = null, bestNegSplit = null; |
---|
505 | |
---|
506 | // search for branch with lowest Z-pure |
---|
507 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
508 | Splitter split = (Splitter) e.nextElement(); |
---|
509 | for (int i=0; i<split.getNumOfBranches(); i++) { |
---|
510 | Instances posSplit = split.instancesDownBranch(i, posInstances); |
---|
511 | Instances negSplit = split.instancesDownBranch(i, negInstances); |
---|
512 | double newZpure = calcZpure(posSplit, negSplit); |
---|
513 | if (newZpure < lowestZpure) { |
---|
514 | lowestZpure = newZpure; |
---|
515 | bestPath = split.getChildForBranch(i); |
---|
516 | bestPosSplit = posSplit; |
---|
517 | bestNegSplit = negSplit; |
---|
518 | } |
---|
519 | } |
---|
520 | } |
---|
521 | |
---|
522 | if (bestPath != null) |
---|
523 | searchForBestTestSingle(bestPath, bestPosSplit, bestNegSplit); |
---|
524 | } |
---|
525 | |
---|
526 | /** |
---|
527 | * Continues single (two-class optimized) search by investigating a random path. |
---|
528 | * |
---|
529 | * @param currentNode the root of the subtree to be searched |
---|
530 | * @param posInstances the positive-class instances that apply at this node |
---|
531 | * @param negInstances the negative-class instances that apply at this node |
---|
532 | * @exception Exception if search fails |
---|
533 | */ |
---|
534 | private void goDownRandomPathSingle(PredictionNode currentNode, |
---|
535 | Instances posInstances, Instances negInstances) |
---|
536 | throws Exception { |
---|
537 | |
---|
538 | FastVector children = currentNode.getChildren(); |
---|
539 | Splitter split = (Splitter) children.elementAt(getRandom(children.size())); |
---|
540 | int branch = getRandom(split.getNumOfBranches()); |
---|
541 | searchForBestTestSingle(split.getChildForBranch(branch), |
---|
542 | split.instancesDownBranch(branch, posInstances), |
---|
543 | split.instancesDownBranch(branch, negInstances)); |
---|
544 | } |
---|
545 | |
---|
546 | /** |
---|
547 | * Investigates the option of introducing a nominal split under currentNode. If it |
---|
548 | * finds a split that has a Z-value lower than has already been found it will |
---|
549 | * update the search information to record this as the best option so far. |
---|
550 | * |
---|
551 | * @param attIndex index of a nominal attribute to create a split from |
---|
552 | * @param currentNode the parent under which a split is to be considered |
---|
553 | * @param posInstances the positive-class instances that apply at this node |
---|
554 | * @param negInstances the negative-class instances that apply at this node |
---|
555 | */ |
---|
556 | private void evaluateNominalSplitSingle(int attIndex, PredictionNode currentNode, |
---|
557 | Instances posInstances, Instances negInstances) |
---|
558 | { |
---|
559 | |
---|
560 | double[] indexAndZ = findLowestZNominalSplit(posInstances, negInstances, attIndex); |
---|
561 | |
---|
562 | if (indexAndZ[1] < m_search_smallestZ) { |
---|
563 | m_search_smallestZ = indexAndZ[1]; |
---|
564 | m_search_bestInsertionNode = currentNode; |
---|
565 | m_search_bestSplitter = new TwoWayNominalSplit(attIndex, (int) indexAndZ[0]); |
---|
566 | m_search_bestPathPosInstances = posInstances; |
---|
567 | m_search_bestPathNegInstances = negInstances; |
---|
568 | } |
---|
569 | } |
---|
570 | |
---|
571 | /** |
---|
572 | * Investigates the option of introducing a two-way numeric split under currentNode. |
---|
573 | * If it finds a split that has a Z-value lower than has already been found it will |
---|
574 | * update the search information to record this as the best option so far. |
---|
575 | * |
---|
576 | * @param attIndex index of a numeric attribute to create a split from |
---|
577 | * @param currentNode the parent under which a split is to be considered |
---|
578 | * @param posInstances the positive-class instances that apply at this node |
---|
579 | * @param negInstances the negative-class instances that apply at this node |
---|
580 | * @param allInstances all of the instances the apply at this node (pos+neg combined) |
---|
581 | * @throws Exception in case of an error |
---|
582 | */ |
---|
583 | private void evaluateNumericSplitSingle(int attIndex, PredictionNode currentNode, |
---|
584 | Instances posInstances, Instances negInstances, |
---|
585 | Instances allInstances) |
---|
586 | throws Exception { |
---|
587 | |
---|
588 | double[] splitAndZ = findLowestZNumericSplit(allInstances, attIndex); |
---|
589 | |
---|
590 | if (splitAndZ[1] < m_search_smallestZ) { |
---|
591 | m_search_smallestZ = splitAndZ[1]; |
---|
592 | m_search_bestInsertionNode = currentNode; |
---|
593 | m_search_bestSplitter = new TwoWayNumericSplit(attIndex, splitAndZ[0]); |
---|
594 | m_search_bestPathPosInstances = posInstances; |
---|
595 | m_search_bestPathNegInstances = negInstances; |
---|
596 | } |
---|
597 | } |
---|
598 | |
---|
599 | /** |
---|
600 | * Calculates the prediction value used for a particular set of instances. |
---|
601 | * |
---|
602 | * @param posInstances the positive-class instances |
---|
603 | * @param negInstances the negative-class instances |
---|
604 | * @return the prediction value |
---|
605 | */ |
---|
606 | private double calcPredictionValue(Instances posInstances, Instances negInstances) { |
---|
607 | |
---|
