[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * RuleStats.java |
---|
| 19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.rules; |
---|
| 23 | |
---|
| 24 | import weka.core.Attribute; |
---|
| 25 | import weka.core.FastVector; |
---|
| 26 | import weka.core.Instance; |
---|
| 27 | import weka.core.Instances; |
---|
| 28 | import weka.core.RevisionHandler; |
---|
| 29 | import weka.core.RevisionUtils; |
---|
| 30 | import weka.core.Utils; |
---|
| 31 | |
---|
| 32 | import java.io.Serializable; |
---|
| 33 | import java.util.Enumeration; |
---|
| 34 | import java.util.Random; |
---|
| 35 | |
---|
| 36 | /** |
---|
| 37 | * This class implements the statistics functions used in the |
---|
| 38 | * propositional rule learner, from the simpler ones like count of |
---|
| 39 | * true/false positive/negatives, filter data based on the ruleset, etc. |
---|
| 40 | * to the more sophisticated ones such as MDL calculation and rule |
---|
| 41 | * variants generation for each rule in the ruleset. <p> |
---|
| 42 | * |
---|
| 43 | * Obviously the statistics functions listed above need the specific |
---|
| 44 | * data and the specific ruleset, which are given in order to instantiate |
---|
| 45 | * an object of this class. <p> |
---|
| 46 | * |
---|
| 47 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
| 48 | * @version $Revision: 4608 $ |
---|
| 49 | */ |
---|
| 50 | public class RuleStats |
---|
| 51 | implements Serializable, RevisionHandler { |
---|
| 52 | |
---|
| 53 | /** for serialization */ |
---|
| 54 | static final long serialVersionUID = -5708153367675298624L; |
---|
| 55 | |
---|
| 56 | /** The data on which the stats calculation is based */ |
---|
| 57 | private Instances m_Data; |
---|
| 58 | |
---|
| 59 | /** The specific ruleset in question */ |
---|
| 60 | private FastVector m_Ruleset; |
---|
| 61 | |
---|
| 62 | /** The simple stats of each rule */ |
---|
| 63 | private FastVector m_SimpleStats; |
---|
| 64 | |
---|
| 65 | /** The set of instances filtered by the ruleset */ |
---|
| 66 | private FastVector m_Filtered; |
---|
| 67 | |
---|
| 68 | /** The total number of possible conditions that could |
---|
| 69 | * appear in a rule */ |
---|
| 70 | private double m_Total; |
---|
| 71 | |
---|
| 72 | /** The redundancy factor in theory description length */ |
---|
| 73 | private static double REDUNDANCY_FACTOR = 0.5; |
---|
| 74 | |
---|
| 75 | /** The theory weight in the MDL calculation */ |
---|
| 76 | private double MDL_THEORY_WEIGHT = 1.0; |
---|
| 77 | |
---|
| 78 | /** The class distributions predicted by each rule */ |
---|
| 79 | private FastVector m_Distributions; |
---|
| 80 | |
---|
| 81 | /** Default constructor */ |
---|
| 82 | public RuleStats(){ |
---|
| 83 | m_Data = null; |
---|
| 84 | m_Ruleset = null; |
---|
| 85 | m_SimpleStats = null; |
---|
| 86 | m_Filtered = null; |
---|
| 87 | m_Distributions = null; |
---|
| 88 | m_Total = -1; |
---|
| 89 | } |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | /** |
---|
| 93 | * Constructor that provides ruleset and data |
---|
| 94 | * |
---|
| 95 | * @param data the data |
---|
| 96 | * @param rules the ruleset |
---|
| 97 | */ |
---|
| 98 | public RuleStats(Instances data, FastVector rules){ |
---|
| 99 | this(); |
---|
| 100 | m_Data = data; |
---|
| 101 | m_Ruleset = rules; |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | /** |
---|
| 105 | * Frees up memory after classifier has been built. |
---|
| 106 | */ |
---|
| 107 | public void cleanUp() { |
---|
| 108 | m_Data = null; |
---|
| 109 | m_Filtered = null; |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | /** |
---|
| 113 | * Set the number of all conditions that could appear |
---|
| 114 | * in a rule in this RuleStats object, if the number set |
---|
| 115 | * is smaller than 0 (typically -1), then it calcualtes |
---|
| 116 | * based on the data store |
---|
| 117 | * |
---|
| 118 | * @param total the set number |
---|
| 119 | */ |
---|
| 120 | public void setNumAllConds(double total){ |
---|
| 121 | if(total < 0) |
---|
| 122 | m_Total = numAllConditions(m_Data); |
---|
| 123 | else |
---|
| 124 | m_Total = total; |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | /** |
---|
| 128 | * Set the data of the stats, overwriting the old one if any |
---|
| 129 | * |
---|
| 130 | * @param data the data to be set |
---|
| 131 | */ |
---|
| 132 | public void setData(Instances data){ |
---|
| 133 | m_Data = data; |
---|
| 134 | } |
---|
| 135 | |
---|
| 136 | /** |
---|
| 137 | * Get the data of the stats |
---|
| 138 | * |
---|
| 139 | * @return the data |
---|
| 140 | */ |
---|
| 141 | public Instances getData(){ |
---|
| 142 | return m_Data; |
---|
| 143 | } |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | /** |
---|
| 147 | * Set the ruleset of the stats, overwriting the old one if any |
---|
| 148 | * |
---|
