1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * OneR.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.rules; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Sourcable; |
---|
28 | import weka.core.Attribute; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.Option; |
---|
33 | import weka.core.RevisionHandler; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.TechnicalInformation; |
---|
36 | import weka.core.TechnicalInformationHandler; |
---|
37 | import weka.core.Utils; |
---|
38 | import weka.core.WekaException; |
---|
39 | import weka.core.Capabilities.Capability; |
---|
40 | import weka.core.TechnicalInformation.Field; |
---|
41 | import weka.core.TechnicalInformation.Type; |
---|
42 | |
---|
43 | import java.io.Serializable; |
---|
44 | import java.util.Enumeration; |
---|
45 | import java.util.Vector; |
---|
46 | |
---|
47 | /** |
---|
48 | <!-- globalinfo-start --> |
---|
49 | * Class for building and using a 1R classifier; in other words, uses the minimum-error attribute for prediction, discretizing numeric attributes. For more information, see:<br/> |
---|
50 | * <br/> |
---|
51 | * R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91. |
---|
52 | * <p/> |
---|
53 | <!-- globalinfo-end --> |
---|
54 | * |
---|
55 | <!-- technical-bibtex-start --> |
---|
56 | * BibTeX: |
---|
57 | * <pre> |
---|
58 | * @article{Holte1993, |
---|
59 | * author = {R.C. Holte}, |
---|
60 | * journal = {Machine Learning}, |
---|
61 | * pages = {63-91}, |
---|
62 | * title = {Very simple classification rules perform well on most commonly used datasets}, |
---|
63 | * volume = {11}, |
---|
64 | * year = {1993} |
---|
65 | * } |
---|
66 | * </pre> |
---|
67 | * <p/> |
---|
68 | <!-- technical-bibtex-end --> |
---|
69 | * |
---|
70 | <!-- options-start --> |
---|
71 | * Valid options are: <p/> |
---|
72 | * |
---|
73 | * <pre> -B <minimum bucket size> |
---|
74 | * The minimum number of objects in a bucket (default: 6).</pre> |
---|
75 | * |
---|
76 | <!-- options-end --> |
---|
77 | * |
---|
78 | * @author Ian H. Witten (ihw@cs.waikato.ac.nz) |
---|
79 | * @version $Revision: 5928 $ |
---|
80 | */ |
---|
81 | public class OneR |
---|
82 | extends AbstractClassifier |
---|
83 | implements TechnicalInformationHandler, Sourcable { |
---|
84 | |
---|
85 | /** for serialization */ |
---|
86 | static final long serialVersionUID = -2459427002147861445L; |
---|
87 | |
---|
88 | /** |
---|
89 | * Returns a string describing classifier |
---|
90 | * @return a description suitable for |
---|
91 | * displaying in the explorer/experimenter gui |
---|
92 | */ |
---|
93 | public String globalInfo() { |
---|
94 | |
---|
95 | return "Class for building and using a 1R classifier; in other words, uses " |
---|
96 | + "the minimum-error attribute for prediction, discretizing numeric " |
---|
97 | + "attributes. For more information, see:\n\n" |
---|
98 | + getTechnicalInformation().toString(); |
---|
99 | } |
---|
100 | |
---|
101 | /** |
---|
102 | * Returns an instance of a TechnicalInformation object, containing |
---|
103 | * detailed information about the technical background of this class, |
---|
104 | * e.g., paper reference or book this class is based on. |
---|
105 | * |
---|
106 | * @return the technical information about this class |
---|
107 | */ |
---|
108 | public TechnicalInformation getTechnicalInformation() { |
---|
109 | TechnicalInformation result; |
---|
110 | |
---|
111 | result = new TechnicalInformation(Type.ARTICLE); |
---|
112 | result.setValue(Field.AUTHOR, "R.C. Holte"); |
---|
113 | result.setValue(Field.YEAR, "1993"); |
---|
114 | result.setValue(Field.TITLE, "Very simple classification rules perform well on most commonly used datasets"); |
---|
115 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
116 | result.setValue(Field.VOLUME, "11"); |
---|
117 | result.setValue(Field.PAGES, "63-91"); |
---|
118 | |
---|
119 | return result; |
---|
