[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * PART.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.rules; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.rules.part.MakeDecList; |
---|
| 28 | import weka.classifiers.trees.j48.BinC45ModelSelection; |
---|
| 29 | import weka.classifiers.trees.j48.C45ModelSelection; |
---|
| 30 | import weka.classifiers.trees.j48.ModelSelection; |
---|
| 31 | import weka.core.AdditionalMeasureProducer; |
---|
| 32 | import weka.core.Capabilities; |
---|
| 33 | import weka.core.Instance; |
---|
| 34 | import weka.core.Instances; |
---|
| 35 | import weka.core.Option; |
---|
| 36 | import weka.core.OptionHandler; |
---|
| 37 | import weka.core.RevisionUtils; |
---|
| 38 | import weka.core.Summarizable; |
---|
| 39 | import weka.core.TechnicalInformation; |
---|
| 40 | import weka.core.TechnicalInformationHandler; |
---|
| 41 | import weka.core.Utils; |
---|
| 42 | import weka.core.WeightedInstancesHandler; |
---|
| 43 | import weka.core.TechnicalInformation.Field; |
---|
| 44 | import weka.core.TechnicalInformation.Type; |
---|
| 45 | |
---|
| 46 | import java.util.Enumeration; |
---|
| 47 | import java.util.Vector; |
---|
| 48 | |
---|
| 49 | /** |
---|
| 50 | <!-- globalinfo-start --> |
---|
| 51 | * Class for generating a PART decision list. Uses separate-and-conquer. Builds a partial C4.5 decision tree in each iteration and makes the "best" leaf into a rule.<br/> |
---|
| 52 | * <br/> |
---|
| 53 | * For more information, see:<br/> |
---|
| 54 | * <br/> |
---|
| 55 | * Eibe Frank, Ian H. Witten: Generating Accurate Rule Sets Without Global Optimization. In: Fifteenth International Conference on Machine Learning, 144-151, 1998. |
---|
| 56 | * <p/> |
---|
| 57 | <!-- globalinfo-end --> |
---|
| 58 | * |
---|
| 59 | <!-- technical-bibtex-start --> |
---|
| 60 | * BibTeX: |
---|
| 61 | * <pre> |
---|
| 62 | * @inproceedings{Frank1998, |
---|
| 63 | * author = {Eibe Frank and Ian H. Witten}, |
---|
| 64 | * booktitle = {Fifteenth International Conference on Machine Learning}, |
---|
| 65 | * editor = {J. Shavlik}, |
---|
| 66 | * pages = {144-151}, |
---|
| 67 | * publisher = {Morgan Kaufmann}, |
---|
| 68 | * title = {Generating Accurate Rule Sets Without Global Optimization}, |
---|
| 69 | * year = {1998}, |
---|
| 70 | * PS = {http://www.cs.waikato.ac.nz/\~eibe/pubs/ML98-57.ps.gz} |
---|
| 71 | * } |
---|
| 72 | * </pre> |
---|
| 73 | * <p/> |
---|
| 74 | <!-- technical-bibtex-end --> |
---|
| 75 | * |
---|
| 76 | <!-- options-start --> |
---|
| 77 | * Valid options are: <p/> |
---|
| 78 | * |
---|
| 79 | * <pre> -C <pruning confidence> |
---|
| 80 | * Set confidence threshold for pruning. |
---|
| 81 | * (default 0.25)</pre> |
---|
| 82 | * |
---|
| 83 | * <pre> -M <minimum number of objects> |
---|
| 84 | * Set minimum number of objects per leaf. |
---|
| 85 | * (default 2)</pre> |
---|
| 86 | * |
---|
| 87 | * <pre> -R |
---|
| 88 | * Use reduced error pruning.</pre> |
---|
| 89 | * |
---|
| 90 | * <pre> -N <number of folds> |
---|
| 91 | * Set number of folds for reduced error |
---|
| 92 | * pruning. One fold is used as pruning set. |
---|
| 93 | * (default 3)</pre> |
---|
| 94 | * |
---|
| 95 | * <pre> -B |
---|
| 96 | * Use binary splits only.</pre> |
---|
| 97 | * |
---|
| 98 | * <pre> -U |
---|
| 99 | * Generate unpruned decision list.</pre> |
---|
| 100 | * |
---|
| 101 | * <pre> -J |
---|
| 102 | * Do not use MDL correction for info gain on numeric attributes.</pre> |
---|
| 103 | * |
---|
| 104 | * <pre> -Q <seed> |
---|