608 | return 0.5 * Math.log( (posInstances.sumOfWeights() + 1.0) |
---|
609 | / (negInstances.sumOfWeights() + 1.0) ); |
---|
610 | } |
---|
611 | |
---|
612 | /** |
---|
613 | * Calculates the Z-pure value for a particular set of instances. |
---|
614 | * |
---|
615 | * @param posInstances the positive-class instances |
---|
616 | * @param negInstances the negative-class instances |
---|
617 | * @return the Z-pure value |
---|
618 | */ |
---|
619 | private double calcZpure(Instances posInstances, Instances negInstances) { |
---|
620 | |
---|
621 | double posWeight = posInstances.sumOfWeights(); |
---|
622 | double negWeight = negInstances.sumOfWeights(); |
---|
623 | return (2.0 * (Math.sqrt(posWeight+1.0) + Math.sqrt(negWeight+1.0))) + |
---|
624 | (m_trainTotalWeight - (posWeight + negWeight)); |
---|
625 | } |
---|
626 | |
---|
627 | /** |
---|
628 | * Updates the weights of instances that are influenced by a new prediction value. |
---|
629 | * |
---|
630 | * @param posInstances positive-class instances to which the prediction value applies |
---|
631 | * @param negInstances negative-class instances to which the prediction value applies |
---|
632 | * @param predictionValue the new prediction value |
---|
633 | */ |
---|
634 | private void updateWeights(Instances posInstances, Instances negInstances, |
---|
635 | double predictionValue) { |
---|
636 | |
---|
637 | // do positives |
---|
638 | double weightMultiplier = Math.pow(Math.E, -predictionValue); |
---|
639 | for (Enumeration e = posInstances.enumerateInstances(); e.hasMoreElements(); ) { |
---|
640 | Instance inst = (Instance) e.nextElement(); |
---|
641 | inst.setWeight(inst.weight() * weightMultiplier); |
---|
642 | } |
---|
643 | // do negatives |
---|
644 | weightMultiplier = Math.pow(Math.E, predictionValue); |
---|
645 | for (Enumeration e = negInstances.enumerateInstances(); e.hasMoreElements(); ) { |
---|
646 | Instance inst = (Instance) e.nextElement(); |
---|
647 | inst.setWeight(inst.weight() * weightMultiplier); |
---|
648 | } |
---|
649 | } |
---|
650 | |
---|
651 | /** |
---|
652 | * Finds the nominal attribute value to split on that results in the lowest Z-value. |
---|
653 | * |
---|
654 | * @param posInstances the positive-class instances to split |
---|
655 | * @param negInstances the negative-class instances to split |
---|
656 | * @param attIndex the index of the nominal attribute to find a split for |
---|
657 | * @return a double array, index[0] contains the value to split on, index[1] contains |
---|
658 | * the Z-value of the split |
---|
659 | */ |
---|
660 | private double[] findLowestZNominalSplit(Instances posInstances, Instances negInstances, |
---|
661 | int attIndex) |
---|
662 | { |
---|
663 | |
---|
664 | double lowestZ = Double.MAX_VALUE; |
---|
665 | int bestIndex = 0; |
---|
666 | |
---|
667 | // set up arrays |
---|
668 | double[] posWeights = attributeValueWeights(posInstances, attIndex); |
---|
669 | double[] negWeights = attributeValueWeights(negInstances, attIndex); |
---|
670 | double posWeight = Utils.sum(posWeights); |
---|
671 | double negWeight = Utils.sum(negWeights); |
---|
672 | |
---|
673 | int maxIndex = posWeights.length; |
---|
674 | if (maxIndex == 2) maxIndex = 1; // avoid repeating due to 2-way symmetry |
---|
675 | |
---|
676 | for (int i = 0; i < maxIndex; i++) { |
---|
677 | // calculate Z |
---|
678 | double w1 = posWeights[i] + 1.0; |
---|
679 | double w2 = negWeights[i] + 1.0; |
---|
680 | double w3 = posWeight - w1 + 2.0; |
---|
681 | double w4 = negWeight - w2 + 2.0; |
---|
682 | double wRemainder = m_trainTotalWeight + 4.0 - (w1 + w2 + w3 + w4); |
---|
683 | double newZ = (2.0 * (Math.sqrt(w1 * w2) + Math.sqrt(w3 * w4))) + wRemainder; |
---|
684 | |
---|
685 | // record best option |
---|
686 | if (newZ < lowestZ) { |
---|
687 | lowestZ = newZ; |
---|
688 | bestIndex = i; |
---|
689 | } |
---|
690 | } |
---|
691 | |
---|
692 | // return result |
---|
693 | double[] indexAndZ = new double[2]; |
---|
694 | indexAndZ[0] = (double) bestIndex; |
---|
695 | indexAndZ[1] = lowestZ; |
---|
696 | return indexAndZ; |
---|
697 | } |
---|
698 | |
---|
699 | /** |
---|
700 | * Simultanously sum the weights of all attribute values for all instances. |
---|
701 | * |
---|
702 | * @param instances the instances to get the weights from |
---|
703 | * @param attIndex index of the attribute to be evaluated |
---|
704 | * @return a double array containing the weight of each attribute value |
---|
705 | */ |
---|
706 | private double[] attributeValueWeights(Instances instances, int attIndex) |
---|
707 | { |
---|
708 | |
---|
709 | double[] weights = new double[instances.attribute(attIndex).numValues()]; |
---|
710 | for(int i = 0; i < weights.length; i++) weights[i] = 0.0; |
---|
711 | |
---|
712 | for (Enumeration e = instances.enumerateInstances(); e.hasMoreElements(); ) { |
---|
713 | Instance inst = (Instance) e.nextElement(); |
---|
714 | if (!inst.isMissing(attIndex)) weights[(int)inst.value(attIndex)] += inst.weight(); |
---|
715 | } |
---|
716 | return weights; |
---|
717 | } |
---|
718 | |
---|
719 | /** |
---|
720 | * Finds the numeric split-point that results in the lowest Z-value. |
---|
721 | * |
---|
722 | * @param instances the instances to find a split for |
---|
723 | * @param attIndex the index of the numeric attribute to find a split for |
