1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RuleStats.java |
---|
19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.classifiers.rules; |
---|
23 | |
---|
24 | import weka.core.Attribute; |
---|
25 | import weka.core.FastVector; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.RevisionHandler; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.Utils; |
---|
31 | |
---|
32 | import java.io.Serializable; |
---|
33 | import java.util.Enumeration; |
---|
34 | import java.util.Random; |
---|
35 | |
---|
36 | /** |
---|
37 | * This class implements the statistics functions used in the |
---|
38 | * propositional rule learner, from the simpler ones like count of |
---|
39 | * true/false positive/negatives, filter data based on the ruleset, etc. |
---|
40 | * to the more sophisticated ones such as MDL calculation and rule |
---|
41 | * variants generation for each rule in the ruleset. <p> |
---|
42 | * |
---|
43 | * Obviously the statistics functions listed above need the specific |
---|
44 | * data and the specific ruleset, which are given in order to instantiate |
---|
45 | * an object of this class. <p> |
---|
46 | * |
---|
47 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
48 | * @version $Revision: 4608 $ |
---|
49 | */ |
---|
50 | public class RuleStats |
---|
51 | implements Serializable, RevisionHandler { |
---|
52 | |
---|
53 | /** for serialization */ |
---|
54 | static final long serialVersionUID = -5708153367675298624L; |
---|
55 | |
---|
56 | /** The data on which the stats calculation is based */ |
---|
57 | private Instances m_Data; |
---|
58 | |
---|
59 | /** The specific ruleset in question */ |
---|
60 | private FastVector m_Ruleset; |
---|
61 | |
---|
62 | /** The simple stats of each rule */ |
---|
63 | private FastVector m_SimpleStats; |
---|
64 | |
---|
65 | /** The set of instances filtered by the ruleset */ |
---|
66 | private FastVector m_Filtered; |
---|
67 | |
---|
68 | /** The total number of possible conditions that could |
---|
69 | * appear in a rule */ |
---|
70 | private double m_Total; |
---|
71 | |
---|
72 | /** The redundancy factor in theory description length */ |
---|
73 | private static double REDUNDANCY_FACTOR = 0.5; |
---|
74 | |
---|
75 | /** The theory weight in the MDL calculation */ |
---|
76 | private double MDL_THEORY_WEIGHT = 1.0; |
---|
77 | |
---|
78 | /** The class distributions predicted by each rule */ |
---|
79 | private FastVector m_Distributions; |
---|
80 | |
---|
81 | /** Default constructor */ |
---|
82 | public RuleStats(){ |
---|
83 | m_Data = null; |
---|
84 | m_Ruleset = null; |
---|
85 | m_SimpleStats = null; |
---|
86 | m_Filtered = null; |
---|
87 | m_Distributions = null; |
---|
88 | m_Total = -1; |
---|
89 | } |
---|
90 | |
---|
91 | |
---|
92 | /** |
---|
93 | * Constructor that provides ruleset and data |
---|
94 | * |
---|
95 | * @param data the data |
---|
96 | * @param rules the ruleset |
---|
97 | */ |
---|
98 | public RuleStats(Instances data, FastVector rules){ |
---|
99 | this(); |
---|
100 | m_Data = data; |
---|
101 | m_Ruleset = rules; |
---|
102 | } |
---|
103 | |
---|
104 | /** |
---|
105 | * Frees up memory after classifier has been built. |
---|
106 | */ |
---|
107 | public void cleanUp() { |
---|
108 | m_Data = null; |
---|
109 | m_Filtered = null; |
---|
110 | } |
---|
111 | |
---|
112 | /** |
---|
113 | * Set the number of all conditions that could appear |
---|
114 | * in a rule in this RuleStats object, if the number set |
---|
115 | * is smaller than 0 (typically -1), then it calcualtes |
---|
116 | * based on the data store |
---|
117 | * |
---|
118 | * @param total the set number |
---|
119 | */ |
---|
120 | public void setNumAllConds(double total){ |
---|
121 | if(total < 0) |
---|
122 | m_Total = numAllConditions(m_Data); |
---|
123 | else |
---|
124 | m_Total = total; |
---|
125 | } |
---|
126 | |
---|
127 | /** |
---|
128 | * Set the data of the stats, overwriting the old one if any |
---|
129 | * |
---|
130 | * @param data the data to be set |
---|
131 | */ |
---|
132 | public void setData(Instances data){ |
---|
133 | m_Data = data; |
---|
134 | } |
---|
135 | |
---|
136 | /** |
---|
137 | * Get the data of the stats |
---|
138 | * |
---|
139 | * @return the data |
---|
140 | */ |
---|
141 | public Instances getData(){ |
---|
142 | return m_Data; |
---|
143 | } |
---|
144 | |
---|
145 | |
---|
146 | /** |
---|
147 | * Set the ruleset of the stats, overwriting the old one if any |
---|
148 | * |
---|
149 | * @param rules the set of rules to be set |
---|
150 | */ |
---|
151 | public void setRuleset(FastVector rules){ |
---|