| 149 | * @param rules the set of rules to be set |
---|
| 150 | */ |
---|
| 151 | public void setRuleset(FastVector rules){ |
---|
| 152 | m_Ruleset = rules; |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | /** |
---|
| 157 | * Get the ruleset of the stats |
---|
| 158 | * |
---|
| 159 | * @return the set of rules |
---|
| 160 | */ |
---|
| 161 | public FastVector getRuleset(){ |
---|
| 162 | return m_Ruleset; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /** |
---|
| 166 | * Get the size of the ruleset in the stats |
---|
| 167 | * |
---|
| 168 | * @return the size of ruleset |
---|
| 169 | */ |
---|
| 170 | public int getRulesetSize(){ |
---|
| 171 | return m_Ruleset.size(); |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | /** |
---|
| 175 | * Get the simple stats of one rule, including 6 parameters: |
---|
| 176 | * 0: coverage; 1:uncoverage; 2: true positive; 3: true negatives; |
---|
| 177 | * 4: false positives; 5: false negatives |
---|
| 178 | * |
---|
| 179 | * @param index the index of the rule |
---|
| 180 | * @return the stats |
---|
| 181 | */ |
---|
| 182 | public double[] getSimpleStats(int index){ |
---|
| 183 | if((m_SimpleStats != null) && (index < m_SimpleStats.size())) |
---|
| 184 | return (double[])m_SimpleStats.elementAt(index); |
---|
| 185 | |
---|
| 186 | return null; |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | |
---|
| 190 | /** |
---|
| 191 | * Get the data after filtering the given rule |
---|
| 192 | * |
---|
| 193 | * @param index the index of the rule |
---|
| 194 | * @return the data covered and uncovered by the rule |
---|
| 195 | */ |
---|
| 196 | public Instances[] getFiltered(int index){ |
---|
| 197 | |
---|
| 198 | if((m_Filtered != null) && (index < m_Filtered.size())) |
---|
| 199 | return (Instances[])m_Filtered.elementAt(index); |
---|
| 200 | |
---|
| 201 | return null; |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | /** |
---|
| 205 | * Get the class distribution predicted by the rule in |
---|
| 206 | * given position |
---|
| 207 | * |
---|
| 208 | * @param index the position index of the rule |
---|
| 209 | * @return the class distributions |
---|
| 210 | */ |
---|
| 211 | public double[] getDistributions(int index){ |
---|
| 212 | |
---|
| 213 | if((m_Distributions != null) && (index < m_Distributions.size())) |
---|
| 214 | return (double[])m_Distributions.elementAt(index); |
---|
| 215 | |
---|
| 216 | return null; |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /** |
---|
| 220 | * Set the weight of theory in MDL calcualtion |
---|
| 221 | * |
---|
| 222 | * @param weight the weight to be set |
---|
| 223 | */ |
---|
| 224 | public void setMDLTheoryWeight(double weight){ |
---|
| 225 | MDL_THEORY_WEIGHT = weight; |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | /** |
---|
| 229 | * Compute the number of all possible conditions that could |
---|
| 230 | * appear in a rule of a given data. For nominal attributes, |
---|
| 231 | * it's the number of values that could appear; for numeric |
---|
| 232 | * attributes, it's the number of values * 2, i.e. <= and >= |
---|
| 233 | * are counted as different possible conditions. |
---|
| 234 | * |
---|
| 235 | * @param data the given data |
---|
| 236 | * @return number of all conditions of the data |
---|
| 237 | */ |
---|
| 238 | public static double numAllConditions(Instances data){ |
---|
| 239 | double total = 0; |
---|
| 240 | Enumeration attEnum = data.enumerateAttributes(); |
---|
| 241 | while(attEnum.hasMoreElements()){ |
---|
| 242 | Attribute att= (Attribute)attEnum.nextElement(); |
---|
| 243 | if(att.isNominal()) |
---|
| 244 | total += (double)att.numValues(); |
---|
| 245 | else |
---|
| 246 | total += 2.0 * (double)data.numDistinctValues(att); |
---|
| 247 | } |
---|
| 248 | return total; |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | |
---|
| 252 | /** |
---|
| 253 | * Filter the data according to the ruleset and compute the basic |
---|
| 254 | * stats: coverage/uncoverage, true/false positive/negatives of |
---|
| 255 | * each rule |
---|
| 256 | */ |
---|
| 257 | public void countData(){ |
---|
| 258 | if((m_Filtered != null) || |
---|
| 259 | (m_Ruleset == null) || |
---|
| 260 | (m_Data == null)) |
---|
| 261 | return; |
---|
| 262 | |
---|
| 263 | int size = m_Ruleset.size(); |
---|
| 264 | m_Filtered = new FastVector(size); |
---|
| 265 | m_SimpleStats = new FastVector(size); |
---|
| 266 | m_Distributions = new FastVector(size); |
---|
| 267 | Instances data = new Instances(m_Data); |
---|
| 268 | |
---|
| 269 | for(int i=0; i < size; i++){ |
---|
| 270 | double[] stats = new double[6]; // 6 statistics parameters |
---|
| 271 | double[] classCounts = new double[m_Data.classAttribute().numValues()]; |
---|
| 272 | Instances[] filtered = computeSimpleStats(i, data, stats, classCounts); |
---|
| 273 | m_Filtered.addElement(filtered); |
---|