---|
724 | * @return a double array, index[0] contains the split-point, index[1] contains the |
---|
725 | * Z-value of the split |
---|
726 | * @throws Exception in case of an error |
---|
727 | */ |
---|
728 | private double[] findLowestZNumericSplit(Instances instances, int attIndex) |
---|
729 | throws Exception { |
---|
730 | |
---|
731 | double splitPoint = 0.0; |
---|
732 | double bestVal = Double.MAX_VALUE, currVal, currCutPoint; |
---|
733 | int numMissing = 0; |
---|
734 | double[][] distribution = new double[3][instances.numClasses()]; |
---|
735 | |
---|
736 | // compute counts for all the values |
---|
737 | for (int i = 0; i < instances.numInstances(); i++) { |
---|
738 | Instance inst = instances.instance(i); |
---|
739 | if (!inst.isMissing(attIndex)) { |
---|
740 | distribution[1][(int)inst.classValue()] += inst.weight(); |
---|
741 | } else { |
---|
742 | distribution[2][(int)inst.classValue()] += inst.weight(); |
---|
743 | numMissing++; |
---|
744 | } |
---|
745 | } |
---|
746 | |
---|
747 | // sort instances |
---|
748 | instances.sort(attIndex); |
---|
749 | |
---|
750 | // make split counts for each possible split and evaluate |
---|
751 | for (int i = 0; i < instances.numInstances() - (numMissing + 1); i++) { |
---|
752 | Instance inst = instances.instance(i); |
---|
753 | Instance instPlusOne = instances.instance(i + 1); |
---|
754 | distribution[0][(int)inst.classValue()] += inst.weight(); |
---|
755 | distribution[1][(int)inst.classValue()] -= inst.weight(); |
---|
756 | if (Utils.sm(inst.value(attIndex), instPlusOne.value(attIndex))) { |
---|
757 | currCutPoint = (inst.value(attIndex) + instPlusOne.value(attIndex)) / 2.0; |
---|
758 | currVal = conditionedZOnRows(distribution); |
---|
759 | if (currVal < bestVal) { |
---|
760 | splitPoint = currCutPoint; |
---|
761 | bestVal = currVal; |
---|
762 | } |
---|
763 | } |
---|
764 | } |
---|
765 | |
---|
766 | double[] splitAndZ = new double[2]; |
---|
767 | splitAndZ[0] = splitPoint; |
---|
768 | splitAndZ[1] = bestVal; |
---|
769 | return splitAndZ; |
---|
770 | } |
---|
771 | |
---|
772 | /** |
---|
773 | * Calculates the Z-value from the rows of a weight distribution array. |
---|
774 | * |
---|
775 | * @param distribution the weight distribution |
---|
776 | * @return the Z-value |
---|
777 | */ |
---|
778 | private double conditionedZOnRows(double [][] distribution) { |
---|
779 | |
---|
780 | double w1 = distribution[0][0] + 1.0; |
---|
781 | double w2 = distribution[0][1] + 1.0; |
---|
782 | double w3 = distribution[1][0] + 1.0; |
---|
783 | double w4 = distribution[1][1] + 1.0; |
---|
784 | double wRemainder = m_trainTotalWeight + 4.0 - (w1 + w2 + w3 + w4); |
---|
785 | return (2.0 * (Math.sqrt(w1 * w2) + Math.sqrt(w3 * w4))) + wRemainder; |
---|
786 | } |
---|
787 | |
---|
788 | /** |
---|
789 | * Returns the class probability distribution for an instance. |
---|
790 | * |
---|
791 | * @param instance the instance to be classified |
---|
792 | * @return the distribution the tree generates for the instance |
---|
793 | */ |
---|
794 | public double[] distributionForInstance(Instance instance) { |
---|
795 | |
---|
796 | double predVal = predictionValueForInstance(instance, m_root, 0.0); |
---|
797 | |
---|
798 | double[] distribution = new double[2]; |
---|
799 | distribution[0] = 1.0 / (1.0 + Math.pow(Math.E, predVal)); |
---|
800 | distribution[1] = 1.0 / (1.0 + Math.pow(Math.E, -predVal)); |
---|
801 | |
---|
802 | return distribution; |
---|
803 | } |
---|
804 | |
---|
805 | /** |
---|
806 | * Returns the class prediction value (vote) for an instance. |
---|
807 | * |
---|
808 | * @param inst the instance |
---|
809 | * @param currentNode the root of the tree to get the values from |
---|
810 | * @param currentValue the current value before adding the value contained in the |
---|
811 | * subtree |
---|
812 | * @return the class prediction value (vote) |
---|
813 | */ |
---|
814 | protected double predictionValueForInstance(Instance inst, PredictionNode currentNode, |
---|
815 | double currentValue) { |
---|
816 | |
---|
817 | currentValue += currentNode.getValue(); |
---|
818 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
819 | Splitter split = (Splitter) e.nextElement(); |
---|
820 | int branch = split.branchInstanceGoesDown(inst); |
---|
821 | if (branch >= 0) |
---|
822 | currentValue = predictionValueForInstance(inst, split.getChildForBranch(branch), |
---|
823 | currentValue); |
---|
824 | } |
---|
825 | return currentValue; |
---|
826 | } |
---|
827 | |
---|
828 | /** |
---|
829 | * Returns a description of the classifier. |
---|
830 | * |
---|
831 | * @return a string containing a description of the classifier |
---|
832 | */ |
---|
833 | public String toString() { |
---|
834 | |
---|
835 | if (m_root == null) |
---|
836 | return ("ADTree not built yet"); |
---|
837 | else { |
---|
838 | return ("Alternating decision tree:\n\n" + toString(m_root, 1) + |
---|
839 | "\nLegend: " + legend() + |
---|
840 | "\nTree size (total number of nodes): " + numOfAllNodes(m_root) + |
---|
841 | "\nLeaves (number of predictor nodes): " + numOfPredictionNodes(m_root) |
---|
842 | ); |
---|
843 | } |
---|
844 | } |
---|
845 | |
---|
846 | /** |
---|
847 | * Traverses the tree, forming a string that describes it. |