152 | m_Ruleset = rules; |
---|
153 | } |
---|
154 | |
---|
155 | |
---|
156 | /** |
---|
157 | * Get the ruleset of the stats |
---|
158 | * |
---|
159 | * @return the set of rules |
---|
160 | */ |
---|
161 | public FastVector getRuleset(){ |
---|
162 | return m_Ruleset; |
---|
163 | } |
---|
164 | |
---|
165 | /** |
---|
166 | * Get the size of the ruleset in the stats |
---|
167 | * |
---|
168 | * @return the size of ruleset |
---|
169 | */ |
---|
170 | public int getRulesetSize(){ |
---|
171 | return m_Ruleset.size(); |
---|
172 | } |
---|
173 | |
---|
174 | /** |
---|
175 | * Get the simple stats of one rule, including 6 parameters: |
---|
176 | * 0: coverage; 1:uncoverage; 2: true positive; 3: true negatives; |
---|
177 | * 4: false positives; 5: false negatives |
---|
178 | * |
---|
179 | * @param index the index of the rule |
---|
180 | * @return the stats |
---|
181 | */ |
---|
182 | public double[] getSimpleStats(int index){ |
---|
183 | if((m_SimpleStats != null) && (index < m_SimpleStats.size())) |
---|
184 | return (double[])m_SimpleStats.elementAt(index); |
---|
185 | |
---|
186 | return null; |
---|
187 | } |
---|
188 | |
---|
189 | |
---|
190 | /** |
---|
191 | * Get the data after filtering the given rule |
---|
192 | * |
---|
193 | * @param index the index of the rule |
---|
194 | * @return the data covered and uncovered by the rule |
---|
195 | */ |
---|
196 | public Instances[] getFiltered(int index){ |
---|
197 | |
---|
198 | if((m_Filtered != null) && (index < m_Filtered.size())) |
---|
199 | return (Instances[])m_Filtered.elementAt(index); |
---|
200 | |
---|
201 | return null; |
---|
202 | } |
---|
203 | |
---|
204 | /** |
---|
205 | * Get the class distribution predicted by the rule in |
---|
206 | * given position |
---|
207 | * |
---|
208 | * @param index the position index of the rule |
---|
209 | * @return the class distributions |
---|
210 | */ |
---|
211 | public double[] getDistributions(int index){ |
---|
212 | |
---|
213 | if((m_Distributions != null) && (index < m_Distributions.size())) |
---|
214 | return (double[])m_Distributions.elementAt(index); |
---|
215 | |
---|
216 | return null; |
---|
217 | } |
---|
218 | |
---|
219 | /** |
---|
220 | * Set the weight of theory in MDL calcualtion |
---|
221 | * |
---|
222 | * @param weight the weight to be set |
---|
223 | */ |
---|
224 | public void setMDLTheoryWeight(double weight){ |
---|
225 | MDL_THEORY_WEIGHT = weight; |
---|
226 | } |
---|
227 | |
---|
228 | /** |
---|
229 | * Compute the number of all possible conditions that could |
---|
230 | * appear in a rule of a given data. For nominal attributes, |
---|
231 | * it's the number of values that could appear; for numeric |
---|
232 | * attributes, it's the number of values * 2, i.e. <= and >= |
---|
233 | * are counted as different possible conditions. |
---|
234 | * |
---|
235 | * @param data the given data |
---|
236 | * @return number of all conditions of the data |
---|
237 | */ |
---|
238 | public static double numAllConditions(Instances data){ |
---|
239 | double total = 0; |
---|
240 | Enumeration attEnum = data.enumerateAttributes(); |
---|
241 | while(attEnum.hasMoreElements()){ |
---|
242 | Attribute att= (Attribute)attEnum.nextElement(); |
---|
243 | if(att.isNominal()) |
---|
244 | total += (double)att.numValues(); |
---|
245 | else |
---|
246 | total += 2.0 * (double)data.numDistinctValues(att); |
---|
247 | } |
---|
248 | return total; |
---|
249 | } |
---|
250 | |
---|
251 | |
---|
252 | /** |
---|
253 | * Filter the data according to the ruleset and compute the basic |
---|
254 | * stats: coverage/uncoverage, true/false positive/negatives of |
---|
255 | * each rule |
---|
256 | */ |
---|
257 | public void countData(){ |
---|
258 | if((m_Filtered != null) || |
---|
259 | (m_Ruleset == null) || |
---|
260 | (m_Data == null)) |
---|
261 | return; |
---|
262 | |
---|
263 | int size = m_Ruleset.size(); |
---|
264 | m_Filtered = new FastVector(size); |
---|
265 | m_SimpleStats = new FastVector(size); |
---|
266 | m_Distributions = new FastVector(size); |
---|
267 | Instances data = new Instances(m_Data); |
---|
268 | |
---|
269 | for(int i=0; i < size; i++){ |
---|
270 | double[] stats = new double[6]; // 6 statistics parameters |
---|
271 | double[] classCounts = new double[m_Data.classAttribute().numValues()]; |
---|
272 | Instances[] filtered = computeSimpleStats(i, data, stats, classCounts); |
---|
273 | m_Filtered.addElement(filtered); |
---|
274 | m_SimpleStats.addElement(stats); |
---|
275 | m_Distributions.addElement(classCounts); |
---|
276 | data = filtered[1]; // Data not covered |
---|
277 | } |