| 274 | m_SimpleStats.addElement(stats); |
---|
| 275 | m_Distributions.addElement(classCounts); |
---|
| 276 | data = filtered[1]; // Data not covered |
---|
| 277 | } |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | /** |
---|
| 281 | * Count data from the position index in the ruleset |
---|
| 282 | * assuming that given data are not covered by the rules |
---|
| 283 | * in position 0...(index-1), and the statistics of these |
---|
| 284 | * rules are provided.<br> |
---|
| 285 | * This procedure is typically useful when a temporary |
---|
| 286 | * object of RuleStats is constructed in order to efficiently |
---|
| 287 | * calculate the relative DL of rule in position index, |
---|
| 288 | * thus all other stuff is not needed. |
---|
| 289 | * |
---|
| 290 | * @param index the given position |
---|
| 291 | * @param uncovered the data not covered by rules before index |
---|
| 292 | * @param prevRuleStats the provided stats of previous rules |
---|
| 293 | */ |
---|
| 294 | public void countData(int index, Instances uncovered, |
---|
| 295 | double[][] prevRuleStats){ |
---|
| 296 | if((m_Filtered != null) || |
---|
| 297 | (m_Ruleset == null)) |
---|
| 298 | return; |
---|
| 299 | |
---|
| 300 | int size = m_Ruleset.size(); |
---|
| 301 | m_Filtered = new FastVector(size); |
---|
| 302 | m_SimpleStats = new FastVector(size); |
---|
| 303 | Instances[] data = new Instances[2]; |
---|
| 304 | data[1] = uncovered; |
---|
| 305 | |
---|
| 306 | for(int i=0; i < index; i++){ |
---|
| 307 | m_SimpleStats.addElement(prevRuleStats[i]); |
---|
| 308 | if(i+1 == index) |
---|
| 309 | m_Filtered.addElement(data); |
---|
| 310 | else |
---|
| 311 | m_Filtered.addElement(new Object()); // Stuff sth. |
---|
| 312 | } |
---|
| 313 | |
---|
| 314 | for(int j=index; j < size; j++){ |
---|
| 315 | double[] stats = new double[6]; // 6 statistics parameters |
---|
| 316 | Instances[] filtered = computeSimpleStats(j, data[1], stats, null); |
---|
| 317 | m_Filtered.addElement(filtered); |
---|
| 318 | m_SimpleStats.addElement(stats); |
---|
| 319 | data = filtered; // Data not covered |
---|
| 320 | } |
---|
| 321 | } |
---|
| 322 | |
---|
| 323 | /** |
---|
| 324 | * Find all the instances in the dataset covered/not covered by |
---|
| 325 | * the rule in given index, and the correponding simple statistics |
---|
| 326 | * and predicted class distributions are stored in the given double array, |
---|
| 327 | * which can be obtained by getSimpleStats() and getDistributions().<br> |
---|
| 328 | * |
---|
| 329 | * @param index the given index, assuming correct |
---|
| 330 | * @param insts the dataset to be covered by the rule |
---|
| 331 | * @param stats the given double array to hold stats, side-effected |
---|
| 332 | * @param dist the given array to hold class distributions, side-effected |
---|
| 333 | * if null, the distribution is not necessary |
---|
| 334 | * @return the instances covered and not covered by the rule |
---|
| 335 | */ |
---|
| 336 | private Instances[] computeSimpleStats(int index, Instances insts, |
---|
| 337 | double[] stats, double[] dist){ |
---|
| 338 | Rule rule = (Rule)m_Ruleset.elementAt(index); |
---|
| 339 | |
---|
| 340 | Instances[] data = new Instances[2]; |
---|
| 341 | data[0] = new Instances(insts, insts.numInstances()); |
---|
| 342 | data[1] = new Instances(insts, insts.numInstances()); |
---|
| 343 | |
---|
| 344 | for(int i=0; i<insts.numInstances(); i++){ |
---|
| 345 | Instance datum = insts.instance(i); |
---|
| 346 | double weight = datum.weight(); |
---|
| 347 | if(rule.covers(datum)){ |
---|
| 348 | data[0].add(datum); // Covered by this rule |
---|
| 349 | stats[0] += weight; // Coverage |
---|
| 350 | if((int)datum.classValue() == (int)rule.getConsequent()) |
---|
| 351 | stats[2] += weight; // True positives |
---|
| 352 | else |
---|
| 353 | stats[4] += weight; // False positives |
---|
| 354 | if(dist != null) |
---|
| 355 | dist[(int)datum.classValue()] += weight; |
---|
| 356 | } |
---|
| 357 | else{ |
---|
| 358 | data[1].add(datum); // Not covered by this rule |
---|
| 359 | stats[1] += weight; |
---|
| 360 | if((int)datum.classValue() != (int)rule.getConsequent()) |
---|
| 361 | stats[3] += weight; // True negatives |
---|
| 362 | else |
---|
| 363 | stats[5] += weight; // False negatives |
---|
| 364 | } |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | return data; |
---|
| 368 | } |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | /** |
---|
| 372 | * Add a rule to the ruleset and update the stats |
---|
| 373 | * |
---|
| 374 | * @param lastRule the rule to be added |
---|
| 375 | */ |
---|
| 376 | public void addAndUpdate(Rule lastRule){ |
---|
| 377 | if(m_Ruleset == null) |
---|
| 378 | m_Ruleset = new FastVector(); |
---|
| 379 | m_Ruleset.addElement(lastRule); |
---|
| 380 | |
---|
| 381 | Instances data = (m_Filtered == null) ? |
---|