---|
848 | * |
---|
849 | * @param currentNode the current node under investigation |
---|
850 | * @param level the current level in the tree |
---|
851 | * @return the string describing the subtree |
---|
852 | */ |
---|
853 | protected String toString(PredictionNode currentNode, int level) { |
---|
854 | |
---|
855 | StringBuffer text = new StringBuffer(); |
---|
856 | |
---|
857 | text.append(": " + Utils.doubleToString(currentNode.getValue(),3)); |
---|
858 | |
---|
859 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
860 | Splitter split = (Splitter) e.nextElement(); |
---|
861 | |
---|
862 | for (int j=0; j<split.getNumOfBranches(); j++) { |
---|
863 | PredictionNode child = split.getChildForBranch(j); |
---|
864 | if (child != null) { |
---|
865 | text.append("\n"); |
---|
866 | for (int k = 0; k < level; k++) { |
---|
867 | text.append("| "); |
---|
868 | } |
---|
869 | text.append("(" + split.orderAdded + ")"); |
---|
870 | text.append(split.attributeString(m_trainInstances) + " " |
---|
871 | + split.comparisonString(j, m_trainInstances)); |
---|
872 | text.append(toString(child, level + 1)); |
---|
873 | } |
---|
874 | } |
---|
875 | } |
---|
876 | return text.toString(); |
---|
877 | } |
---|
878 | |
---|
879 | /** |
---|
880 | * Returns the type of graph this classifier |
---|
881 | * represents. |
---|
882 | * @return Drawable.TREE |
---|
883 | */ |
---|
884 | public int graphType() { |
---|
885 | return Drawable.TREE; |
---|
886 | } |
---|
887 | |
---|
888 | /** |
---|
889 | * Returns graph describing the tree. |
---|
890 | * |
---|
891 | * @return the graph of the tree in dotty format |
---|
892 | * @exception Exception if something goes wrong |
---|
893 | */ |
---|
894 | public String graph() throws Exception { |
---|
895 | |
---|
896 | StringBuffer text = new StringBuffer(); |
---|
897 | text.append("digraph ADTree {\n"); |
---|
898 | graphTraverse(m_root, text, 0, 0, m_trainInstances); |
---|
899 | return text.toString() +"}\n"; |
---|
900 | } |
---|
901 | |
---|
902 | /** |
---|
903 | * Traverses the tree, graphing each node. |
---|
904 | * |
---|
905 | * @param currentNode the currentNode under investigation |
---|
906 | * @param text the string built so far |
---|
907 | * @param splitOrder the order the parent splitter was added to the tree |
---|
908 | * @param predOrder the order this predictor was added to the split |
---|
909 | * @param instances the data to work on |
---|
910 | * @exception Exception if something goes wrong |
---|
911 | */ |
---|
912 | protected void graphTraverse(PredictionNode currentNode, StringBuffer text, |
---|
913 | int splitOrder, int predOrder, Instances instances) |
---|
914 | throws Exception { |
---|
915 | |
---|
916 | text.append("S" + splitOrder + "P" + predOrder + " [label=\""); |
---|
917 | text.append(Utils.doubleToString(currentNode.getValue(),3)); |
---|
918 | if (splitOrder == 0) // show legend in root |
---|
919 | text.append(" (" + legend() + ")"); |
---|
920 | text.append("\" shape=box style=filled"); |
---|
921 | if (instances.numInstances() > 0) text.append(" data=\n" + instances + "\n,\n"); |
---|
922 | text.append("]\n"); |
---|
923 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
924 | Splitter split = (Splitter) e.nextElement(); |
---|
925 | text.append("S" + splitOrder + "P" + predOrder + "->" + "S" + split.orderAdded + |
---|
926 | " [style=dotted]\n"); |
---|
927 | text.append("S" + split.orderAdded + " [label=\"" + split.orderAdded + ": " + |
---|
928 | split.attributeString(m_trainInstances) + "\"]\n"); |
---|
929 | |
---|
930 | for (int i=0; i<split.getNumOfBranches(); i++) { |
---|
931 | PredictionNode child = split.getChildForBranch(i); |
---|
932 | if (child != null) { |
---|
933 | text.append("S" + split.orderAdded + "->" + "S" + split.orderAdded + "P" + i + |
---|
934 | " [label=\"" + split.comparisonString(i, m_trainInstances) + "\"]\n"); |
---|
935 | graphTraverse(child, text, split.orderAdded, i, |
---|
936 | split.instancesDownBranch(i, instances)); |
---|
937 | } |
---|
938 | } |
---|
939 | } |
---|
940 | } |
---|
941 | |
---|
942 | /** |
---|
943 | * Returns the legend of the tree, describing how results are to be interpreted. |
---|
944 | * |
---|
945 | * @return a string containing the legend of the classifier |
---|
946 | */ |
---|
947 | public String legend() { |
---|
948 | |
---|
949 | Attribute classAttribute = null; |
---|
950 | if (m_trainInstances == null) return ""; |
---|
951 | try {classAttribute = m_trainInstances.classAttribute();} catch (Exception x){}; |
---|
952 | return ("-ve = " + classAttribute.value(0) + |
---|
953 | ", +ve = " + classAttribute.value(1)); |
---|
954 | } |
---|
955 | |
---|
956 | /** |
---|
957 | * @return tip text for this property suitable for |
---|
958 | * displaying in the explorer/experimenter gui |
---|
959 | */ |
---|
960 | public String numOfBoostingIterationsTipText() { |
---|
961 | |
---|
962 | return "Sets the number of boosting iterations to perform. You will need to manually " |
---|
963 | + "tune this parameter to suit the dataset and the desired complexity/accuracy " |
---|
964 | + "tradeoff. More boosting iterations will result in larger (potentially more " |
---|
965 | + " accurate) trees, but will make learning slower. Each iteration will add 3 nodes " |