| 105 | * Seed for random data shuffling (default 1).</pre> |
---|
| 106 | * |
---|
| 107 | <!-- options-end --> |
---|
| 108 | * |
---|
| 109 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 110 | * @version $Revision: 6089 $ |
---|
| 111 | */ |
---|
| 112 | public class PART |
---|
| 113 | extends AbstractClassifier |
---|
| 114 | implements OptionHandler, WeightedInstancesHandler, Summarizable, |
---|
| 115 | AdditionalMeasureProducer, TechnicalInformationHandler { |
---|
| 116 | |
---|
| 117 | /** for serialization */ |
---|
| 118 | static final long serialVersionUID = 8121455039782598361L; |
---|
| 119 | |
---|
| 120 | /** The decision list */ |
---|
| 121 | private MakeDecList m_root; |
---|
| 122 | |
---|
| 123 | /** Confidence level */ |
---|
| 124 | private float m_CF = 0.25f; |
---|
| 125 | |
---|
| 126 | /** Minimum number of objects */ |
---|
| 127 | private int m_minNumObj = 2; |
---|
| 128 | |
---|
| 129 | /** Use MDL correction? */ |
---|
| 130 | private boolean m_useMDLcorrection = true; |
---|
| 131 | |
---|
| 132 | /** Use reduced error pruning? */ |
---|
| 133 | private boolean m_reducedErrorPruning = false; |
---|
| 134 | |
---|
| 135 | /** Number of folds for reduced error pruning. */ |
---|
| 136 | private int m_numFolds = 3; |
---|
| 137 | |
---|
| 138 | /** Binary splits on nominal attributes? */ |
---|
| 139 | private boolean m_binarySplits = false; |
---|
| 140 | |
---|
| 141 | /** Generate unpruned list? */ |
---|
| 142 | private boolean m_unpruned = false; |
---|
| 143 | |
---|
| 144 | /** The seed for random number generation. */ |
---|
| 145 | private int m_Seed = 1; |
---|
| 146 | |
---|
| 147 | /** |
---|
| 148 | * Returns a string describing classifier |
---|
| 149 | * @return a description suitable for |
---|
| 150 | * displaying in the explorer/experimenter gui |
---|
| 151 | */ |
---|
| 152 | public String globalInfo() { |
---|
| 153 | |
---|
| 154 | return "Class for generating a PART decision list. Uses " |
---|
| 155 | + "separate-and-conquer. Builds a partial C4.5 decision tree " |
---|
| 156 | + "in each iteration and makes the \"best\" leaf into a rule.\n\n" |
---|
| 157 | + "For more information, see:\n\n" |
---|
| 158 | + getTechnicalInformation().toString(); |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | /** |
---|
| 162 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 163 | * detailed information about the technical background of this class, |
---|
| 164 | * e.g., paper reference or book this class is based on. |
---|
| 165 | * |
---|
| 166 | * @return the technical information about this class |
---|
| 167 | */ |
---|
| 168 | public TechnicalInformation getTechnicalInformation() { |
---|
| 169 | TechnicalInformation result; |
---|
| 170 | |
---|
| 171 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 172 | result.setValue(Field.AUTHOR, "Eibe Frank and Ian H. Witten"); |
---|
| 173 | result.setValue(Field.TITLE, "Generating Accurate Rule Sets Without Global Optimization"); |
---|
| 174 | result.setValue(Field.BOOKTITLE, "Fifteenth International Conference on Machine Learning"); |
---|
| 175 | result.setValue(Field.EDITOR, "J. Shavlik"); |
---|
| 176 | result.setValue(Field.YEAR, "1998"); |
---|
| 177 | result.setValue(Field.PAGES, "144-151"); |
---|
| 178 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
| 179 | result.setValue(Field.PS, "http://www.cs.waikato.ac.nz/~eibe/pubs/ML98-57.ps.gz"); |
---|
| 180 | |
---|
| 181 | return result; |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | /** |
---|
| 185 | * Returns default capabilities of the classifier. |