| 382 | m_Data : ((Instances[])m_Filtered.lastElement())[1]; |
---|
| 383 | double[] stats = new double[6]; |
---|
| 384 | double[] classCounts = new double[m_Data.classAttribute().numValues()]; |
---|
| 385 | Instances[] filtered = |
---|
| 386 | computeSimpleStats(m_Ruleset.size()-1, data, stats, classCounts); |
---|
| 387 | |
---|
| 388 | if(m_Filtered == null) |
---|
| 389 | m_Filtered = new FastVector(); |
---|
| 390 | m_Filtered.addElement(filtered); |
---|
| 391 | |
---|
| 392 | if(m_SimpleStats == null) |
---|
| 393 | m_SimpleStats = new FastVector(); |
---|
| 394 | m_SimpleStats.addElement(stats); |
---|
| 395 | |
---|
| 396 | if(m_Distributions == null) |
---|
| 397 | m_Distributions = new FastVector(); |
---|
| 398 | m_Distributions.addElement(classCounts); |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | |
---|
| 402 | /** |
---|
| 403 | * Subset description length: <br> |
---|
| 404 | * S(t,k,p) = -k*log2(p)-(n-k)log2(1-p) |
---|
| 405 | * |
---|
| 406 | * Details see Quilan: "MDL and categorical theories (Continued)",ML95 |
---|
| 407 | * |
---|
| 408 | * @param t the number of elements in a known set |
---|
| 409 | * @param k the number of elements in a subset |
---|
| 410 | * @param p the expected proportion of subset known by recipient |
---|
| 411 | * @return the subset description length |
---|
| 412 | */ |
---|
| 413 | public static double subsetDL(double t, double k, double p){ |
---|
| 414 | double rt = Utils.gr(p, 0.0) ? (- k*Utils.log2(p)) : 0.0; |
---|
| 415 | rt -= (t-k)*Utils.log2(1-p); |
---|
| 416 | return rt; |
---|
| 417 | } |
---|
| 418 | |
---|
| 419 | |
---|
| 420 | /** |
---|
| 421 | * The description length of the theory for a given rule. Computed as:<br> |
---|
| 422 | * 0.5* [||k||+ S(t, k, k/t)]<br> |
---|
| 423 | * where k is the number of antecedents of the rule; t is the total |
---|
| 424 | * possible antecedents that could appear in a rule; ||K|| is the |
---|
| 425 | * universal prior for k , log2*(k) and S(t,k,p) = -k*log2(p)-(n-k)log2(1-p) |
---|
| 426 | * is the subset encoding length.<p> |
---|
| 427 | * |
---|
| 428 | * Details see Quilan: "MDL and categorical theories (Continued)",ML95 |
---|
| 429 | * |
---|
| 430 | * @param index the index of the given rule (assuming correct) |
---|
| 431 | * @return the theory DL, weighted if weight != 1.0 |
---|
| 432 | */ |
---|
| 433 | public double theoryDL(int index){ |
---|
| 434 | |
---|
| 435 | double k = ((Rule)m_Ruleset.elementAt(index)).size(); |
---|
| 436 | |
---|
| 437 | if(k == 0) |
---|
| 438 | return 0.0; |
---|
| 439 | |
---|
| 440 | double tdl = Utils.log2(k); |
---|
| 441 | if(k > 1) // Approximation |
---|
| 442 | tdl += 2.0 * Utils.log2(tdl); // of log2 star |
---|
| 443 | tdl += subsetDL(m_Total, k, k/m_Total); |
---|
| 444 | //System.out.println("!!!theory: "+MDL_THEORY_WEIGHT * REDUNDANCY_FACTOR * tdl); |
---|
| 445 | return MDL_THEORY_WEIGHT * REDUNDANCY_FACTOR * tdl; |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | |
---|
| 449 | /** |
---|
| 450 | * The description length of data given the parameters of the data |
---|
| 451 | * based on the ruleset. <p> |
---|
| 452 | * Details see Quinlan: "MDL and categorical theories (Continued)",ML95<p> |
---|
| 453 | * |
---|
| 454 | * @param expFPOverErr expected FP/(FP+FN) |
---|
| 455 | * @param cover coverage |
---|
| 456 | * @param uncover uncoverage |
---|
| 457 | * @param fp False Positive |
---|
| 458 | * @param fn False Negative |
---|
| 459 | * @return the description length |
---|
| 460 | */ |
---|
| 461 | public static double dataDL(double expFPOverErr, double cover, |
---|
| 462 | double uncover, double fp, double fn){ |
---|
| 463 | double totalBits = Utils.log2(cover+uncover+1.0); // how many data? |
---|
| 464 | double coverBits, uncoverBits; // What's the error? |
---|
| 465 | double expErr; // Expected FP or FN |
---|
| 466 | |
---|
| 467 | if(Utils.gr(cover, uncover)){ |
---|
| 468 | expErr = expFPOverErr*(fp+fn); |
---|
| 469 | coverBits = subsetDL(cover, fp, expErr/cover); |
---|
| 470 | uncoverBits = Utils.gr(uncover, 0.0) ? |
---|
| 471 | subsetDL(uncover, fn, fn/uncover) : 0.0; |
---|
| 472 | } |
---|
| 473 | else{ |
---|
| 474 | expErr = (1.0-expFPOverErr)*(fp+fn); |
---|
| 475 | coverBits = Utils.gr(cover, 0.0) ? |
---|
| 476 | subsetDL(cover, fp, fp/cover) : 0.0; |
---|
| 477 | uncoverBits = subsetDL(uncover, fn, expErr/uncover); |
---|
| 478 | } |
---|
| 479 | |
---|
| 480 | /* |
---|
| 481 | System.err.println("!!!cover: " + cover + "|uncover" + uncover + |
---|
| 482 | "|coverBits: "+coverBits+"|uncBits: "+ uncoverBits+ |
---|
| 483 | "|FPRate: "+expFPOverErr + "|expErr: "+expErr+ |
---|
| 484 | "|fp: "+fp+"|fn: "+fn+"|total: "+totalBits); |
---|
| 485 | */ |
---|
| 486 | return (totalBits + coverBits + uncoverBits); |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | |
---|
| 490 | /** |
---|