---|
278 | } |
---|
279 | |
---|
280 | /** |
---|
281 | * Count data from the position index in the ruleset |
---|
282 | * assuming that given data are not covered by the rules |
---|
283 | * in position 0...(index-1), and the statistics of these |
---|
284 | * rules are provided.<br> |
---|
285 | * This procedure is typically useful when a temporary |
---|
286 | * object of RuleStats is constructed in order to efficiently |
---|
287 | * calculate the relative DL of rule in position index, |
---|
288 | * thus all other stuff is not needed. |
---|
289 | * |
---|
290 | * @param index the given position |
---|
291 | * @param uncovered the data not covered by rules before index |
---|
292 | * @param prevRuleStats the provided stats of previous rules |
---|
293 | */ |
---|
294 | public void countData(int index, Instances uncovered, |
---|
295 | double[][] prevRuleStats){ |
---|
296 | if((m_Filtered != null) || |
---|
297 | (m_Ruleset == null)) |
---|
298 | return; |
---|
299 | |
---|
300 | int size = m_Ruleset.size(); |
---|
301 | m_Filtered = new FastVector(size); |
---|
302 | m_SimpleStats = new FastVector(size); |
---|
303 | Instances[] data = new Instances[2]; |
---|
304 | data[1] = uncovered; |
---|
305 | |
---|
306 | for(int i=0; i < index; i++){ |
---|
307 | m_SimpleStats.addElement(prevRuleStats[i]); |
---|
308 | if(i+1 == index) |
---|
309 | m_Filtered.addElement(data); |
---|
310 | else |
---|
311 | m_Filtered.addElement(new Object()); // Stuff sth. |
---|
312 | } |
---|
313 | |
---|
314 | for(int j=index; j < size; j++){ |
---|
315 | double[] stats = new double[6]; // 6 statistics parameters |
---|
316 | Instances[] filtered = computeSimpleStats(j, data[1], stats, null); |
---|
317 | m_Filtered.addElement(filtered); |
---|
318 | m_SimpleStats.addElement(stats); |
---|
319 | data = filtered; // Data not covered |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | /** |
---|
324 | * Find all the instances in the dataset covered/not covered by |
---|
325 | * the rule in given index, and the correponding simple statistics |
---|
326 | * and predicted class distributions are stored in the given double array, |
---|
327 | * which can be obtained by getSimpleStats() and getDistributions().<br> |
---|
328 | * |
---|
329 | * @param index the given index, assuming correct |
---|
330 | * @param insts the dataset to be covered by the rule |
---|
331 | * @param stats the given double array to hold stats, side-effected |
---|
332 | * @param dist the given array to hold class distributions, side-effected |
---|
333 | * if null, the distribution is not necessary |
---|
334 | * @return the instances covered and not covered by the rule |
---|
335 | */ |
---|
336 | private Instances[] computeSimpleStats(int index, Instances insts, |
---|
337 | double[] stats, double[] dist){ |
---|
338 | Rule rule = (Rule)m_Ruleset.elementAt(index); |
---|
339 | |
---|
340 | Instances[] data = new Instances[2]; |
---|
341 | data[0] = new Instances(insts, insts.numInstances()); |
---|
342 | data[1] = new Instances(insts, insts.numInstances()); |
---|
343 | |
---|
344 | for(int i=0; i<insts.numInstances(); i++){ |
---|
345 | Instance datum = insts.instance(i); |
---|
346 | double weight = datum.weight(); |
---|
347 | if(rule.covers(datum)){ |
---|
348 | data[0].add(datum); // Covered by this rule |
---|
349 | stats[0] += weight; // Coverage |
---|
350 | if((int)datum.classValue() == (int)rule.getConsequent()) |
---|
351 | stats[2] += weight; // True positives |
---|
352 | else |
---|
353 | stats[4] += weight; // False positives |
---|
354 | if(dist != null) |
---|
355 | dist[(int)datum.classValue()] += weight; |
---|
356 | } |
---|
357 | else{ |
---|
358 | data[1].add(datum); // Not covered by this rule |
---|
359 | stats[1] += weight; |
---|
360 | if((int)datum.classValue() != (int)rule.getConsequent()) |
---|
361 | stats[3] += weight; // True negatives |
---|
362 | else |
---|
363 | stats[5] += weight; // False negatives |
---|
364 | } |
---|
365 | } |
---|
366 | |
---|
367 | return data; |
---|
368 | } |
---|
369 | |
---|
370 | |
---|
371 | /** |
---|
372 | * Add a rule to the ruleset and update the stats |
---|
373 | * |
---|
374 | * @param lastRule the rule to be added |
---|
375 | */ |
---|
376 | public void addAndUpdate(Rule lastRule){ |
---|
377 | if(m_Ruleset == null) |
---|
378 | m_Ruleset = new FastVector(); |
---|
379 | m_Ruleset.addElement(lastRule); |
---|
380 | |
---|
381 | Instances data = (m_Filtered == null) ? |
---|
382 | m_Data : ((Instances[])m_Filtered.lastElement())[1]; |
---|
383 | double[] stats = new double[6]; |
---|