---|
| 186 | * |
---|
| 187 | * @return the capabilities of this classifier |
---|
| 188 | */ |
---|
| 189 | public Capabilities getCapabilities() { |
---|
| 190 | Capabilities result; |
---|
| 191 | |
---|
| 192 | if (m_unpruned) |
---|
| 193 | result = new MakeDecList(null, m_minNumObj).getCapabilities(); |
---|
| 194 | else if (m_reducedErrorPruning) |
---|
| 195 | result = new MakeDecList(null, m_numFolds, m_minNumObj, m_Seed).getCapabilities(); |
---|
| 196 | else |
---|
| 197 | result = new MakeDecList(null, m_CF, m_minNumObj).getCapabilities(); |
---|
| 198 | |
---|
| 199 | return result; |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | /** |
---|
| 203 | * Generates the classifier. |
---|
| 204 | * |
---|
| 205 | * @param instances the data to train with |
---|
| 206 | * @throws Exception if classifier can't be built successfully |
---|
| 207 | */ |
---|
| 208 | public void buildClassifier(Instances instances) |
---|
| 209 | throws Exception { |
---|
| 210 | |
---|
| 211 | // can classifier handle the data? |
---|
| 212 | getCapabilities().testWithFail(instances); |
---|
| 213 | |
---|
| 214 | // remove instances with missing class |
---|
| 215 | instances = new Instances(instances); |
---|
| 216 | instances.deleteWithMissingClass(); |
---|
| 217 | |
---|
| 218 | ModelSelection modSelection; |
---|
| 219 | |
---|
| 220 | if (m_binarySplits) |
---|
| 221 | modSelection = new BinC45ModelSelection(m_minNumObj, instances, m_useMDLcorrection); |
---|
| 222 | else |
---|
| 223 | modSelection = new C45ModelSelection(m_minNumObj, instances, m_useMDLcorrection); |
---|
| 224 | if (m_unpruned) |
---|
| 225 | m_root = new MakeDecList(modSelection, m_minNumObj); |
---|
| 226 | else if (m_reducedErrorPruning) |
---|
| 227 | m_root = new MakeDecList(modSelection, m_numFolds, m_minNumObj, m_Seed); |
---|
| 228 | else |
---|
| 229 | m_root = new MakeDecList(modSelection, m_CF, m_minNumObj); |
---|
| 230 | m_root.buildClassifier(instances); |
---|
| 231 | if (m_binarySplits) { |
---|
| 232 | ((BinC45ModelSelection)modSelection).cleanup(); |
---|
| 233 | } else { |
---|
| 234 | ((C45ModelSelection)modSelection).cleanup(); |
---|
| 235 | } |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | /** |
---|
| 239 | * Classifies an instance. |
---|
| 240 | * |
---|
| 241 | * @param instance the instance to classify |
---|
| 242 | * @return the classification |
---|
| 243 | * @throws Exception if instance can't be classified successfully |
---|
| 244 | */ |
---|
| 245 | public double classifyInstance(Instance instance) |
---|
| 246 | throws Exception { |
---|
| 247 | |
---|
| 248 | return m_root.classifyInstance(instance); |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | /** |
---|
| 252 | * Returns class probabilities for an instance. |
---|
| 253 | * |
---|
| 254 | * @param instance the instance to get the distribution for |
---|
| 255 | * @return the class probabilities |
---|
| 256 | * @throws Exception if the distribution can't be computed successfully |
---|
| 257 | */ |
---|
| 258 | public final double [] distributionForInstance(Instance instance) |
---|
| 259 | throws Exception { |
---|
| 260 | |
---|
| 261 | return m_root.distributionForInstance(instance); |
---|
| 262 | } |
---|
| 263 | |
---|
| 264 | /** |
---|
| 265 | * Returns an enumeration describing the available options. |
---|
| 266 | * |
---|
| 267 | * Valid options are: <p> |
---|
| 268 | * |
---|
| 269 | * -C confidence <br> |
---|
| 270 | * Set confidence threshold for pruning. (Default: 0.25) <p> |
---|
| 271 | * |
---|
| 272 | * -M number <br> |