| 491 | * Calculate the potential to decrease DL of the ruleset, |
---|
| 492 | * i.e. the possible DL that could be decreased by deleting |
---|
| 493 | * the rule whose index and simple statstics are given. |
---|
| 494 | * If there's no potentials (i.e. smOrEq 0 && error rate < 0.5), |
---|
| 495 | * it returns NaN. <p> |
---|
| 496 | * |
---|
| 497 | * The way this procedure does is copied from original RIPPER |
---|
| 498 | * implementation and is quite bizzare because it |
---|
| 499 | * does not update the following rules' stats recursively |
---|
| 500 | * any more when testing each rule, which means it assumes |
---|
| 501 | * after deletion no data covered by the following rules (or |
---|
| 502 | * regards the deleted rule as the last rule). Reasonable |
---|
| 503 | * assumption?<p> |
---|
| 504 | * |
---|
| 505 | * @param index the index of the rule in m_Ruleset to be deleted |
---|
| 506 | * @param expFPOverErr expected FP/(FP+FN) |
---|
| 507 | * @param rulesetStat the simple statistics of the ruleset, updated |
---|
| 508 | * if the rule should be deleted |
---|
| 509 | * @param ruleStat the simple statistics of the rule to be deleted |
---|
| 510 | * @param checkErr whether check if error rate >= 0.5 |
---|
| 511 | * @return the potential DL that could be decreased |
---|
| 512 | */ |
---|
| 513 | public double potential(int index, double expFPOverErr, |
---|
| 514 | double[] rulesetStat, double[] ruleStat, |
---|
| 515 | boolean checkErr){ |
---|
| 516 | //System.out.println("!!!inside potential: "); |
---|
| 517 | // Restore the stats if deleted |
---|
| 518 | double pcov = rulesetStat[0] - ruleStat[0]; |
---|
| 519 | double puncov = rulesetStat[1] + ruleStat[0]; |
---|
| 520 | double pfp = rulesetStat[4] - ruleStat[4]; |
---|
| 521 | double pfn = rulesetStat[5] + ruleStat[2]; |
---|
| 522 | |
---|
| 523 | double dataDLWith = dataDL(expFPOverErr, rulesetStat[0], |
---|
| 524 | rulesetStat[1], rulesetStat[4], |
---|
| 525 | rulesetStat[5]); |
---|
| 526 | double theoryDLWith = theoryDL(index); |
---|
| 527 | double dataDLWithout = dataDL(expFPOverErr, pcov, puncov, pfp, pfn); |
---|
| 528 | |
---|
| 529 | double potential = dataDLWith + theoryDLWith - dataDLWithout; |
---|
| 530 | double err = ruleStat[4] / ruleStat[0]; |
---|
| 531 | /*System.out.println("!!!"+dataDLWith +" | "+ |
---|
| 532 | theoryDLWith + " | " |
---|
| 533 | +dataDLWithout+"|"+ruleStat[4] + " / " + ruleStat[0]); |
---|
| 534 | */ |
---|
| 535 | boolean overErr = Utils.grOrEq(err, 0.5); |
---|
| 536 | if(!checkErr) |
---|
| 537 | overErr = false; |
---|
| 538 | |
---|
| 539 | if(Utils.grOrEq(potential, 0.0) || overErr){ |
---|
| 540 | // If deleted, update ruleset stats. Other stats do not matter |
---|
| 541 | rulesetStat[0] = pcov; |
---|
| 542 | rulesetStat[1] = puncov; |
---|
| 543 | rulesetStat[4] = pfp; |
---|
| 544 | rulesetStat[5] = pfn; |
---|
| 545 | return potential; |
---|
| 546 | } |
---|
| 547 | else |
---|
| 548 | return Double.NaN; |
---|
| 549 | } |
---|
| 550 | |
---|
| 551 | |
---|
| 552 | /** |
---|
| 553 | * Compute the minimal data description length of the ruleset |
---|
| 554 | * if the rule in the given position is deleted.<br> |
---|
| 555 | * The min_data_DL_if_deleted = data_DL_if_deleted - potential |
---|
| 556 | * |
---|
| 557 | * @param index the index of the rule in question |
---|
| 558 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
| 559 | * @param checkErr whether check if error rate >= 0.5 |
---|
| 560 | * @return the minDataDL |
---|
| 561 | */ |
---|
| 562 | public double minDataDLIfDeleted(int index, double expFPRate, |
---|
| 563 | boolean checkErr){ |
---|
| 564 | //System.out.println("!!!Enter without: "); |
---|
| 565 | double[] rulesetStat = new double[6]; // Stats of ruleset if deleted |
---|
| 566 | int more = m_Ruleset.size() - 1 - index; // How many rules after? |
---|
| 567 | FastVector indexPlus = new FastVector(more); // Their stats |
---|
| 568 | |
---|
| 569 | // 0...(index-1) are OK |
---|
| 570 | for(int j=0; j<index; j++){ |
---|
| 571 | // Covered stats are cumulative |
---|
| 572 | rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0]; |
---|
| 573 | rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2]; |
---|
| 574 | rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4]; |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | // Recount data from index+1 |
---|
| 578 | Instances data = (index == 0) ? |
---|
| 579 | m_Data : ((Instances[])m_Filtered.elementAt(index-1))[1]; |
---|
| 580 | //System.out.println("!!!without: " + data.sumOfWeights()); |
---|
| 581 | |
---|
| 582 | for(int j=(index+1); j<m_Ruleset.size(); j++){ |
---|
| 583 | double[] stats = new double[6]; |
---|
| 584 | Instances[] split = computeSimpleStats(j, data, stats, null); |
---|
| 585 | indexPlus.addElement(stats); |
---|
| 586 | rulesetStat[0] += stats[0]; |
---|