384 | double[] classCounts = new double[m_Data.classAttribute().numValues()]; |
---|
385 | Instances[] filtered = |
---|
386 | computeSimpleStats(m_Ruleset.size()-1, data, stats, classCounts); |
---|
387 | |
---|
388 | if(m_Filtered == null) |
---|
389 | m_Filtered = new FastVector(); |
---|
390 | m_Filtered.addElement(filtered); |
---|
391 | |
---|
392 | if(m_SimpleStats == null) |
---|
393 | m_SimpleStats = new FastVector(); |
---|
394 | m_SimpleStats.addElement(stats); |
---|
395 | |
---|
396 | if(m_Distributions == null) |
---|
397 | m_Distributions = new FastVector(); |
---|
398 | m_Distributions.addElement(classCounts); |
---|
399 | } |
---|
400 | |
---|
401 | |
---|
402 | /** |
---|
403 | * Subset description length: <br> |
---|
404 | * S(t,k,p) = -k*log2(p)-(n-k)log2(1-p) |
---|
405 | * |
---|
406 | * Details see Quilan: "MDL and categorical theories (Continued)",ML95 |
---|
407 | * |
---|
408 | * @param t the number of elements in a known set |
---|
409 | * @param k the number of elements in a subset |
---|
410 | * @param p the expected proportion of subset known by recipient |
---|
411 | * @return the subset description length |
---|
412 | */ |
---|
413 | public static double subsetDL(double t, double k, double p){ |
---|
414 | double rt = Utils.gr(p, 0.0) ? (- k*Utils.log2(p)) : 0.0; |
---|
415 | rt -= (t-k)*Utils.log2(1-p); |
---|
416 | return rt; |
---|
417 | } |
---|
418 | |
---|
419 | |
---|
420 | /** |
---|
421 | * The description length of the theory for a given rule. Computed as:<br> |
---|
422 | * 0.5* [||k||+ S(t, k, k/t)]<br> |
---|
423 | * where k is the number of antecedents of the rule; t is the total |
---|
424 | * possible antecedents that could appear in a rule; ||K|| is the |
---|
425 | * universal prior for k , log2*(k) and S(t,k,p) = -k*log2(p)-(n-k)log2(1-p) |
---|
426 | * is the subset encoding length.<p> |
---|
427 | * |
---|
428 | * Details see Quilan: "MDL and categorical theories (Continued)",ML95 |
---|
429 | * |
---|
430 | * @param index the index of the given rule (assuming correct) |
---|
431 | * @return the theory DL, weighted if weight != 1.0 |
---|
432 | */ |
---|
433 | public double theoryDL(int index){ |
---|
434 | |
---|
435 | double k = ((Rule)m_Ruleset.elementAt(index)).size(); |
---|
436 | |
---|
437 | if(k == 0) |
---|
438 | return 0.0; |
---|
439 | |
---|
440 | double tdl = Utils.log2(k); |
---|
441 | if(k > 1) // Approximation |
---|
442 | tdl += 2.0 * Utils.log2(tdl); // of log2 star |
---|
443 | tdl += subsetDL(m_Total, k, k/m_Total); |
---|
444 | //System.out.println("!!!theory: "+MDL_THEORY_WEIGHT * REDUNDANCY_FACTOR * tdl); |
---|
445 | return MDL_THEORY_WEIGHT * REDUNDANCY_FACTOR * tdl; |
---|
446 | } |
---|
447 | |
---|
448 | |
---|
449 | /** |
---|
450 | * The description length of data given the parameters of the data |
---|
451 | * based on the ruleset. <p> |
---|
452 | * Details see Quinlan: "MDL and categorical theories (Continued)",ML95<p> |
---|
453 | * |
---|
454 | * @param expFPOverErr expected FP/(FP+FN) |
---|
455 | * @param cover coverage |
---|
456 | * @param uncover uncoverage |
---|
457 | * @param fp False Positive |
---|
458 | * @param fn False Negative |
---|
459 | * @return the description length |
---|
460 | */ |
---|
461 | public static double dataDL(double expFPOverErr, double cover, |
---|
462 | double uncover, double fp, double fn){ |
---|
463 | double totalBits = Utils.log2(cover+uncover+1.0); // how many data? |
---|
464 | double coverBits, uncoverBits; // What's the error? |
---|
465 | double expErr; // Expected FP or FN |
---|
466 | |
---|
467 | if(Utils.gr(cover, uncover)){ |
---|
468 | expErr = expFPOverErr*(fp+fn); |
---|
469 | coverBits = subsetDL(cover, fp, expErr/cover); |
---|
470 | uncoverBits = Utils.gr(uncover, 0.0) ? |
---|
471 | subsetDL(uncover, fn, fn/uncover) : 0.0; |
---|
472 | } |
---|
473 | else{ |
---|
474 | expErr = (1.0-expFPOverErr)*(fp+fn); |
---|
475 | coverBits = Utils.gr(cover, 0.0) ? |
---|
476 | subsetDL(cover, fp, fp/cover) : 0.0; |
---|
477 | uncoverBits = subsetDL(uncover, fn, expErr/uncover); |
---|
478 | } |
---|
479 | |
---|
480 | /* |
---|
481 | System.err.println("!!!cover: " + cover + "|uncover" + uncover + |
---|
482 | "|coverBits: "+coverBits+"|uncBits: "+ uncoverBits+ |
---|
483 | "|FPRate: "+expFPOverErr + "|expErr: "+expErr+ |
---|
484 | "|fp: "+fp+"|fn: "+fn+"|total: "+totalBits); |
---|
485 | */ |
---|
486 | return (totalBits + coverBits + uncoverBits); |
---|
487 | } |
---|
488 | |
---|
489 | |
---|
490 | /** |
---|
491 | * Calculate the potential to decrease DL of the ruleset, |
---|
492 | * i.e. the possible DL that could be decreased by deleting |
