1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ZeroR.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.rules; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Sourcable; |
---|
28 | import weka.core.Attribute; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.Utils; |
---|
34 | import weka.core.WeightedInstancesHandler; |
---|
35 | import weka.core.Capabilities.Capability; |
---|
36 | |
---|
37 | import java.util.Enumeration; |
---|
38 | |
---|
39 | /** |
---|
40 | <!-- globalinfo-start --> |
---|
41 | * Class for building and using a 0-R classifier. Predicts the mean (for a numeric class) or the mode (for a nominal class). |
---|
42 | * <p/> |
---|
43 | <!-- globalinfo-end --> |
---|
44 | * |
---|
45 | <!-- options-start --> |
---|
46 | * Valid options are: <p/> |
---|
47 | * |
---|
48 | * <pre> -D |
---|
49 | * If set, classifier is run in debug mode and |
---|
50 | * may output additional info to the console</pre> |
---|
51 | * |
---|
52 | <!-- options-end --> |
---|
53 | * |
---|
54 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
55 | * @version $Revision: 5928 $ |
---|
56 | */ |
---|
57 | public class ZeroR |
---|
58 | extends AbstractClassifier |
---|
59 | implements WeightedInstancesHandler, Sourcable { |
---|
60 | |
---|
61 | /** for serialization */ |
---|
62 | static final long serialVersionUID = 48055541465867954L; |
---|
63 | |
---|
64 | /** The class value 0R predicts. */ |
---|
65 | private double m_ClassValue; |
---|
66 | |
---|
67 | /** The number of instances in each class (null if class numeric). */ |
---|
68 | private double [] m_Counts; |
---|
69 | |
---|
70 | /** The class attribute. */ |
---|
71 | private Attribute m_Class; |
---|
72 | |
---|
73 | /** |
---|
74 | * Returns a string describing classifier |
---|
75 | * @return a description suitable for |
---|
76 | * displaying in the explorer/experimenter gui |
---|
77 | */ |
---|
78 | public String globalInfo() { |
---|
79 | return "Class for building and using a 0-R classifier. Predicts the mean " |
---|
80 | + "(for a numeric class) or the mode (for a nominal class)."; |
---|
81 | } |
---|
82 | |
---|
83 | /** |
---|
84 | * Returns default capabilities of the classifier. |
---|
85 | * |
---|
86 | * @return the capabilities of this classifier |
---|
87 | */ |
---|
88 | public Capabilities getCapabilities() { |
---|
89 | Capabilities result = super.getCapabilities(); |
---|
90 | result.disableAll(); |
---|
91 | |
---|
92 | // attributes |
---|
93 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
94 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
95 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
96 | result.enable(Capability.STRING_ATTRIBUTES); |
---|
97 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
98 | result.enable(Capability.MISSING_VALUES); |
---|
99 | |
---|
100 | // class |
---|
101 | result.enable(Capability.NOMINAL_CLASS); |
---|
102 | result.enable(Capability.NUMERIC_CLASS); |
---|
103 | result.enable(Capability.DATE_CLASS); |
---|
104 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
105 | |
---|
106 | // instances |
---|
107 | result.setMinimumNumberInstances(0); |
---|
108 | |
---|
109 | return result; |
---|
110 | } |
---|
111 | |
---|
112 | /** |
---|
113 | * Generates the classifier. |
---|
114 | * |
---|
115 | * @param instances set of instances serving as training data |
---|
116 | * @throws Exception if the classifier has not been generated successfully |
---|
117 | */ |
---|
118 | public void buildClassifier(Instances instances) throws Exception { |
---|
119 | // can classifier handle the data? |
---|
120 | getCapabilities().testWithFail(instances); |
---|
121 | |
---|
122 | // remove instances with missing class |
---|
123 | instances = new Instances(instances); |
---|
124 | instances.deleteWithMissingClass(); |
---|
125 | |
---|
126 | double sumOfWeights = 0; |
---|
127 | |
---|
128 | m_Class = instances.classAttribute(); |
---|
129 | m_ClassValue = 0; |
---|
130 | switch (instances.classAttribute().type()) { |
---|
131 | case Attribute.NUMERIC: |
---|
132 | m_Counts = null; |
---|
133 | break; |
---|
134 | case Attribute.NOMINAL: |
---|
135 | m_Counts = new double [instances.numClasses()]; |
---|
136 | for (int i = 0; i < m_Counts.length; i++) { |
---|
137 | m_Counts[i] = 1; |
---|
138 | } |
---|
139 | sumOfWeights = instances.numClasses(); |
---|
140 | break; |
---|
141 | } |
---|
142 | Enumeration enu = instances.enumerateInstances(); |
---|