---|
966 | + "(1 split + 2 prediction) to the tree unless merging occurs."; |
---|
967 | } |
---|
968 | |
---|
969 | /** |
---|
970 | * Gets the number of boosting iterations. |
---|
971 | * |
---|
972 | * @return the number of boosting iterations |
---|
973 | */ |
---|
974 | public int getNumOfBoostingIterations() { |
---|
975 | |
---|
976 | return m_boostingIterations; |
---|
977 | } |
---|
978 | |
---|
979 | /** |
---|
980 | * Sets the number of boosting iterations. |
---|
981 | * |
---|
982 | * @param b the number of boosting iterations to use |
---|
983 | */ |
---|
984 | public void setNumOfBoostingIterations(int b) { |
---|
985 | |
---|
986 | m_boostingIterations = b; |
---|
987 | } |
---|
988 | |
---|
989 | /** |
---|
990 | * @return tip text for this property suitable for |
---|
991 | * displaying in the explorer/experimenter gui |
---|
992 | */ |
---|
993 | public String searchPathTipText() { |
---|
994 | |
---|
995 | return "Sets the type of search to perform when building the tree. The default option" |
---|
996 | + " (Expand all paths) will do an exhaustive search. The other search methods are" |
---|
997 | + " heuristic, so they are not guaranteed to find an optimal solution but they are" |
---|
998 | + " much faster. Expand the heaviest path: searches the path with the most heavily" |
---|
999 | + " weighted instances. Expand the best z-pure path: searches the path determined" |
---|
1000 | + " by the best z-pure estimate. Expand a random path: the fastest method, simply" |
---|
1001 | + " searches down a single random path on each iteration."; |
---|
1002 | } |
---|
1003 | |
---|
1004 | /** |
---|
1005 | * Gets the method of searching the tree for a new insertion. Will be one of |
---|
1006 | * SEARCHPATH_ALL, SEARCHPATH_HEAVIEST, SEARCHPATH_ZPURE, SEARCHPATH_RANDOM. |
---|
1007 | * |
---|
1008 | * @return the tree searching mode |
---|
1009 | */ |
---|
1010 | public SelectedTag getSearchPath() { |
---|
1011 | |
---|
1012 | return new SelectedTag(m_searchPath, TAGS_SEARCHPATH); |
---|
1013 | } |
---|
1014 | |
---|
1015 | /** |
---|
1016 | * Sets the method of searching the tree for a new insertion. Will be one of |
---|
1017 | * SEARCHPATH_ALL, SEARCHPATH_HEAVIEST, SEARCHPATH_ZPURE, SEARCHPATH_RANDOM. |
---|
1018 | * |
---|
1019 | * @param newMethod the new tree searching mode |
---|
1020 | */ |
---|
1021 | public void setSearchPath(SelectedTag newMethod) { |
---|
1022 | |
---|
1023 | if (newMethod.getTags() == TAGS_SEARCHPATH) { |
---|
1024 | m_searchPath = newMethod.getSelectedTag().getID(); |
---|
1025 | } |
---|
1026 | } |
---|
1027 | |
---|
1028 | /** |
---|
1029 | * @return tip text for this property suitable for |
---|
1030 | * displaying in the explorer/experimenter gui |
---|
1031 | */ |
---|
1032 | public String randomSeedTipText() { |
---|
1033 | |
---|
1034 | return "Sets the random seed to use for a random search."; |
---|
1035 | } |
---|
1036 | |
---|
1037 | /** |
---|
1038 | * Gets random seed for a random walk. |
---|
1039 | * |
---|
1040 | * @return the random seed |
---|
1041 | */ |
---|
1042 | public int getRandomSeed() { |
---|
1043 | |
---|
1044 | return m_randomSeed; |
---|
1045 | } |
---|
1046 | |
---|
1047 | /** |
---|
1048 | * Sets random seed for a random walk. |
---|
1049 | * |
---|
1050 | * @param seed the random seed |
---|
1051 | */ |
---|
1052 | public void setRandomSeed(int seed) { |
---|
1053 | |
---|
1054 | // the actual random object is created when the tree is initialized |
---|
1055 | m_randomSeed = seed; |
---|
1056 | } |
---|
1057 | |
---|
1058 | /** |
---|
1059 | * @return tip text for this property suitable for |
---|
1060 | * displaying in the explorer/experimenter gui |
---|
1061 | */ |
---|
1062 | public String saveInstanceDataTipText() { |
---|
1063 | |
---|
1064 | return "Sets whether the tree is to save instance data - the model will take up more" |
---|
1065 | + " memory if it does. If enabled you will be able to visualize the instances at" |
---|
1066 | + " the prediction nodes when visualizing the tree."; |
---|
1067 | } |
---|
1068 | |
---|
1069 | /** |
---|
1070 | * Gets whether the tree is to save instance data. |
---|
1071 | * |
---|
1072 | * @return the random seed |
---|
1073 | */ |
---|
1074 | public boolean getSaveInstanceData() { |
---|
1075 | |
---|
1076 | return m_saveInstanceData; |
---|
1077 | } |
---|
1078 | |
---|
1079 | /** |
---|
1080 | * Sets whether the tree is to save instance data. |
---|
1081 | * |
---|
1082 | * @param v true then the tree saves instance data |
---|
1083 | */ |
---|
1084 | public void setSaveInstanceData(boolean v) { |
---|
1085 | |
---|
1086 | m_saveInstanceData = v; |
---|
1087 | } |
---|
1088 | |
---|
1089 | /** |
---|
1090 | * Returns an enumeration describing the available options.. |
---|
1091 | * |
---|
1092 | * @return an enumeration of all the available options. |
---|
1093 | */ |
---|
1094 | public Enumeration listOptions() { |
---|
1095 | |
---|
1096 | Vector newVector = new Vector(3); |
---|
1097 | newVector.addElement(new Option( |
---|
1098 | "\tNumber of boosting iterations.\n" |
---|
1099 | +"\t(Default = 10)", |
---|
1100 | "B", 1,"-B <number of boosting iterations>")); |
---|
1101 | newVector.addElement(new Option( |
---|
1102 | "\tExpand nodes: -3(all), -2(weight), -1(z_pure), " |
---|