---|
493 | * the rule whose index and simple statstics are given. |
---|
494 | * If there's no potentials (i.e. smOrEq 0 && error rate < 0.5), |
---|
495 | * it returns NaN. <p> |
---|
496 | * |
---|
497 | * The way this procedure does is copied from original RIPPER |
---|
498 | * implementation and is quite bizzare because it |
---|
499 | * does not update the following rules' stats recursively |
---|
500 | * any more when testing each rule, which means it assumes |
---|
501 | * after deletion no data covered by the following rules (or |
---|
502 | * regards the deleted rule as the last rule). Reasonable |
---|
503 | * assumption?<p> |
---|
504 | * |
---|
505 | * @param index the index of the rule in m_Ruleset to be deleted |
---|
506 | * @param expFPOverErr expected FP/(FP+FN) |
---|
507 | * @param rulesetStat the simple statistics of the ruleset, updated |
---|
508 | * if the rule should be deleted |
---|
509 | * @param ruleStat the simple statistics of the rule to be deleted |
---|
510 | * @param checkErr whether check if error rate >= 0.5 |
---|
511 | * @return the potential DL that could be decreased |
---|
512 | */ |
---|
513 | public double potential(int index, double expFPOverErr, |
---|
514 | double[] rulesetStat, double[] ruleStat, |
---|
515 | boolean checkErr){ |
---|
516 | //System.out.println("!!!inside potential: "); |
---|
517 | // Restore the stats if deleted |
---|
518 | double pcov = rulesetStat[0] - ruleStat[0]; |
---|
519 | double puncov = rulesetStat[1] + ruleStat[0]; |
---|
520 | double pfp = rulesetStat[4] - ruleStat[4]; |
---|
521 | double pfn = rulesetStat[5] + ruleStat[2]; |
---|
522 | |
---|
523 | double dataDLWith = dataDL(expFPOverErr, rulesetStat[0], |
---|
524 | rulesetStat[1], rulesetStat[4], |
---|
525 | rulesetStat[5]); |
---|
526 | double theoryDLWith = theoryDL(index); |
---|
527 | double dataDLWithout = dataDL(expFPOverErr, pcov, puncov, pfp, pfn); |
---|
528 | |
---|
529 | double potential = dataDLWith + theoryDLWith - dataDLWithout; |
---|
530 | double err = ruleStat[4] / ruleStat[0]; |
---|
531 | /*System.out.println("!!!"+dataDLWith +" | "+ |
---|
532 | theoryDLWith + " | " |
---|
533 | +dataDLWithout+"|"+ruleStat[4] + " / " + ruleStat[0]); |
---|
534 | */ |
---|
535 | boolean overErr = Utils.grOrEq(err, 0.5); |
---|
536 | if(!checkErr) |
---|
537 | overErr = false; |
---|
538 | |
---|
539 | if(Utils.grOrEq(potential, 0.0) || overErr){ |
---|
540 | // If deleted, update ruleset stats. Other stats do not matter |
---|
541 | rulesetStat[0] = pcov; |
---|
542 | rulesetStat[1] = puncov; |
---|
543 | rulesetStat[4] = pfp; |
---|
544 | rulesetStat[5] = pfn; |
---|
545 | return potential; |
---|
546 | } |
---|
547 | else |
---|
548 | return Double.NaN; |
---|
549 | } |
---|
550 | |
---|
551 | |
---|
552 | /** |
---|
553 | * Compute the minimal data description length of the ruleset |
---|
554 | * if the rule in the given position is deleted.<br> |
---|
555 | * The min_data_DL_if_deleted = data_DL_if_deleted - potential |
---|
556 | * |
---|
557 | * @param index the index of the rule in question |
---|
558 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
559 | * @param checkErr whether check if error rate >= 0.5 |
---|
560 | * @return the minDataDL |
---|
561 | */ |
---|
562 | public double minDataDLIfDeleted(int index, double expFPRate, |
---|
563 | boolean checkErr){ |
---|
564 | //System.out.println("!!!Enter without: "); |
---|
565 | double[] rulesetStat = new double[6]; // Stats of ruleset if deleted |
---|
566 | int more = m_Ruleset.size() - 1 - index; // How many rules after? |
---|
567 | FastVector indexPlus = new FastVector(more); // Their stats |
---|
568 | |
---|
569 | // 0...(index-1) are OK |
---|
570 | for(int j=0; j<index; j++){ |
---|
571 | // Covered stats are cumulative |
---|
572 | rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0]; |
---|
573 | rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2]; |
---|
574 | rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4]; |
---|
575 | } |
---|
576 | |
---|
577 | // Recount data from index+1 |
---|
578 | Instances data = (index == 0) ? |
---|
579 | m_Data : ((Instances[])m_Filtered.elementAt(index-1))[1]; |
---|
580 | //System.out.println("!!!without: " + data.sumOfWeights()); |
---|
581 | |
---|
582 | for(int j=(index+1); j<m_Ruleset.size(); j++){ |
---|
583 | double[] stats = new double[6]; |
---|
584 | Instances[] split = computeSimpleStats(j, data, stats, null); |
---|
585 | indexPlus.addElement(stats); |
---|
586 | rulesetStat[0] += stats[0]; |
---|
587 | rulesetStat[2] += stats[2]; |
---|
588 | rulesetStat[4] += stats[4]; |
