[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * ZeroR.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.rules; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Sourcable; |
---|
| 28 | import weka.core.Attribute; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.Instance; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.Utils; |
---|
| 34 | import weka.core.WeightedInstancesHandler; |
---|
| 35 | import weka.core.Capabilities.Capability; |
---|
| 36 | |
---|
| 37 | import java.util.Enumeration; |
---|
| 38 | |
---|
| 39 | /** |
---|
| 40 | <!-- globalinfo-start --> |
---|
| 41 | * Class for building and using a 0-R classifier. Predicts the mean (for a numeric class) or the mode (for a nominal class). |
---|
| 42 | * <p/> |
---|
| 43 | <!-- globalinfo-end --> |
---|
| 44 | * |
---|
| 45 | <!-- options-start --> |
---|
| 46 | * Valid options are: <p/> |
---|
| 47 | * |
---|
| 48 | * <pre> -D |
---|
| 49 | * If set, classifier is run in debug mode and |
---|
| 50 | * may output additional info to the console</pre> |
---|
| 51 | * |
---|
| 52 | <!-- options-end --> |
---|
| 53 | * |
---|
| 54 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 55 | * @version $Revision: 5928 $ |
---|
| 56 | */ |
---|
| 57 | public class ZeroR |
---|
| 58 | extends AbstractClassifier |
---|
| 59 | implements WeightedInstancesHandler, Sourcable { |
---|
| 60 | |
---|
| 61 | /** for serialization */ |
---|
| 62 | static final long serialVersionUID = 48055541465867954L; |
---|
| 63 | |
---|
| 64 | /** The class value 0R predicts. */ |
---|
| 65 | private double m_ClassValue; |
---|
| 66 | |
---|
| 67 | /** The number of instances in each class (null if class numeric). */ |
---|
| 68 | private double [] m_Counts; |
---|
| 69 | |
---|
| 70 | /** The class attribute. */ |
---|
| 71 | private Attribute m_Class; |
---|
| 72 | |
---|
| 73 | /** |
---|
| 74 | * Returns a string describing classifier |
---|
| 75 | * @return a description suitable for |
---|
| 76 | * displaying in the explorer/experimenter gui |
---|
| 77 | */ |
---|
| 78 | public String globalInfo() { |
---|
| 79 | return "Class for building and using a 0-R classifier. Predicts the mean " |
---|
| 80 | + "(for a numeric class) or the mode (for a nominal class)."; |
---|
| 81 | } |
---|
| 82 | |
---|
| 83 | /** |
---|
| 84 | * Returns default capabilities of the classifier. |
---|
| 85 | * |
---|
| 86 | * @return the capabilities of this classifier |
---|
| 87 | */ |
---|
| 88 | public Capabilities getCapabilities() { |
---|
| 89 | Capabilities result = super.getCapabilities(); |
---|
| 90 | result.disableAll(); |
---|
| 91 | |
---|
| 92 | // attributes |
---|
| 93 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 94 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 95 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 96 | result.enable(Capability.STRING_ATTRIBUTES); |
---|
| 97 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
| 98 | result.enable(Capability.MISSING_VALUES); |
---|
| 99 | |
---|
| 100 | // class |
---|
| 101 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 102 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 103 | result.enable(Capability.DATE_CLASS); |
---|
| 104 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 105 | |
---|
| 106 | // instances |
---|
| 107 | result.setMinimumNumberInstances(0); |
---|
| 108 | |
---|
| 109 | return result; |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | /** |
---|
| 113 | * Generates the classifier. |
---|
| 114 | * |
---|
| 115 | * @param instances set of instances serving as training data |
---|
| 116 | * @throws Exception if the classifier has not been generated successfully |
---|
| 117 | */ |
---|
| 118 | public void buildClassifier(Instances instances) throws Exception { |
---|
| 119 | // can classifier handle the data? |
---|
| 120 | getCapabilities().testWithFail(instances); |
---|
| 121 | |
---|
| 122 | // remove instances with missing class |
---|
| 123 | instances = new Instances(instances); |
---|
| 124 | instances.deleteWithMissingClass(); |
---|
| 125 | |
---|
| 126 | double sumOfWeights = 0; |
---|
| 127 | |
---|
| 128 | m_Class = instances.classAttribute(); |
---|
| 129 | m_ClassValue = 0; |
---|
| 130 | switch (instances.classAttribute().type()) { |
---|
| 131 | case Attribute.NUMERIC: |
---|
| 132 | m_Counts = null; |
---|
| 133 | break; |
---|
| 134 | case Attribute.NOMINAL: |
---|
| 135 | m_Counts = new double [instances.numClasses()]; |
---|
| 136 | for (int i = 0; i < m_Counts.length; i++) { |
---|
| 137 | m_Counts[i] = 1; |
---|
| 138 | } |
---|
| 139 | sumOfWeights = instances.numClasses(); |
---|
| 140 | break; |
---|
| 141 | } |
---|
| 142 | Enumeration enu = instances.enumerateInstances(); |