| 587 | rulesetStat[2] += stats[2]; |
---|
| 588 | rulesetStat[4] += stats[4]; |
---|
| 589 | data = split[1]; |
---|
| 590 | } |
---|
| 591 | // Uncovered stats are those of the last rule |
---|
| 592 | if(more > 0){ |
---|
| 593 | rulesetStat[1] = ((double[])indexPlus.lastElement())[1]; |
---|
| 594 | rulesetStat[3] = ((double[])indexPlus.lastElement())[3]; |
---|
| 595 | rulesetStat[5] = ((double[])indexPlus.lastElement())[5]; |
---|
| 596 | } |
---|
| 597 | else if(index > 0){ |
---|
| 598 | rulesetStat[1] = |
---|
| 599 | ((double[])m_SimpleStats.elementAt(index-1))[1]; |
---|
| 600 | rulesetStat[3] = |
---|
| 601 | ((double[])m_SimpleStats.elementAt(index-1))[3]; |
---|
| 602 | rulesetStat[5] = |
---|
| 603 | ((double[])m_SimpleStats.elementAt(index-1))[5]; |
---|
| 604 | } |
---|
| 605 | else{ // Null coverage |
---|
| 606 | rulesetStat[1] = ((double[])m_SimpleStats.elementAt(0))[0] + |
---|
| 607 | ((double[])m_SimpleStats.elementAt(0))[1]; |
---|
| 608 | rulesetStat[3] = ((double[])m_SimpleStats.elementAt(0))[3] + |
---|
| 609 | ((double[])m_SimpleStats.elementAt(0))[4]; |
---|
| 610 | rulesetStat[5] = ((double[])m_SimpleStats.elementAt(0))[2] + |
---|
| 611 | ((double[])m_SimpleStats.elementAt(0))[5]; |
---|
| 612 | } |
---|
| 613 | |
---|
| 614 | // Potential |
---|
| 615 | double potential = 0; |
---|
| 616 | for(int k=index+1; k<m_Ruleset.size(); k++){ |
---|
| 617 | double[] ruleStat = (double[])indexPlus.elementAt(k-index-1); |
---|
| 618 | double ifDeleted = potential(k, expFPRate, rulesetStat, |
---|
| 619 | ruleStat, checkErr); |
---|
| 620 | if(!Double.isNaN(ifDeleted)) |
---|
| 621 | potential += ifDeleted; |
---|
| 622 | } |
---|
| 623 | |
---|
| 624 | // Data DL of the ruleset without the rule |
---|
| 625 | // Note that ruleset stats has already been updated to reflect |
---|
| 626 | // deletion if any potential |
---|
| 627 | double dataDLWithout = dataDL(expFPRate, rulesetStat[0], |
---|
| 628 | rulesetStat[1], rulesetStat[4], |
---|
| 629 | rulesetStat[5]); |
---|
| 630 | //System.out.println("!!!without: "+dataDLWithout + " |potential: "+ |
---|
| 631 | // potential); |
---|
| 632 | // Why subtract potential again? To reflect change of theory DL?? |
---|
| 633 | return (dataDLWithout - potential); |
---|
| 634 | } |
---|
| 635 | |
---|
| 636 | |
---|
| 637 | /** |
---|
| 638 | * Compute the minimal data description length of the ruleset |
---|
| 639 | * if the rule in the given position is NOT deleted.<br> |
---|
| 640 | * The min_data_DL_if_n_deleted = data_DL_if_n_deleted - potential |
---|
| 641 | * |
---|
| 642 | * @param index the index of the rule in question |
---|
| 643 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
| 644 | * @param checkErr whether check if error rate >= 0.5 |
---|
| 645 | * @return the minDataDL |
---|
| 646 | */ |
---|
| 647 | public double minDataDLIfExists(int index, double expFPRate, |
---|
| 648 | boolean checkErr){ |
---|
| 649 | // System.out.println("!!!Enter with: "); |
---|
| 650 | double[] rulesetStat = new double[6]; // Stats of ruleset if rule exists |
---|
| 651 | for(int j=0; j<m_SimpleStats.size(); j++){ |
---|
| 652 | // Covered stats are cumulative |
---|
| 653 | rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0]; |
---|
| 654 | rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2]; |
---|
| 655 | rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4]; |
---|
| 656 | if(j == m_SimpleStats.size()-1){ // Last rule |
---|
| 657 | rulesetStat[1] = ((double[])m_SimpleStats.elementAt(j))[1]; |
---|
| 658 | rulesetStat[3] = ((double[])m_SimpleStats.elementAt(j))[3]; |
---|
| 659 | rulesetStat[5] = ((double[])m_SimpleStats.elementAt(j))[5]; |
---|
| 660 | } |
---|
| 661 | } |
---|
| 662 | |
---|
| 663 | // Potential |
---|
| 664 | double potential = 0; |
---|
| 665 | for(int k=index+1; k<m_SimpleStats.size(); k++){ |
---|
| 666 | double[] ruleStat = (double[])getSimpleStats(k); |
---|
| 667 | double ifDeleted = potential(k, expFPRate, rulesetStat, |
---|
| 668 | ruleStat, checkErr); |
---|
| 669 | if(!Double.isNaN(ifDeleted)) |
---|
| 670 | potential += ifDeleted; |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | // Data DL of the ruleset without the rule |
---|
| 674 | // Note that ruleset stats has already been updated to reflect deletion |
---|
| 675 | // if any potential |
---|
| 676 | double dataDLWith = dataDL(expFPRate, rulesetStat[0], |
---|
| 677 | rulesetStat[1], rulesetStat[4], |
---|
| 678 | rulesetStat[5]); |
---|
| 679 | //System.out.println("!!!with: "+dataDLWith + " |potential: "+ |
---|
| 680 | // potential); |
---|
| 681 | return (dataDLWith - potential); |
---|
| 682 | } |
---|
| 683 | |
---|
| 684 | |
---|
| 685 | /** |
---|
| 686 | * The description length (DL) of the ruleset relative to if the |
---|
| 687 | * rule in the given position is deleted, which is obtained by: <br> |
---|