---|
589 | data = split[1]; |
---|
590 | } |
---|
591 | // Uncovered stats are those of the last rule |
---|
592 | if(more > 0){ |
---|
593 | rulesetStat[1] = ((double[])indexPlus.lastElement())[1]; |
---|
594 | rulesetStat[3] = ((double[])indexPlus.lastElement())[3]; |
---|
595 | rulesetStat[5] = ((double[])indexPlus.lastElement())[5]; |
---|
596 | } |
---|
597 | else if(index > 0){ |
---|
598 | rulesetStat[1] = |
---|
599 | ((double[])m_SimpleStats.elementAt(index-1))[1]; |
---|
600 | rulesetStat[3] = |
---|
601 | ((double[])m_SimpleStats.elementAt(index-1))[3]; |
---|
602 | rulesetStat[5] = |
---|
603 | ((double[])m_SimpleStats.elementAt(index-1))[5]; |
---|
604 | } |
---|
605 | else{ // Null coverage |
---|
606 | rulesetStat[1] = ((double[])m_SimpleStats.elementAt(0))[0] + |
---|
607 | ((double[])m_SimpleStats.elementAt(0))[1]; |
---|
608 | rulesetStat[3] = ((double[])m_SimpleStats.elementAt(0))[3] + |
---|
609 | ((double[])m_SimpleStats.elementAt(0))[4]; |
---|
610 | rulesetStat[5] = ((double[])m_SimpleStats.elementAt(0))[2] + |
---|
611 | ((double[])m_SimpleStats.elementAt(0))[5]; |
---|
612 | } |
---|
613 | |
---|
614 | // Potential |
---|
615 | double potential = 0; |
---|
616 | for(int k=index+1; k<m_Ruleset.size(); k++){ |
---|
617 | double[] ruleStat = (double[])indexPlus.elementAt(k-index-1); |
---|
618 | double ifDeleted = potential(k, expFPRate, rulesetStat, |
---|
619 | ruleStat, checkErr); |
---|
620 | if(!Double.isNaN(ifDeleted)) |
---|
621 | potential += ifDeleted; |
---|
622 | } |
---|
623 | |
---|
624 | // Data DL of the ruleset without the rule |
---|
625 | // Note that ruleset stats has already been updated to reflect |
---|
626 | // deletion if any potential |
---|
627 | double dataDLWithout = dataDL(expFPRate, rulesetStat[0], |
---|
628 | rulesetStat[1], rulesetStat[4], |
---|
629 | rulesetStat[5]); |
---|
630 | //System.out.println("!!!without: "+dataDLWithout + " |potential: "+ |
---|
631 | // potential); |
---|
632 | // Why subtract potential again? To reflect change of theory DL?? |
---|
633 | return (dataDLWithout - potential); |
---|
634 | } |
---|
635 | |
---|
636 | |
---|
637 | /** |
---|
638 | * Compute the minimal data description length of the ruleset |
---|
639 | * if the rule in the given position is NOT deleted.<br> |
---|
640 | * The min_data_DL_if_n_deleted = data_DL_if_n_deleted - potential |
---|
641 | * |
---|
642 | * @param index the index of the rule in question |
---|
643 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
644 | * @param checkErr whether check if error rate >= 0.5 |
---|
645 | * @return the minDataDL |
---|
646 | */ |
---|
647 | public double minDataDLIfExists(int index, double expFPRate, |
---|
648 | boolean checkErr){ |
---|
649 | // System.out.println("!!!Enter with: "); |
---|
650 | double[] rulesetStat = new double[6]; // Stats of ruleset if rule exists |
---|
651 | for(int j=0; j<m_SimpleStats.size(); j++){ |
---|
652 | // Covered stats are cumulative |
---|
653 | rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0]; |
---|
654 | rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2]; |
---|
655 | rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4]; |
---|
656 | if(j == m_SimpleStats.size()-1){ // Last rule |
---|
657 | rulesetStat[1] = ((double[])m_SimpleStats.elementAt(j))[1]; |
---|
658 | rulesetStat[3] = ((double[])m_SimpleStats.elementAt(j))[3]; |
---|
659 | rulesetStat[5] = ((double[])m_SimpleStats.elementAt(j))[5]; |
---|
660 | } |
---|
661 | } |
---|
662 | |
---|
663 | // Potential |
---|
664 | double potential = 0; |
---|
665 | for(int k=index+1; k<m_SimpleStats.size(); k++){ |
---|
666 | double[] ruleStat = (double[])getSimpleStats(k); |
---|
667 | double ifDeleted = potential(k, expFPRate, rulesetStat, |
---|
668 | ruleStat, checkErr); |
---|
669 | if(!Double.isNaN(ifDeleted)) |
---|
670 | potential += ifDeleted; |
---|
671 | } |
---|
672 | |
---|
673 | // Data DL of the ruleset without the rule |
---|
674 | // Note that ruleset stats has already been updated to reflect deletion |
---|
675 | // if any potential |
---|
676 | double dataDLWith = dataDL(expFPRate, rulesetStat[0], |
---|
677 | rulesetStat[1], rulesetStat[4], |
---|
678 | rulesetStat[5]); |
---|
679 | //System.out.println("!!!with: "+dataDLWith + " |potential: "+ |
---|
680 | // potential); |
---|
681 | return (dataDLWith - potential); |
---|
682 | } |
---|
683 | |
---|
684 | |
---|
685 | /** |
---|
686 | * The description length (DL) of the ruleset relative to if the |
---|
687 | * rule in the given position is deleted, which is obtained by: <br> |
---|
688 | * MDL if the rule exists - MDL if the rule does not exist <br> |