1103 | +">=0 seed for random walk\n" |
---|
1104 | +"\t(Default = -3)", |
---|
1105 | "E", 1,"-E <-3|-2|-1|>=0>")); |
---|
1106 | newVector.addElement(new Option( |
---|
1107 | "\tSave the instance data with the model", |
---|
1108 | "D", 0,"-D")); |
---|
1109 | return newVector.elements(); |
---|
1110 | } |
---|
1111 | |
---|
1112 | /** |
---|
1113 | * Parses a given list of options. Valid options are:<p> |
---|
1114 | * |
---|
1115 | * -B num <br> |
---|
1116 | * Set the number of boosting iterations |
---|
1117 | * (default 10) <p> |
---|
1118 | * |
---|
1119 | * -E num <br> |
---|
1120 | * Set the nodes to expand: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk |
---|
1121 | * (default -3) <p> |
---|
1122 | * |
---|
1123 | * -D <br> |
---|
1124 | * Save the instance data with the model <p> |
---|
1125 | * |
---|
1126 | * @param options the list of options as an array of strings |
---|
1127 | * @exception Exception if an option is not supported |
---|
1128 | */ |
---|
1129 | public void setOptions(String[] options) throws Exception { |
---|
1130 | |
---|
1131 | String bString = Utils.getOption('B', options); |
---|
1132 | if (bString.length() != 0) setNumOfBoostingIterations(Integer.parseInt(bString)); |
---|
1133 | |
---|
1134 | String eString = Utils.getOption('E', options); |
---|
1135 | if (eString.length() != 0) { |
---|
1136 | int value = Integer.parseInt(eString); |
---|
1137 | if (value >= 0) { |
---|
1138 | setSearchPath(new SelectedTag(SEARCHPATH_RANDOM, TAGS_SEARCHPATH)); |
---|
1139 | setRandomSeed(value); |
---|
1140 | } else setSearchPath(new SelectedTag(value + 3, TAGS_SEARCHPATH)); |
---|
1141 | } |
---|
1142 | |
---|
1143 | setSaveInstanceData(Utils.getFlag('D', options)); |
---|
1144 | |
---|
1145 | Utils.checkForRemainingOptions(options); |
---|
1146 | } |
---|
1147 | |
---|
1148 | /** |
---|
1149 | * Gets the current settings of ADTree. |
---|
1150 | * |
---|
1151 | * @return an array of strings suitable for passing to setOptions() |
---|
1152 | */ |
---|
1153 | public String[] getOptions() { |
---|
1154 | |
---|
1155 | String[] options = new String[6]; |
---|
1156 | int current = 0; |
---|
1157 | options[current++] = "-B"; options[current++] = "" + getNumOfBoostingIterations(); |
---|
1158 | options[current++] = "-E"; options[current++] = "" + |
---|
1159 | (m_searchPath == SEARCHPATH_RANDOM ? |
---|
1160 | m_randomSeed : m_searchPath - 3); |
---|
1161 | if (getSaveInstanceData()) options[current++] = "-D"; |
---|
1162 | while (current < options.length) options[current++] = ""; |
---|
1163 | return options; |
---|
1164 | } |
---|
1165 | |
---|
1166 | /** |
---|
1167 | * Calls measure function for tree size - the total number of nodes. |
---|
1168 | * |
---|
1169 | * @return the tree size |
---|
1170 | */ |
---|
1171 | public double measureTreeSize() { |
---|
1172 | |
---|
1173 | return numOfAllNodes(m_root); |
---|
1174 | } |
---|
1175 | |
---|
1176 | /** |
---|
1177 | * Calls measure function for leaf size - the number of prediction nodes. |
---|
1178 | * |
---|
1179 | * @return the leaf size |
---|
1180 | */ |
---|
1181 | public double measureNumLeaves() { |
---|
1182 | |
---|
1183 | return numOfPredictionNodes(m_root); |
---|
1184 | } |
---|
1185 | |
---|
1186 | /** |
---|
1187 | * Calls measure function for prediction leaf size - the number of |
---|
1188 | * prediction nodes without children. |
---|
1189 | * |
---|
1190 | * @return the leaf size |
---|
1191 | */ |
---|
1192 | public double measureNumPredictionLeaves() { |
---|
1193 | |
---|
1194 | return numOfPredictionLeafNodes(m_root); |
---|
1195 | } |
---|
1196 | |
---|
1197 | /** |
---|
1198 | * Returns the number of nodes expanded. |
---|
1199 | * |
---|
1200 | * @return the number of nodes expanded during search |
---|
1201 | */ |
---|
1202 | public double measureNodesExpanded() { |
---|
1203 | |
---|
1204 | return m_nodesExpanded; |
---|
1205 | } |
---|
1206 | |
---|
1207 | /** |
---|
1208 | * Returns the number of examples "counted". |
---|
1209 | * |
---|
1210 | * @return the number of nodes processed during search |
---|
1211 | */ |
---|
1212 | |
---|
1213 | public double measureExamplesProcessed() { |
---|
1214 | |
---|
1215 | return m_examplesCounted; |
---|
1216 | } |
---|
1217 | |
---|
1218 | /** |
---|
1219 | * Returns an enumeration of the additional measure names. |
---|
1220 | * |
---|
1221 | * @return an enumeration of the measure names |
---|
1222 | */ |
---|
1223 | public Enumeration enumerateMeasures() { |
---|
1224 | |
---|
1225 | Vector newVector = new Vector(4); |
---|
1226 | newVector.addElement("measureTreeSize"); |
---|
1227 | newVector.addElement("measureNumLeaves"); |
---|
1228 | newVector.addElement("measureNumPredictionLeaves"); |
---|
1229 | newVector.addElement("measureNodesExpanded"); |
---|
1230 | newVector.addElement("measureExamplesProcessed"); |
---|
1231 | return newVector.elements(); |
---|
1232 | } |
---|
1233 | |
---|
1234 | /** |
---|
1235 | * Returns the value of the named measure. |
---|
1236 | * |
---|
1237 | * @param additionalMeasureName the name of the measure to query for its value |
---|
1238 | * @return the value of the named measure |
---|
1239 | * @exception IllegalArgumentException if the named measure is not supported |
---|
1240 | */ |
---|
1241 | public double getMeasure(String additionalMeasureName) { |