| 688 | * MDL if the rule exists - MDL if the rule does not exist <br> |
---|
| 689 | * Note the minimal possible DL of the ruleset is calculated(i.e. some |
---|
| 690 | * other rules may also be deleted) instead of the DL of the current |
---|
| 691 | * ruleset.<p> |
---|
| 692 | * |
---|
| 693 | * @param index the given position of the rule in question |
---|
| 694 | * (assuming correct) |
---|
| 695 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
| 696 | * @param checkErr whether check if error rate >= 0.5 |
---|
| 697 | * @return the relative DL |
---|
| 698 | */ |
---|
| 699 | public double relativeDL(int index, double expFPRate, boolean checkErr){ |
---|
| 700 | |
---|
| 701 | return (minDataDLIfExists(index, expFPRate, checkErr) |
---|
| 702 | + theoryDL(index) - |
---|
| 703 | minDataDLIfDeleted(index, expFPRate, checkErr)); |
---|
| 704 | } |
---|
| 705 | |
---|
| 706 | |
---|
| 707 | /** |
---|
| 708 | * Try to reduce the DL of the ruleset by testing removing the rules |
---|
| 709 | * one by one in reverse order and update all the stats |
---|
| 710 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
| 711 | * @param checkErr whether check if error rate >= 0.5 |
---|
| 712 | */ |
---|
| 713 | public void reduceDL(double expFPRate, boolean checkErr){ |
---|
| 714 | |
---|
| 715 | boolean needUpdate = false; |
---|
| 716 | double[] rulesetStat = new double[6]; |
---|
| 717 | for(int j=0; j<m_SimpleStats.size(); j++){ |
---|
| 718 | // Covered stats are cumulative |
---|
| 719 | rulesetStat[0] += ((double[])m_SimpleStats.elementAt(j))[0]; |
---|
| 720 | rulesetStat[2] += ((double[])m_SimpleStats.elementAt(j))[2]; |
---|
| 721 | rulesetStat[4] += ((double[])m_SimpleStats.elementAt(j))[4]; |
---|
| 722 | if(j == m_SimpleStats.size()-1){ // Last rule |
---|
| 723 | rulesetStat[1] = ((double[])m_SimpleStats.elementAt(j))[1]; |
---|
| 724 | rulesetStat[3] = ((double[])m_SimpleStats.elementAt(j))[3]; |
---|
| 725 | rulesetStat[5] = ((double[])m_SimpleStats.elementAt(j))[5]; |
---|
| 726 | } |
---|
| 727 | } |
---|
| 728 | |
---|
| 729 | // Potential |
---|
| 730 | for(int k=m_SimpleStats.size()-1; k>=0; k--){ |
---|
| 731 | |
---|
| 732 | double[] ruleStat = (double[])m_SimpleStats.elementAt(k); |
---|
| 733 | |
---|
| 734 | // rulesetStat updated |
---|
| 735 | double ifDeleted = potential(k, expFPRate, rulesetStat, |
---|
| 736 | ruleStat, checkErr); |
---|
| 737 | if(!Double.isNaN(ifDeleted)){ |
---|
| 738 | /*System.err.println("!!!deleted ("+k+"): save "+ifDeleted |
---|
| 739 | +" | "+rulesetStat[0] |
---|
| 740 | +" | "+rulesetStat[1] |
---|
| 741 | +" | "+rulesetStat[4] |
---|
| 742 | +" | "+rulesetStat[5]); |
---|
| 743 | */ |
---|
| 744 | |
---|
| 745 | if(k == (m_SimpleStats.size()-1)) |
---|
| 746 | removeLast(); |
---|
| 747 | else{ |
---|
| 748 | m_Ruleset.removeElementAt(k); |
---|
| 749 | needUpdate = true; |
---|
| 750 | } |
---|
| 751 | } |
---|
| 752 | } |
---|
| 753 | |
---|
| 754 | if(needUpdate){ |
---|
| 755 | m_Filtered = null; |
---|
| 756 | m_SimpleStats = null; |
---|
| 757 | countData(); |
---|
| 758 | } |
---|
| 759 | } |
---|
| 760 | |
---|
| 761 | /** |
---|
| 762 | * Remove the last rule in the ruleset as well as it's stats. |
---|
| 763 | * It might be useful when the last rule was added for testing |
---|
| 764 | * purpose and then the test failed |
---|
| 765 | */ |
---|
| 766 | public void removeLast(){ |
---|
| 767 | int last = m_Ruleset.size()-1; |
---|
| 768 | m_Ruleset.removeElementAt(last); |
---|
| 769 | m_Filtered.removeElementAt(last); |
---|
| 770 | m_SimpleStats.removeElementAt(last); |
---|
| 771 | if(m_Distributions != null) |
---|
| 772 | m_Distributions.removeElementAt(last); |
---|
| 773 | } |
---|
| 774 | |
---|
| 775 | /** |
---|
| 776 | * Static utility function to count the data covered by the |
---|
| 777 | * rules after the given index in the given rules, and then |
---|
| 778 | * remove them. It returns the data not covered by the |
---|
| 779 | * successive rules. |
---|
| 780 | * |
---|
| 781 | * @param data the data to be processed |
---|
| 782 | * @param rules the ruleset |
---|
| 783 | * @param index the given index |
---|
| 784 | * @return the data after processing |
---|
| 785 | */ |
---|
| 786 | public static Instances rmCoveredBySuccessives(Instances data, FastVector rules, int index){ |
---|
| 787 | Instances rt = new Instances(data, 0); |
---|
| 788 | |
---|
| 789 | for(int i=0; i < data.numInstances(); i++){ |
---|
| 790 | Instance datum = data.instance(i); |
---|
| 791 | boolean covered = false; |
---|
| 792 | |
---|
| 793 | for(int j=index+1; j<rules.size();j++){ |
---|
| 794 | Rule rule = (Rule)rules.elementAt(j); |
---|
| 795 | if(rule.covers(datum)){ |
---|
| 796 | covered = true; |
---|
| 797 | break; |
---|
| 798 | } |
---|
| 799 | } |
---|
| 800 | |
---|
| 801 | if(!covered) |
---|
| 802 | rt.add(datum); |
---|
| 803 | } |
---|