---|
689 | * Note the minimal possible DL of the ruleset is calculated(i.e. some |
---|
690 | * other rules may also be deleted) instead of the DL of the current |
---|
691 | * ruleset.<p> |
---|
692 | * |
---|
693 | * @param index the given position of the rule in question |
---|
694 | * (assuming correct) |
---|
695 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
696 | * @param checkErr whether check if error rate >= 0.5 |
---|
697 | * @return the relative DL |
---|
698 | */ |
---|
699 | public double relativeDL(int index, double expFPRate, boolean checkErr){ |
---|
700 | |
---|
701 | return (minDataDLIfExists(index, expFPRate, checkErr) |
---|
702 | + theoryDL(index) - |
---|
703 | minDataDLIfDeleted(index, expFPRate, checkErr)); |
---|
704 | } |
---|
705 | |
---|
706 | |
---|
707 | /** |
---|
708 | * Try to reduce the DL of the ruleset by testing removing the rules |
---|
709 | * one by one in reverse order and update all the stats |
---|
710 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
711 | * @param checkErr whether check if error rate >= 0.5 |
---|
712 | */ |
---|
713 | public void reduceDL(double expFPRate, boolean checkErr){ |
---|
714 | |
---|
715 | boolean needUpdate = false; |
---|
716 | double[] rulesetStat = new double[6]; |
---|
717 | for(int j=0; j<m_SimpleStats.size(); j++){ |
---|
718 | // Covered stats are cumulative |
---|
719 | rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0]; |
---|
720 | rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2]; |
---|
721 | rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4]; |
---|
722 | if(j == m_SimpleStats.size()-1){ // Last rule |
---|
723 | rulesetStat[1] = ((double[])m_SimpleStats.elementAt(j))[1]; |
---|
724 | rulesetStat[3] = ((double[])m_SimpleStats.elementAt(j))[3]; |
---|
725 | rulesetStat[5] = ((double[])m_SimpleStats.elementAt(j))[5]; |
---|
726 | } |
---|
727 | } |
---|
728 | |
---|
729 | // Potential |
---|
730 | for(int k=m_SimpleStats.size()-1; k>=0; k--){ |
---|
731 | |
---|
732 | double[] ruleStat = (double[])m_SimpleStats.elementAt(k); |
---|
733 | |
---|
734 | // rulesetStat updated |
---|
735 | double ifDeleted = potential(k, expFPRate, rulesetStat, |
---|
736 | ruleStat, checkErr); |
---|
737 | if(!Double.isNaN(ifDeleted)){ |
---|
738 | /*System.err.println("!!!deleted ("+k+"): save "+ifDeleted |
---|
739 | +" | "+rulesetStat[0] |
---|
740 | +" | "+rulesetStat[1] |
---|
741 | +" | "+rulesetStat[4] |
---|
742 | +" | "+rulesetStat[5]); |
---|
743 | */ |
---|
744 | |
---|
745 | if(k == (m_SimpleStats.size()-1)) |
---|
746 | removeLast(); |
---|
747 | else{ |
---|
748 | m_Ruleset.removeElementAt(k); |
---|
749 | needUpdate = true; |
---|
750 | } |
---|
751 | } |
---|
752 | } |
---|
753 | |
---|
754 | if(needUpdate){ |
---|
755 | m_Filtered = null; |
---|
756 | m_SimpleStats = null; |
---|
757 | countData(); |
---|
758 | } |
---|
759 | } |
---|
760 | |
---|
761 | /** |
---|
762 | * Remove the last rule in the ruleset as well as it's stats. |
---|
763 | * It might be useful when the last rule was added for testing |
---|
764 | * purpose and then the test failed |
---|
765 | */ |
---|
766 | public void removeLast(){ |
---|
767 | int last = m_Ruleset.size()-1; |
---|
768 | m_Ruleset.removeElementAt(last); |
---|
769 | m_Filtered.removeElementAt(last); |
---|
770 | m_SimpleStats.removeElementAt(last); |
---|
771 | if(m_Distributions != null) |
---|
772 | m_Distributions.removeElementAt(last); |
---|
773 | } |
---|
774 | |
---|
775 | /** |
---|
776 | * Static utility function to count the data covered by the |
---|
777 | * rules after the given index in the given rules, and then |
---|
778 | * remove them. It returns the data not covered by the |
---|
779 | * successive rules. |
---|
780 | * |
---|
781 | * @param data the data to be processed |
---|
782 | * @param rules the ruleset |
---|
783 | * @param index the given index |
---|
784 | * @return the data after processing |
---|
785 | */ |
---|
786 | public static Instances rmCoveredBySuccessives(Instances data, FastVector rules, int index){ |
---|
787 | Instances rt = new Instances(data, 0); |
---|
788 | |
---|
789 | for(int i=0; i < data.numInstances(); i++){ |
---|
790 | Instance datum = data.instance(i); |
---|
791 | boolean covered = false; |
---|
792 | |
---|
793 | for(int j=index+1; j<rules.size();j++){ |
---|
794 | Rule rule = (Rule)rules.elementAt(j); |
---|
795 | if(rule.covers(datum)){ |
---|
796 | covered = true; |
---|
797 | break; |
---|
798 | } |
---|
799 | } |
---|
800 | |
---|
801 | if(!covered) |
---|
802 | rt.add(datum); |
---|
803 | } |
---|