143 | while (enu.hasMoreElements()) { |
---|
144 | Instance instance = (Instance) enu.nextElement(); |
---|
145 | if (!instance.classIsMissing()) { |
---|
146 | if (instances.classAttribute().isNominal()) { |
---|
147 | m_Counts[(int)instance.classValue()] += instance.weight(); |
---|
148 | } else { |
---|
149 | m_ClassValue += instance.weight() * instance.classValue(); |
---|
150 | } |
---|
151 | sumOfWeights += instance.weight(); |
---|
152 | } |
---|
153 | } |
---|
154 | if (instances.classAttribute().isNumeric()) { |
---|
155 | if (Utils.gr(sumOfWeights, 0)) { |
---|
156 | m_ClassValue /= sumOfWeights; |
---|
157 | } |
---|
158 | } else { |
---|
159 | m_ClassValue = Utils.maxIndex(m_Counts); |
---|
160 | Utils.normalize(m_Counts, sumOfWeights); |
---|
161 | } |
---|
162 | } |
---|
163 | |
---|
164 | /** |
---|
165 | * Classifies a given instance. |
---|
166 | * |
---|
167 | * @param instance the instance to be classified |
---|
168 | * @return index of the predicted class |
---|
169 | */ |
---|
170 | public double classifyInstance(Instance instance) { |
---|
171 | |
---|
172 | return m_ClassValue; |
---|
173 | } |
---|
174 | |
---|
175 | /** |
---|
176 | * Calculates the class membership probabilities for the given test instance. |
---|
177 | * |
---|
178 | * @param instance the instance to be classified |
---|
179 | * @return predicted class probability distribution |
---|
180 | * @throws Exception if class is numeric |
---|
181 | */ |
---|
182 | public double [] distributionForInstance(Instance instance) |
---|
183 | throws Exception { |
---|
184 | |
---|
185 | if (m_Counts == null) { |
---|
186 | double[] result = new double[1]; |
---|
187 | result[0] = m_ClassValue; |
---|
188 | return result; |
---|
189 | } else { |
---|
190 | return (double []) m_Counts.clone(); |
---|
191 | } |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * Returns a string that describes the classifier as source. The |
---|
196 | * classifier will be contained in a class with the given name (there may |
---|
197 | * be auxiliary classes), |
---|
198 | * and will contain a method with the signature: |
---|
199 | * <pre><code> |
---|
200 | * public static double classify(Object[] i); |
---|
201 | * </code></pre> |
---|
202 | * where the array <code>i</code> contains elements that are either |
---|
203 | * Double, String, with missing values represented as null. The generated |
---|
204 | * code is public domain and comes with no warranty. |
---|
205 | * |
---|
206 | * @param className the name that should be given to the source class. |
---|
207 | * @return the object source described by a string |
---|
208 | * @throws Exception if the souce can't be computed |
---|
209 | */ |
---|
210 | public String toSource(String className) throws Exception { |
---|
211 | StringBuffer result; |
---|
212 | |
---|
213 | result = new StringBuffer(); |
---|
214 | |
---|
215 | result.append("class " + className + " {\n"); |
---|
216 | result.append(" public static double classify(Object[] i) {\n"); |
---|
217 | if (m_Counts != null) |
---|
218 | result.append(" // always predicts label '" + m_Class.value((int) m_ClassValue) + "'\n"); |
---|
219 | result.append(" return " + m_ClassValue + ";\n"); |
---|
220 | result.append(" }\n"); |
---|
221 | result.append("}\n"); |
---|
222 | |
---|
223 | return result.toString(); |
---|
224 | } |
---|
225 | |
---|
226 | /** |
---|
227 | * Returns a description of the classifier. |
---|
228 | * |
---|
229 | * @return a description of the classifier as a string. |
---|
230 | */ |
---|
231 | public String toString() { |
---|
232 | |
---|
233 | if (m_Class == null) { |
---|
234 | return "ZeroR: No model built yet."; |
---|
235 | } |
---|
236 | if (m_Counts == null) { |
---|
237 | return "ZeroR predicts class value: " + m_ClassValue; |
---|
238 | } else { |
---|
239 | return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue); |
---|
240 | } |
---|
241 | } |
---|
242 | |
---|
243 | /** |
---|
244 | * Returns the revision string. |
---|
245 | * |
---|
246 | * @return the revision |
---|
247 | */ |
---|
248 | public String getRevision() { |
---|
249 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
250 | } |
---|
251 | |
---|
252 | /** |
---|
253 | * Main method for testing this class. |
---|
254 | * |
---|
255 | * @param argv the options |
---|
256 | */ |
---|
257 | public static void main(String [] argv) { |
---|
258 | runClassifier(new ZeroR(), argv); |
---|
259 | } |
---|
260 | } |
---|