---|
1242 | |
---|
1243 | if (additionalMeasureName.equalsIgnoreCase("measureTreeSize")) { |
---|
1244 | return measureTreeSize(); |
---|
1245 | } |
---|
1246 | else if (additionalMeasureName.equalsIgnoreCase("measureNumLeaves")) { |
---|
1247 | return measureNumLeaves(); |
---|
1248 | } |
---|
1249 | else if (additionalMeasureName.equalsIgnoreCase("measureNumPredictionLeaves")) { |
---|
1250 | return measureNumPredictionLeaves(); |
---|
1251 | } |
---|
1252 | else if (additionalMeasureName.equalsIgnoreCase("measureNodesExpanded")) { |
---|
1253 | return measureNodesExpanded(); |
---|
1254 | } |
---|
1255 | else if (additionalMeasureName.equalsIgnoreCase("measureExamplesProcessed")) { |
---|
1256 | return measureExamplesProcessed(); |
---|
1257 | } |
---|
1258 | else {throw new IllegalArgumentException(additionalMeasureName |
---|
1259 | + " not supported (ADTree)"); |
---|
1260 | } |
---|
1261 | } |
---|
1262 | |
---|
1263 | /** |
---|
1264 | * Returns the total number of nodes in a tree. |
---|
1265 | * |
---|
1266 | * @param root the root of the tree being measured |
---|
1267 | * @return tree size in number of splitter + prediction nodes |
---|
1268 | */ |
---|
1269 | protected int numOfAllNodes(PredictionNode root) { |
---|
1270 | |
---|
1271 | int numSoFar = 0; |
---|
1272 | if (root != null) { |
---|
1273 | numSoFar++; |
---|
1274 | for (Enumeration e = root.children(); e.hasMoreElements(); ) { |
---|
1275 | numSoFar++; |
---|
1276 | Splitter split = (Splitter) e.nextElement(); |
---|
1277 | for (int i=0; i<split.getNumOfBranches(); i++) |
---|
1278 | numSoFar += numOfAllNodes(split.getChildForBranch(i)); |
---|
1279 | } |
---|
1280 | } |
---|
1281 | return numSoFar; |
---|
1282 | } |
---|
1283 | |
---|
1284 | /** |
---|
1285 | * Returns the number of prediction nodes in a tree. |
---|
1286 | * |
---|
1287 | * @param root the root of the tree being measured |
---|
1288 | * @return tree size in number of prediction nodes |
---|
1289 | */ |
---|
1290 | protected int numOfPredictionNodes(PredictionNode root) { |
---|
1291 | |
---|
1292 | int numSoFar = 0; |
---|
1293 | if (root != null) { |
---|
1294 | numSoFar++; |
---|
1295 | for (Enumeration e = root.children(); e.hasMoreElements(); ) { |
---|
1296 | Splitter split = (Splitter) e.nextElement(); |
---|
1297 | for (int i=0; i<split.getNumOfBranches(); i++) |
---|
1298 | numSoFar += numOfPredictionNodes(split.getChildForBranch(i)); |
---|
1299 | } |
---|
1300 | } |
---|
1301 | return numSoFar; |
---|
1302 | } |
---|
1303 | |
---|
1304 | /** |
---|
1305 | * Returns the number of leaf nodes in a tree - prediction nodes without |
---|
1306 | * children. |
---|
1307 | * |
---|
1308 | * @param root the root of the tree being measured |
---|
1309 | * @return tree leaf size in number of prediction nodes |
---|
1310 | */ |
---|
1311 | protected int numOfPredictionLeafNodes(PredictionNode root) { |
---|
1312 | |
---|
1313 | int numSoFar = 0; |
---|
1314 | if (root.getChildren().size() > 0) { |
---|
1315 | for (Enumeration e = root.children(); e.hasMoreElements(); ) { |
---|
1316 | Splitter split = (Splitter) e.nextElement(); |
---|
1317 | for (int i=0; i<split.getNumOfBranches(); i++) |
---|
1318 | numSoFar += numOfPredictionLeafNodes(split.getChildForBranch(i)); |
---|
1319 | } |
---|
1320 | } else numSoFar = 1; |
---|
1321 | return numSoFar; |
---|
1322 | } |
---|
1323 | |
---|
1324 | /** |
---|
1325 | * Gets the next random value. |
---|
1326 | * |
---|
1327 | * @param max the maximum value (+1) to be returned |
---|
1328 | * @return the next random value (between 0 and max-1) |
---|
1329 | */ |
---|
1330 | protected int getRandom(int max) { |
---|
1331 | |
---|
1332 | return m_random.nextInt(max); |
---|
1333 | } |
---|
1334 | |
---|
1335 | /** |
---|
1336 | * Returns the next number in the order that splitter nodes have been added to |
---|
1337 | * the tree, and records that a new splitter has been added. |
---|
1338 | * |
---|
1339 | * @return the next number in the order |
---|
1340 | */ |
---|
1341 | public int nextSplitAddedOrder() { |
---|
1342 | |
---|
1343 | return ++m_lastAddedSplitNum; |
---|
1344 | } |
---|
1345 | |
---|
1346 | /** |
---|
1347 | * Returns default capabilities of the classifier. |
---|
1348 | * |
---|
1349 | * @return the capabilities of this classifier |
---|
1350 | */ |
---|
1351 | public Capabilities getCapabilities() { |
---|
1352 | Capabilities result = super.getCapabilities(); |
---|
1353 | result.disableAll(); |
---|
1354 | |
---|
1355 | // attributes |
---|
1356 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
1357 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
1358 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
1359 | result.enable(Capability.MISSING_VALUES); |
---|
1360 | |
---|
1361 | // class |
---|
1362 | result.enable(Capability.BINARY_CLASS); |
---|
1363 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
1364 | |
---|
1365 | return result; |
---|
1366 | } |
---|
1367 | |
---|
1368 | /** |
---|
1369 | * Builds a classifier for a set of instances. |
---|
1370 | * |
---|
1371 | * @param instances the instances to train the classifier with |
---|
1372 | * @exception Exception if something goes wrong |
---|
1373 | */ |
---|
1374 | public void buildClassifier(Instances instances) throws Exception { |