---|
| 273 | * Set minimum number of instances per leaf. (Default: 2) <p> |
---|
| 274 | * |
---|
| 275 | * -R <br> |
---|
| 276 | * Use reduced error pruning. <p> |
---|
| 277 | * |
---|
| 278 | * -N number <br> |
---|
| 279 | * Set number of folds for reduced error pruning. One fold is |
---|
| 280 | * used as the pruning set. (Default: 3) <p> |
---|
| 281 | * |
---|
| 282 | * -B <br> |
---|
| 283 | * Use binary splits for nominal attributes. <p> |
---|
| 284 | * |
---|
| 285 | * -U <br> |
---|
| 286 | * Generate unpruned decision list. <p> |
---|
| 287 | * |
---|
| 288 | * -Q <br> |
---|
| 289 | * The seed for reduced-error pruning. <p> |
---|
| 290 | * |
---|
| 291 | * @return an enumeration of all the available options. |
---|
| 292 | */ |
---|
| 293 | public Enumeration listOptions() { |
---|
| 294 | |
---|
| 295 | Vector newVector = new Vector(8); |
---|
| 296 | |
---|
| 297 | newVector. |
---|
| 298 | addElement(new Option("\tSet confidence threshold for pruning.\n" + |
---|
| 299 | "\t(default 0.25)", |
---|
| 300 | "C", 1, "-C <pruning confidence>")); |
---|
| 301 | newVector. |
---|
| 302 | addElement(new Option("\tSet minimum number of objects per leaf.\n" + |
---|
| 303 | "\t(default 2)", |
---|
| 304 | "M", 1, "-M <minimum number of objects>")); |
---|
| 305 | newVector. |
---|
| 306 | addElement(new Option("\tUse reduced error pruning.", |
---|
| 307 | "R", 0, "-R")); |
---|
| 308 | newVector. |
---|
| 309 | addElement(new Option("\tSet number of folds for reduced error\n" + |
---|
| 310 | "\tpruning. One fold is used as pruning set.\n" + |
---|
| 311 | "\t(default 3)", |
---|
| 312 | "N", 1, "-N <number of folds>")); |
---|
| 313 | newVector. |
---|
| 314 | addElement(new Option("\tUse binary splits only.", |
---|
| 315 | "B", 0, "-B")); |
---|
| 316 | newVector. |
---|
| 317 | addElement(new Option("\tGenerate unpruned decision list.", |
---|
| 318 | "U", 0, "-U")); |
---|
| 319 | newVector. |
---|
| 320 | addElement(new Option("\tDo not use MDL correction for info gain on numeric attributes.", |
---|
| 321 | "J", 0, "-J")); |
---|
| 322 | newVector. |
---|
| 323 | addElement(new Option("\tSeed for random data shuffling (default 1).", |
---|
| 324 | "Q", 1, "-Q <seed>")); |
---|
| 325 | |
---|
| 326 | return newVector.elements(); |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | /** |
---|
| 330 | * Parses a given list of options. <p/> |
---|
| 331 | * |
---|
| 332 | <!-- options-start --> |
---|
| 333 | * Valid options are: <p/> |
---|
| 334 | * |
---|
| 335 | * <pre> -C <pruning confidence> |
---|
| 336 | * Set confidence threshold for pruning. |
---|
| 337 | * (default 0.25)</pre> |
---|
| 338 | * |
---|
| 339 | * <pre> -M <minimum number of objects> |
---|
| 340 | * Set minimum number of objects per leaf. |
---|
| 341 | * (default 2)</pre> |
---|
| 342 | * |
---|
| 343 | * <pre> -R |
---|
| 344 | * Use reduced error pruning.</pre> |
---|
| 345 | * |
---|
| 346 | * <pre> -N <number of folds> |
---|
| 347 | * Set number of folds for reduced error |
---|
| 348 | * pruning. One fold is used as pruning set. |
---|
| 349 | * (default 3)</pre> |
---|
| 350 | * |
---|
| 351 | * <pre> -B |
---|
| 352 | * Use binary splits only.</pre> |
---|
| 353 | * |
---|
| 354 | * <pre> -U |
---|
| 355 | * Generate unpruned decision list.</pre> |
---|
| 356 | * |
---|
| 357 | * <pre> -J |
---|
| 358 | * Do not use MDL correction for info gain on numeric attributes.</pre> |
---|
| 359 | * |
---|
| 360 | * <pre> -Q <seed> |
---|
| 361 | * Seed for random data shuffling (default 1).</pre> |
---|