| 804 | return rt; |
---|
| 805 | } |
---|
| 806 | |
---|
| 807 | /** |
---|
| 808 | * Stratify the given data into the given number of bags based on the class |
---|
| 809 | * values. It differs from the <code>Instances.stratify(int fold)</code> |
---|
| 810 | * that before stratification it sorts the instances according to the |
---|
| 811 | * class order in the header file. It assumes no missing values in the class. |
---|
| 812 | * |
---|
| 813 | * @param data the given data |
---|
| 814 | * @param folds the given number of folds |
---|
| 815 | * @param rand the random object used to randomize the instances |
---|
| 816 | * @return the stratified instances |
---|
| 817 | */ |
---|
| 818 | public static final Instances stratify(Instances data, int folds, Random rand){ |
---|
| 819 | if(!data.classAttribute().isNominal()) |
---|
| 820 | return data; |
---|
| 821 | |
---|
| 822 | Instances result = new Instances(data, 0); |
---|
| 823 | Instances[] bagsByClasses = new Instances[data.numClasses()]; |
---|
| 824 | |
---|
| 825 | for(int i=0; i < bagsByClasses.length; i++) |
---|
| 826 | bagsByClasses[i] = new Instances(data, 0); |
---|
| 827 | |
---|
| 828 | // Sort by class |
---|
| 829 | for(int j=0; j < data.numInstances(); j++){ |
---|
| 830 | Instance datum = data.instance(j); |
---|
| 831 | bagsByClasses[(int)datum.classValue()].add(datum); |
---|
| 832 | } |
---|
| 833 | |
---|
| 834 | // Randomize each class |
---|
| 835 | for(int j=0; j < bagsByClasses.length; j++) |
---|
| 836 | bagsByClasses[j].randomize(rand); |
---|
| 837 | |
---|
| 838 | for(int k=0; k < folds; k++){ |
---|
| 839 | int offset = k, bag = 0; |
---|
| 840 | oneFold: |
---|
| 841 | while (true){ |
---|
| 842 | while(offset >= bagsByClasses[bag].numInstances()){ |
---|
| 843 | offset -= bagsByClasses[bag].numInstances(); |
---|
| 844 | if (++bag >= bagsByClasses.length)// Next bag |
---|
| 845 | break oneFold; |
---|
| 846 | } |
---|
| 847 | |
---|
| 848 | result.add(bagsByClasses[bag].instance(offset)); |
---|
| 849 | offset += folds; |
---|
| 850 | } |
---|
| 851 | } |
---|
| 852 | |
---|
| 853 | return result; |
---|
| 854 | } |
---|
| 855 | |
---|
| 856 | /** |
---|
| 857 | * Compute the combined DL of the ruleset in this class, i.e. theory |
---|
| 858 | * DL and data DL. Note this procedure computes the combined DL |
---|
| 859 | * according to the current status of the ruleset in this class |
---|
| 860 | * |
---|
| 861 | * @param expFPRate expected FP/(FP+FN), used in dataDL calculation |
---|
| 862 | * @param predicted the default classification if ruleset covers null |
---|
| 863 | * @return the combined class |
---|
| 864 | */ |
---|
| 865 | public double combinedDL(double expFPRate, double predicted){ |
---|
| 866 | double rt = 0; |
---|
| 867 | |
---|
| 868 | if(getRulesetSize() > 0) { |
---|
| 869 | double[] stats = (double[])m_SimpleStats.lastElement(); |
---|
| 870 | for(int j=getRulesetSize()-2; j >= 0; j--){ |
---|
| 871 | stats[0] += getSimpleStats(j)[0]; |
---|
| 872 | stats[2] += getSimpleStats(j)[2]; |
---|
| 873 | stats[4] += getSimpleStats(j)[4]; |
---|
| 874 | } |
---|
| 875 | rt += dataDL(expFPRate, stats[0], stats[1], |
---|
| 876 | stats[4], stats[5]); // Data DL |
---|
| 877 | } |
---|
| 878 | else{ // Null coverage ruleset |
---|
| 879 | double fn = 0.0; |
---|
| 880 | for(int j=0; j < m_Data.numInstances(); j++) |
---|
| 881 | if((int)m_Data.instance(j).classValue() == (int)predicted) |
---|
| 882 | fn += m_Data.instance(j).weight(); |
---|
| 883 | rt += dataDL(expFPRate, 0.0, m_Data.sumOfWeights(), 0.0, fn); |
---|
| 884 | } |
---|
| 885 | |
---|
| 886 | for(int i=0; i<getRulesetSize(); i++) // Theory DL |
---|
| 887 | rt += theoryDL(i); |
---|
| 888 | |
---|
| 889 | return rt; |
---|
| 890 | } |
---|
| 891 | |
---|
| 892 | /** |
---|
| 893 | * Patition the data into 2, first of which has (numFolds-1)/numFolds of |
---|
| 894 | * the data and the second has 1/numFolds of the data |
---|
| 895 | * |
---|
| 896 | * |
---|
| 897 | * @param data the given data |
---|
| 898 | * @param numFolds the given number of folds |
---|
| 899 | * @return the patitioned instances |
---|
| 900 | */ |
---|
| 901 | public static final Instances[] partition(Instances data, int numFolds){ |
---|
| 902 | Instances[] rt = new Instances[2]; |
---|
| 903 | int splits = data.numInstances() * (numFolds - 1) / numFolds; |
---|
| 904 | |
---|
| 905 | rt[0] = new Instances(data, 0, splits); |
---|
| 906 | rt[1] = new Instances(data, splits, data.numInstances()-splits); |
---|
| 907 | |
---|
| 908 | return rt; |
---|
| 909 | } |
---|
| 910 | |
---|
| 911 | /** |
---|
| 912 | * Returns the revision string. |
---|
| 913 | * |
---|
| 914 | * @return the revision |
---|
| 915 | */ |
---|
| 916 | public String getRevision() { |
---|
| 917 | return RevisionUtils.extract("$Revision: 4608 $"); |
---|
| 918 | } |
---|
| 919 | } |
---|