---|
1375 | |
---|
1376 | // can classifier handle the data? |
---|
1377 | getCapabilities().testWithFail(instances); |
---|
1378 | |
---|
1379 | // remove instances with missing class |
---|
1380 | instances = new Instances(instances); |
---|
1381 | instances.deleteWithMissingClass(); |
---|
1382 | |
---|
1383 | // set up the tree |
---|
1384 | initClassifier(instances); |
---|
1385 | |
---|
1386 | // build the tree |
---|
1387 | for (int T = 0; T < m_boostingIterations; T++) boost(); |
---|
1388 | |
---|
1389 | // clean up if desired |
---|
1390 | if (!m_saveInstanceData) done(); |
---|
1391 | } |
---|
1392 | |
---|
1393 | /** |
---|
1394 | * Frees memory that is no longer needed for a final model - will no longer be able |
---|
1395 | * to increment the classifier after calling this. |
---|
1396 | * |
---|
1397 | */ |
---|
1398 | public void done() { |
---|
1399 | |
---|
1400 | m_trainInstances = new Instances(m_trainInstances, 0); |
---|
1401 | m_random = null; |
---|
1402 | m_numericAttIndices = null; |
---|
1403 | m_nominalAttIndices = null; |
---|
1404 | m_posTrainInstances = null; |
---|
1405 | m_negTrainInstances = null; |
---|
1406 | } |
---|
1407 | |
---|
1408 | /** |
---|
1409 | * Creates a clone that is identical to the current tree, but is independent. |
---|
1410 | * Deep copies the essential elements such as the tree nodes, and the instances |
---|
1411 | * (because the weights change.) Reference copies several elements such as the |
---|
1412 | * potential splitter sets, assuming that such elements should never differ between |
---|
1413 | * clones. |
---|
1414 | * |
---|
1415 | * @return the clone |
---|
1416 | */ |
---|
1417 | public Object clone() { |
---|
1418 | |
---|
1419 | ADTree clone = new ADTree(); |
---|
1420 | |
---|
1421 | if (m_root != null) { // check for initialization first |
---|
1422 | clone.m_root = (PredictionNode) m_root.clone(); // deep copy the tree |
---|
1423 | |
---|
1424 | clone.m_trainInstances = new Instances(m_trainInstances); // copy training instances |
---|
1425 | |
---|
1426 | // deep copy the random object |
---|
1427 | if (m_random != null) { |
---|
1428 | SerializedObject randomSerial = null; |
---|
1429 | try { |
---|
1430 | randomSerial = new SerializedObject(m_random); |
---|
1431 | } catch (Exception ignored) {} // we know that Random is serializable |
---|
1432 | clone.m_random = (Random) randomSerial.getObject(); |
---|
1433 | } |
---|
1434 | |
---|
1435 | clone.m_lastAddedSplitNum = m_lastAddedSplitNum; |
---|
1436 | clone.m_numericAttIndices = m_numericAttIndices; |
---|
1437 | clone.m_nominalAttIndices = m_nominalAttIndices; |
---|
1438 | clone.m_trainTotalWeight = m_trainTotalWeight; |
---|
1439 | |
---|
1440 | // reconstruct pos/negTrainInstances references |
---|
1441 | if (m_posTrainInstances != null) { |
---|
1442 | clone.m_posTrainInstances = |
---|
1443 | new ReferenceInstances(m_trainInstances, m_posTrainInstances.numInstances()); |
---|
1444 | clone.m_negTrainInstances = |
---|
1445 | new ReferenceInstances(m_trainInstances, m_negTrainInstances.numInstances()); |
---|
1446 | for (Enumeration e = clone.m_trainInstances.enumerateInstances(); |
---|
1447 | e.hasMoreElements(); ) { |
---|
1448 | Instance inst = (Instance) e.nextElement(); |
---|
1449 | try { // ignore classValue() exception |
---|
1450 | if ((int) inst.classValue() == 0) |
---|
1451 | clone.m_negTrainInstances.addReference(inst); // belongs in negative class |
---|
1452 | else |
---|
1453 | clone.m_posTrainInstances.addReference(inst); // belongs in positive class |
---|
1454 | } catch (Exception ignored) {} |
---|
1455 | } |
---|
1456 | } |
---|
1457 | } |
---|
1458 | clone.m_nodesExpanded = m_nodesExpanded; |
---|
1459 | clone.m_examplesCounted = m_examplesCounted; |
---|
1460 | clone.m_boostingIterations = m_boostingIterations; |
---|
1461 | clone.m_searchPath = m_searchPath; |
---|
1462 | clone.m_randomSeed = m_randomSeed; |
---|
1463 | |
---|
1464 | return clone; |
---|
1465 | } |
---|
1466 | |
---|
1467 | /** |
---|
1468 | * Merges two trees together. Modifies the tree being acted on, leaving tree passed |
---|
1469 | * as a parameter untouched (cloned). Does not check to see whether training instances |
---|
1470 | * are compatible - strange things could occur if they are not. |
---|
1471 | * |
---|
1472 | * @param mergeWith the tree to merge with |
---|
1473 | * @exception Exception if merge could not be performed |
---|
1474 | */ |
---|
1475 | public void merge(ADTree mergeWith) throws Exception { |
---|
1476 | |
---|
1477 | if (m_root == null || mergeWith.m_root == null) |
---|
1478 | throw new Exception("Trying to merge an uninitialized tree"); |
---|
1479 | m_root.merge(mergeWith.m_root, this); |
---|
1480 | } |
---|
1481 | |
---|
1482 | /** |
---|
1483 | * Returns the revision string. |
---|
1484 | * |
---|
1485 | * @return the revision |
---|
1486 | */ |
---|
1487 | public String getRevision() { |
---|
1488 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
1489 | } |
---|
1490 | |
---|
1491 | /** |
---|
1492 | * Main method for testing this class. |
---|
1493 | * |
---|
1494 | * @param argv the options |
---|
1495 | */ |
---|
1496 | public static void main(String [] argv) { |
---|
1497 | runClassifier(new ADTree(), argv); |
---|
1498 | } |
---|
1499 | } |
---|