| 362 | * |
---|
| 363 | <!-- options-end --> |
---|
| 364 | * |
---|
| 365 | * @param options the list of options as an array of strings |
---|
| 366 | * @throws Exception if an option is not supported |
---|
| 367 | */ |
---|
| 368 | public void setOptions(String[] options) throws Exception { |
---|
| 369 | |
---|
| 370 | // Pruning options |
---|
| 371 | m_unpruned = Utils.getFlag('U', options); |
---|
| 372 | m_reducedErrorPruning = Utils.getFlag('R', options); |
---|
| 373 | m_binarySplits = Utils.getFlag('B', options); |
---|
| 374 | m_useMDLcorrection = !Utils.getFlag('J', options); |
---|
| 375 | String confidenceString = Utils.getOption('C', options); |
---|
| 376 | if (confidenceString.length() != 0) { |
---|
| 377 | if (m_reducedErrorPruning) { |
---|
| 378 | throw new Exception("Setting CF doesn't make sense " + |
---|
| 379 | "for reduced error pruning."); |
---|
| 380 | } else { |
---|
| 381 | m_CF = (new Float(confidenceString)).floatValue(); |
---|
| 382 | if ((m_CF <= 0) || (m_CF >= 1)) { |
---|
| 383 | throw new Exception("CF has to be greater than zero and smaller than one!"); |
---|
| 384 | } |
---|
| 385 | } |
---|
| 386 | } else { |
---|
| 387 | m_CF = 0.25f; |
---|
| 388 | } |
---|
| 389 | String numFoldsString = Utils.getOption('N', options); |
---|
| 390 | if (numFoldsString.length() != 0) { |
---|
| 391 | if (!m_reducedErrorPruning) { |
---|
| 392 | throw new Exception("Setting the number of folds" + |
---|
| 393 | " does only make sense for" + |
---|
| 394 | " reduced error pruning."); |
---|
| 395 | } else { |
---|
| 396 | m_numFolds = Integer.parseInt(numFoldsString); |
---|
| 397 | } |
---|
| 398 | } else { |
---|
| 399 | m_numFolds = 3; |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | // Other options |
---|
| 403 | String minNumString = Utils.getOption('M', options); |
---|
| 404 | if (minNumString.length() != 0) { |
---|
| 405 | m_minNumObj = Integer.parseInt(minNumString); |
---|
| 406 | } else { |
---|
| 407 | m_minNumObj = 2; |
---|
| 408 | } |
---|
| 409 | String seedString = Utils.getOption('Q', options); |
---|
| 410 | if (seedString.length() != 0) { |
---|
| 411 | m_Seed = Integer.parseInt(seedString); |
---|
| 412 | } else { |
---|
| 413 | m_Seed = 1; |
---|
| 414 | } |
---|
| 415 | } |
---|
| 416 | |
---|
| 417 | /** |
---|
| 418 | * Gets the current settings of the Classifier. |
---|
| 419 | * |
---|
| 420 | * @return an array of strings suitable for passing to setOptions |
---|
| 421 | */ |
---|
| 422 | public String [] getOptions() { |
---|
| 423 | |
---|
| 424 | String [] options = new String [12]; |
---|
| 425 | int current = 0; |
---|
| 426 | |
---|
| 427 | if (m_unpruned) { |
---|
| 428 | options[current++] = "-U"; |
---|
| 429 | } |
---|
| 430 | if (m_reducedErrorPruning) { |
---|
| 431 | options[current++] = "-R"; |
---|
| 432 | } |
---|
| 433 | if (m_binarySplits) { |
---|
| 434 | options[current++] = "-B"; |
---|
| 435 | } |
---|
| 436 | options[current++] = "-M"; options[current++] = "" + m_minNumObj; |
---|
| 437 | if (!m_reducedErrorPruning) { |
---|
| 438 | options[current++] = "-C"; options[current++] = "" + m_CF; |
---|
| 439 | } |
---|
| 440 | if (m_reducedErrorPruning) { |
---|
| 441 | options[current++] = "-N"; options[current++] = "" + m_numFolds; |
---|
| 442 | } |
---|
| 443 | options[current++] = "-Q"; options[current++] = "" + m_Seed; |
---|
| 444 | if (!m_useMDLcorrection) { |
---|
| 445 | options[current++] = "-J"; |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | while (current < options.length) { |
---|
| 449 | options[current++] = ""; |