804 | return rt; |
---|
805 | } |
---|
806 | |
---|
807 | /** |
---|
808 | * Stratify the given data into the given number of bags based on the class |
---|
809 | * values. It differs from the <code>Instances.stratify(int fold)</code> |
---|
810 | * that before stratification it sorts the instances according to the |
---|
811 | * class order in the header file. It assumes no missing values in the class. |
---|
812 | * |
---|
813 | * @param data the given data |
---|
814 | * @param folds the given number of folds |
---|
815 | * @param rand the random object used to randomize the instances |
---|
816 | * @return the stratified instances |
---|
817 | */ |
---|
818 | public static final Instances stratify(Instances data, int folds, Random rand){ |
---|
819 | if(!data.classAttribute().isNominal()) |
---|
820 | return data; |
---|
821 | |
---|
822 | Instances result = new Instances(data, 0); |
---|
823 | Instances[] bagsByClasses = new Instances[data.numClasses()]; |
---|
824 | |
---|
825 | for(int i=0; i < bagsByClasses.length; i++) |
---|
826 | bagsByClasses[i] = new Instances(data, 0); |
---|
827 | |
---|
828 | // Sort by class |
---|
829 | for(int j=0; j < data.numInstances(); j++){ |
---|
830 | Instance datum = data.instance(j); |
---|
831 | bagsByClasses[(int)datum.classValue()].add(datum); |
---|
832 | } |
---|
833 | |
---|
834 | // Randomize each class |
---|
835 | for(int j=0; j < bagsByClasses.length; j++) |
---|
836 | bagsByClasses[j].randomize(rand); |
---|
837 | |
---|
838 | for(int k=0; k < folds; k++){ |
---|
839 | int offset = k, bag = 0; |
---|
840 | oneFold: |
---|
841 | while (true){ |
---|
842 | while(offset >= bagsByClasses[bag].numInstances()){ |
---|
843 | offset -= bagsByClasses[bag].numInstances(); |
---|
844 | if (++bag >= bagsByClasses.length)// Next bag |
---|
845 | break oneFold; |
---|
846 | } |
---|
847 | |
---|
848 | result.add(bagsByClasses[bag].instance(offset)); |
---|
849 | offset += folds; |
---|
850 | } |
---|
851 | } |
---|
852 | |
---|
853 | return result; |
---|
854 | } |
---|
855 | |
---|
856 | /** |
---|
857 | * Compute the combined DL of the ruleset in this class, i.e. theory |
---|
858 | * DL and data DL. Note this procedure computes the combined DL |
---|
859 | * according to the current status of the ruleset in this class |
---|
860 | * |
---|
861 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
862 | * @param predicted the default classification if ruleset covers null |
---|
863 | * @return the combined class |
---|
864 | */ |
---|
865 | public double combinedDL(double expFPRate, double predicted){ |
---|
866 | double rt = 0; |
---|
867 | |
---|
868 | if(getRulesetSize() > 0) { |
---|
869 | double[] stats = (double[])m_SimpleStats.lastElement(); |
---|
870 | for(int j=getRulesetSize()-2; j >= 0; j--){ |
---|
871 | stats[0] += getSimpleStats(j)[0]; |
---|
872 | stats[2] += getSimpleStats(j)[2]; |
---|
873 | stats[4] += getSimpleStats(j)[4]; |
---|
874 | } |
---|
875 | rt += dataDL(expFPRate, stats[0], stats[1], |
---|
876 | stats[4], stats[5]); // Data DL |
---|
877 | } |
---|
878 | else{ // Null coverage ruleset |
---|
879 | double fn = 0.0; |
---|
880 | for(int j=0; j < m_Data.numInstances(); j++) |
---|
881 | if((int)m_Data.instance(j).classValue() == (int)predicted) |
---|
882 | fn += m_Data.instance(j).weight(); |
---|
883 | rt += dataDL(expFPRate, 0.0, m_Data.sumOfWeights(), 0.0, fn); |
---|
884 | } |
---|
885 | |
---|
886 | for(int i=0; i<getRulesetSize(); i++) // Theory DL |
---|
887 | rt += theoryDL(i); |
---|
888 | |
---|
889 | return rt; |
---|
890 | } |
---|
891 | |
---|
892 | /** |
---|
893 | * Patition the data into 2, first of which has (numFolds-1)/numFolds of |
---|
894 | * the data and the second has 1/numFolds of the data |
---|
895 | * |
---|
896 | * |
---|
897 | * @param data the given data |
---|
898 | * @param numFolds the given number of folds |
---|
899 | * @return the patitioned instances |
---|
900 | */ |
---|
901 | public static final Instances[] partition(Instances data, int numFolds){ |
---|
902 | Instances[] rt = new Instances[2]; |
---|
903 | int splits = data.numInstances() * (numFolds - 1) / numFolds; |
---|
904 | |
---|
905 | rt[0] = new Instances(data, 0, splits); |
---|
906 | rt[1] = new Instances(data, splits, data.numInstances()-splits); |
---|
907 | |
---|
908 | return rt; |
---|
909 | } |
---|
910 | |
---|
911 | /** |
---|
912 | * Returns the revision string. |
---|
913 | * |
---|
914 | * @return the revision |
---|
915 | */ |
---|
916 | public String getRevision() { |
---|
917 | return RevisionUtils.extract("$Revision: 4608 $"); |
---|
918 | } |
---|
919 | } |
---|