---|
| 143 | while (enu.hasMoreElements()) { |
---|
| 144 | Instance instance = (Instance) enu.nextElement(); |
---|
| 145 | if (!instance.classIsMissing()) { |
---|
| 146 | if (instances.classAttribute().isNominal()) { |
---|
| 147 | m_Counts[(int)instance.classValue()] += instance.weight(); |
---|
| 148 | } else { |
---|
| 149 | m_ClassValue += instance.weight() * instance.classValue(); |
---|
| 150 | } |
---|
| 151 | sumOfWeights += instance.weight(); |
---|
| 152 | } |
---|
| 153 | } |
---|
| 154 | if (instances.classAttribute().isNumeric()) { |
---|
| 155 | if (Utils.gr(sumOfWeights, 0)) { |
---|
| 156 | m_ClassValue /= sumOfWeights; |
---|
| 157 | } |
---|
| 158 | } else { |
---|
| 159 | m_ClassValue = Utils.maxIndex(m_Counts); |
---|
| 160 | Utils.normalize(m_Counts, sumOfWeights); |
---|
| 161 | } |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | /** |
---|
| 165 | * Classifies a given instance. |
---|
| 166 | * |
---|
| 167 | * @param instance the instance to be classified |
---|
| 168 | * @return index of the predicted class |
---|
| 169 | */ |
---|
| 170 | public double classifyInstance(Instance instance) { |
---|
| 171 | |
---|
| 172 | return m_ClassValue; |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | /** |
---|
| 176 | * Calculates the class membership probabilities for the given test instance. |
---|
| 177 | * |
---|
| 178 | * @param instance the instance to be classified |
---|
| 179 | * @return predicted class probability distribution |
---|
| 180 | * @throws Exception if class is numeric |
---|
| 181 | */ |
---|
| 182 | public double [] distributionForInstance(Instance instance) |
---|
| 183 | throws Exception { |
---|
| 184 | |
---|
| 185 | if (m_Counts == null) { |
---|
| 186 | double[] result = new double[1]; |
---|
| 187 | result[0] = m_ClassValue; |
---|
| 188 | return result; |
---|
| 189 | } else { |
---|
| 190 | return (double []) m_Counts.clone(); |
---|
| 191 | } |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | /** |
---|
| 195 | * Returns a string that describes the classifier as source. The |
---|
| 196 | * classifier will be contained in a class with the given name (there may |
---|
| 197 | * be auxiliary classes), |
---|
| 198 | * and will contain a method with the signature: |
---|
| 199 | * <pre><code> |
---|
| 200 | * public static double classify(Object[] i); |
---|
| 201 | * </code></pre> |
---|
| 202 | * where the array <code>i</code> contains elements that are either |
---|
| 203 | * Double, String, with missing values represented as null. The generated |
---|
| 204 | * code is public domain and comes with no warranty. |
---|
| 205 | * |
---|
| 206 | * @param className the name that should be given to the source class. |
---|
| 207 | * @return the object source described by a string |
---|
| 208 | * @throws Exception if the souce can't be computed |
---|
| 209 | */ |
---|
| 210 | public String toSource(String className) throws Exception { |
---|
| 211 | StringBuffer result; |
---|
| 212 | |
---|
| 213 | result = new StringBuffer(); |
---|
| 214 | |
---|
| 215 | result.append("class " + className + " {\n"); |
---|
| 216 | result.append(" public static double classify(Object[] i) {\n"); |
---|
| 217 | if (m_Counts != null) |
---|
| 218 | result.append(" // always predicts label '" + m_Class.value((int) m_ClassValue) + "'\n"); |
---|
| 219 | result.append(" return " + m_ClassValue + ";\n"); |
---|
| 220 | result.append(" }\n"); |
---|
| 221 | result.append("}\n"); |
---|
| 222 | |
---|
| 223 | return result.toString(); |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | /** |
---|
| 227 | * Returns a description of the classifier. |
---|
| 228 | * |
---|
| 229 | * @return a description of the classifier as a string. |
---|
| 230 | */ |
---|
| 231 | public String toString() { |
---|
| 232 | |
---|
| 233 | if (m_Class == null) { |
---|
| 234 | return "ZeroR: No model built yet."; |
---|
| 235 | } |
---|
| 236 | if (m_Counts == null) { |
---|
| 237 | return "ZeroR predicts class value: " + m_ClassValue; |
---|
| 238 | } else { |
---|
| 239 | return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue); |
---|
| 240 | } |
---|
| 241 | } |
---|
| 242 | |
---|
| 243 | /** |
---|
| 244 | * Returns the revision string. |
---|
| 245 | * |
---|
| 246 | * @return the revision |
---|
| 247 | */ |
---|
| 248 | public String getRevision() { |
---|
| 249 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 250 | } |
---|
| 251 | |
---|
| 252 | /** |
---|
| 253 | * Main method for testing this class. |
---|
| 254 | * |
---|
| 255 | * @param argv the options |
---|
| 256 | */ |
---|
| 257 | public static void main(String [] argv) { |
---|
| 258 | runClassifier(new ZeroR(), argv); |
---|
| 259 | } |
---|
| 260 | } |
---|