---|
| 450 | } |
---|
| 451 | return options; |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | /** |
---|
| 455 | * Returns a description of the classifier |
---|
| 456 | * |
---|
| 457 | * @return a string representation of the classifier |
---|
| 458 | */ |
---|
| 459 | public String toString() { |
---|
| 460 | |
---|
| 461 | if (m_root == null) { |
---|
| 462 | return "No classifier built"; |
---|
| 463 | } |
---|
| 464 | return "PART decision list\n------------------\n\n" + m_root.toString(); |
---|
| 465 | } |
---|
| 466 | |
---|
| 467 | /** |
---|
| 468 | * Returns a superconcise version of the model |
---|
| 469 | * |
---|
| 470 | * @return a concise version of the model |
---|
| 471 | */ |
---|
| 472 | public String toSummaryString() { |
---|
| 473 | |
---|
| 474 | return "Number of rules: " + m_root.numRules() + "\n"; |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | /** |
---|
| 478 | * Return the number of rules. |
---|
| 479 | * @return the number of rules |
---|
| 480 | */ |
---|
| 481 | public double measureNumRules() { |
---|
| 482 | return m_root.numRules(); |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | /** |
---|
| 486 | * Returns an enumeration of the additional measure names |
---|
| 487 | * @return an enumeration of the measure names |
---|
| 488 | */ |
---|
| 489 | public Enumeration enumerateMeasures() { |
---|
| 490 | Vector newVector = new Vector(1); |
---|
| 491 | newVector.addElement("measureNumRules"); |
---|
| 492 | return newVector.elements(); |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | /** |
---|
| 496 | * Returns the value of the named measure |
---|
| 497 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 498 | * @return the value of the named measure |
---|
| 499 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 500 | */ |
---|
| 501 | public double getMeasure(String additionalMeasureName) { |
---|
| 502 | if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { |
---|
| 503 | return measureNumRules(); |
---|
| 504 | } else { |
---|
| 505 | throw new IllegalArgumentException(additionalMeasureName |
---|
| 506 | + " not supported (PART)"); |
---|
| 507 | } |
---|
| 508 | } |
---|
| 509 | |
---|
| 510 | /** |
---|
| 511 | * Returns the tip text for this property |
---|
| 512 | * @return tip text for this property suitable for |
---|
| 513 | * displaying in the explorer/experimenter gui |
---|
| 514 | */ |
---|
| 515 | public String confidenceFactorTipText() { |
---|
| 516 | return "The confidence factor used for pruning (smaller values incur " |
---|
| 517 | + "more pruning)."; |
---|
| 518 | } |
---|
| 519 | |
---|
| 520 | /** |
---|
| 521 | * Get the value of CF. |
---|
| 522 | * |
---|
| 523 | * @return Value of CF. |
---|
| 524 | */ |
---|
| 525 | public float getConfidenceFactor() { |
---|
| 526 | |
---|
| 527 | return m_CF; |
---|
| 528 | } |
---|
| 529 | |
---|
| 530 | /** |
---|
| 531 | * Set the value of CF. |
---|
| 532 | * |
---|
| 533 | * @param v Value to assign to CF. |
---|
| 534 | */ |
---|
| 535 | public void setConfidenceFactor(float v) { |
---|
| 536 | |
---|
| 537 | m_CF = v; |
---|
| 538 | } |
---|
| 539 | |
---|
| 540 | /** |
---|
| 541 | * Returns the tip text for this property |
---|
| 542 | * @return tip text for this property suitable for |
---|
| 543 | * displaying in the explorer/experimenter gui |
---|
| 544 | */ |
---|
| 545 | public String minNumObjTipText() { |
---|
| 546 | return "The minimum number of instances per rule."; |
---|
| 547 | } |
---|
| 548 | |
---|
| 549 | /** |
---|
| 550 | * Get the value of minNumObj. |
---|
| 551 | * |
---|
| 552 | * @return Value of minNumObj. |
---|
| 553 | */ |
---|
| 554 | public int getMinNumObj() { |
---|
| 555 | |
---|
| 556 | return m_minNumObj; |
---|
| 557 | } |
---|
| 558 | |
---|
| 559 | /** |
---|
| 560 | * Set the value of minNumObj. |
---|
| 561 | * |
---|
| 562 | * @param v Value to assign to minNumObj. |
---|
| 563 | */ |
---|
| 564 | public void setMinNumObj(int v) { |
---|
| 565 | |
---|
| 566 | m_minNumObj = v; |
---|
| 567 | } |
---|
| 568 | |
---|
| 569 | /** |
---|
| 570 | * Returns the tip text for this property |
---|
| 571 | * @return tip text for this property suitable for |
---|
| 572 | * displaying in the explorer/experimenter gui |
---|
| 573 | */ |
---|
| 574 | public String reducedErrorPruningTipText() { |
---|
| 575 | return "Whether reduced-error pruning is used instead of C.4.5 pruning."; |
---|
| 576 | } |
---|
| 577 | |
---|
| 578 | /** |
---|
| 579 | * Get the value of reducedErrorPruning. |
---|
| 580 | * |
---|
| 581 | * @return Value of reducedErrorPruning. |
---|
| 582 | */ |
---|
| 583 | public boolean getReducedErrorPruning() { |
---|
| 584 | |
---|
| 585 | return m_reducedErrorPruning; |
---|
| 586 | } |
---|
| 587 | |
---|
| 588 | /** |
---|
| 589 | * Set the value of reducedErrorPruning. |
---|
| 590 | * |
---|
| 591 | * @param v Value to assign to reducedErrorPruning. |
---|
| 592 | */ |
---|
| 593 | public void setReducedErrorPruning(boolean v) { |
---|
| 594 | |
---|
| 595 | m_reducedErrorPruning = v; |
---|
| 596 | } |
---|
| 597 | |
---|
| 598 | /** |
---|
| 599 | * Returns the tip text for this property |
---|
| 600 | * @return tip text for this property suitable for |
---|
| 601 | * displaying in the explorer/experimenter gui |
---|
| 602 | */ |
---|
| 603 | public String unprunedTipText() { |
---|
| 604 | return "Whether pruning is performed."; |
---|
| 605 | } |
---|
| 606 | |
---|
| 607 | /** |
---|
| 608 | * Get the value of unpruned. |
---|
| 609 | * |
---|
| 610 | * @return Value of unpruned. |
---|
| 611 | */ |
---|
| 612 | public boolean getUnpruned() { |
---|
| 613 | |
---|
| 614 | return m_unpruned; |
---|
| 615 | } |
---|
| 616 | |
---|
| 617 | /** |
---|
| 618 | * Set the value of unpruned. |
---|
| 619 | * |
---|
| 620 | * @param newunpruned Value to assign to unpruned. |
---|
| 621 | */ |
---|
| 622 | public void setUnpruned(boolean newunpruned) { |
---|
| 623 | |
---|
| 624 | m_unpruned = newunpruned; |
---|
| 625 | } |
---|
| 626 | |
---|
| 627 | /** |
---|
| 628 | * Returns the tip text for this property |
---|
| 629 | * @return tip text for this property suitable for |
---|
| 630 | * displaying in the explorer/experimenter gui |
---|
| 631 | */ |
---|
| 632 | public String useMDLcorrectionTipText() { |
---|
| 633 | return "Whether MDL correction is used when finding splits on numeric attributes."; |
---|
| 634 | } |
---|
| 635 | |
---|
| 636 | /** |
---|
| 637 | * Get the value of useMDLcorrection. |
---|
| 638 | * |
---|
| 639 | * @return Value of useMDLcorrection. |
---|
| 640 | */ |
---|
| 641 | public boolean getUseMDLcorrection() { |
---|
| 642 | |
---|
| 643 | return m_useMDLcorrection; |
---|
| 644 | } |
---|
| 645 | |
---|
| 646 | /** |
---|
| 647 | * Set the value of useMDLcorrection. |
---|
| 648 | * |
---|
| 649 | * @param newuseMDLcorrection Value to assign to useMDLcorrection. |
---|
| 650 | */ |
---|
| 651 | public void setUseMDLcorrection(boolean newuseMDLcorrection) { |
---|
| 652 | |
---|
| 653 | m_useMDLcorrection = newuseMDLcorrection; |
---|
| 654 | } |
---|
| 655 | |
---|
| 656 | /** |
---|
| 657 | * Returns the tip text for this property |
---|
| 658 | * @return tip text for this property suitable for |
---|
| 659 | * displaying in the explorer/experimenter gui |
---|
| 660 | */ |
---|
| 661 | public String numFoldsTipText() { |
---|
| 662 | return "Determines the amount of data used for reduced-error pruning. " |
---|
| 663 | + " One fold is used for pruning, the rest for growing the rules."; |
---|
| 664 | } |
---|
| 665 | |
---|
| 666 | /** |
---|
| 667 | * Get the value of numFolds. |
---|
| 668 | * |
---|
| 669 | * @return Value of numFolds. |
---|
| 670 | */ |
---|
| 671 | public int getNumFolds() { |
---|
| 672 | |
---|
| 673 | return m_numFolds; |
---|
| 674 | } |
---|
| 675 | |
---|
| 676 | /** |
---|
| 677 | * Set the value of numFolds. |
---|
| 678 | * |
---|
| 679 | * @param v Value to assign to numFolds. |
---|
| 680 | */ |
---|
| 681 | public void setNumFolds(int v) { |
---|
| 682 | |
---|
| 683 | m_numFolds = v; |
---|
| 684 | } |
---|
| 685 | |
---|
| 686 | /** |
---|
| 687 | * Returns the tip text for this property |
---|
| 688 | * @return tip text for this property suitable for |
---|
| 689 | * displaying in the explorer/experimenter gui |
---|
| 690 | */ |
---|
| 691 | public String seedTipText() { |
---|
| 692 | return "The seed used for randomizing the data " + |
---|
| 693 | "when reduced-error pruning is used."; |
---|
| 694 | } |
---|
| 695 | |
---|
| 696 | /** |
---|
| 697 | * Get the value of Seed. |
---|
| 698 | * |
---|
| 699 | * @return Value of Seed. |
---|
| 700 | */ |
---|
| 701 | public int getSeed() { |
---|
| 702 | |
---|
| 703 | return m_Seed; |
---|
| 704 | } |
---|
| 705 | |
---|
| 706 | /** |
---|
| 707 | * Set the value of Seed. |
---|
| 708 | * |
---|
| 709 | * @param newSeed Value to assign to Seed. |
---|
| 710 | */ |
---|
| 711 | public void setSeed(int newSeed) { |
---|
| 712 | |
---|
| 713 | m_Seed = newSeed; |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | /** |
---|
| 717 | * Returns the tip text for this property |
---|
| 718 | * @return tip text for this property suitable for |
---|
| 719 | * displaying in the explorer/experimenter gui |
---|
| 720 | */ |
---|
| 721 | public String binarySplitsTipText() { |
---|
| 722 | return "Whether to use binary splits on nominal attributes when " |
---|
| 723 | + "building the partial trees."; |
---|
| 724 | } |
---|
| 725 | |
---|
| 726 | /** |
---|
| 727 | * Get the value of binarySplits. |
---|
| 728 | * |
---|
| 729 | * @return Value of binarySplits. |
---|
| 730 | */ |
---|
| 731 | public boolean getBinarySplits() { |
---|
| 732 | |
---|
| 733 | return m_binarySplits; |
---|
| 734 | } |
---|
| 735 | |
---|
| 736 | /** |
---|
| 737 | * Set the value of binarySplits. |
---|
| 738 | * |
---|
| 739 | * @param v Value to assign to binarySplits. |
---|
| 740 | */ |
---|
| 741 | public void setBinarySplits(boolean v) { |
---|
| 742 | |
---|
| 743 | m_binarySplits = v; |
---|
| 744 | } |
---|
| 745 | |
---|
| 746 | /** |
---|
| 747 | * Returns the revision string. |
---|
| 748 | * |
---|
| 749 | * @return the revision |
---|
| 750 | */ |
---|
| 751 | public String getRevision() { |
---|
| 752 | return RevisionUtils.extract("$Revision: 6089 $"); |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | /** |
---|
| 756 | * Main method for testing this class. |
---|
| 757 | * |
---|
| 758 | * @param argv command line options |
---|
| 759 | */ |
---|
| 760 | public static void main(String [] argv){ |
---|
| 761 | runClassifier(new PART(), argv); |
---|
| 762 | } |
---|
| 763 | } |
---|
| 764 | |
---|