120 | } |
---|
121 | |
---|
122 | /** |
---|
123 | * Class for storing store a 1R rule. |
---|
124 | */ |
---|
125 | private class OneRRule |
---|
126 | implements Serializable, RevisionHandler { |
---|
127 | |
---|
128 | /** for serialization */ |
---|
129 | static final long serialVersionUID = 1152814630957092281L; |
---|
130 | |
---|
131 | /** The class attribute. */ |
---|
132 | private Attribute m_class; |
---|
133 | |
---|
134 | /** The number of instances used for building the rule. */ |
---|
135 | private int m_numInst; |
---|
136 | |
---|
137 | /** Attribute to test */ |
---|
138 | private Attribute m_attr; |
---|
139 | |
---|
140 | /** Training set examples this rule gets right */ |
---|
141 | private int m_correct; |
---|
142 | |
---|
143 | /** Predicted class for each value of attr */ |
---|
144 | private int[] m_classifications; |
---|
145 | |
---|
146 | /** Predicted class for missing values */ |
---|
147 | private int m_missingValueClass = -1; |
---|
148 | |
---|
149 | /** Breakpoints (numeric attributes only) */ |
---|
150 | private double[] m_breakpoints; |
---|
151 | |
---|
152 | /** |
---|
153 | * Constructor for nominal attribute. |
---|
154 | * |
---|
155 | * @param data the data to work with |
---|
156 | * @param attribute the attribute to use |
---|
157 | * @throws Exception if something goes wrong |
---|
158 | */ |
---|
159 | public OneRRule(Instances data, Attribute attribute) throws Exception { |
---|
160 | |
---|
161 | m_class = data.classAttribute(); |
---|
162 | m_numInst = data.numInstances(); |
---|
163 | m_attr = attribute; |
---|
164 | m_correct = 0; |
---|
165 | m_classifications = new int[m_attr.numValues()]; |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | * Constructor for numeric attribute. |
---|
170 | * |
---|
171 | * @param data the data to work with |
---|
172 | * @param attribute the attribute to use |
---|
173 | * @param nBreaks the break point |
---|
174 | * @throws Exception if something goes wrong |
---|
175 | */ |
---|
176 | public OneRRule(Instances data, Attribute attribute, int nBreaks) throws Exception { |
---|
177 | |
---|
178 | m_class = data.classAttribute(); |
---|
179 | m_numInst = data.numInstances(); |
---|
180 | m_attr = attribute; |
---|
181 | m_correct = 0; |
---|
182 | m_classifications = new int[nBreaks]; |
---|
183 | m_breakpoints = new double[nBreaks - 1]; // last breakpoint is infinity |
---|
184 | } |
---|
185 | |
---|
186 | /** |
---|
187 | * Returns a description of the rule. |
---|
188 | * |
---|
189 | * @return a string representation of the rule |
---|
190 | */ |
---|
191 | public String toString() { |
---|
192 | |
---|
193 | try { |
---|
194 | StringBuffer text = new StringBuffer(); |
---|
195 | text.append(m_attr.name() + ":\n"); |
---|
196 | for (int v = 0; v < m_classifications.length; v++) { |
---|
197 | text.append("\t"); |
---|
198 | if (m_attr.isNominal()) { |
---|
199 | text.append(m_attr.value(v)); |
---|
200 | } else if (v < m_breakpoints.length) { |
---|
201 | text.append("< " + m_breakpoints[v]); |
---|
202 | } else if (v > 0) { |
---|
203 | text.append(">= " + m_breakpoints[v - 1]); |
---|
204 | } else { |
---|
205 | text.append("not ?"); |
---|
206 | } |
---|
207 | text.append("\t-> " + m_class.value(m_classifications[v]) + "\n"); |
---|
208 | } |
---|
209 | if (m_missingValueClass != -1) { |
---|
210 | text.append("\t?\t-> " + m_class.value(m_missingValueClass) + "\n"); |
---|
211 | } |
---|
212 | text.append("(" + m_correct + "/" + m_numInst + " instances correct)\n"); |
---|
213 | return text.toString(); |
---|
214 | } catch (Exception e) { |
---|
215 | return "Can't print OneR classifier!"; |
---|
216 | } |
---|
217 | } |
---|
218 | |
---|
219 | /** |
---|
220 | * Returns the revision string. |
---|
221 | * |
---|
222 | * @return the revision |
---|
223 | */ |
---|
224 | public String getRevision() { |
---|
225 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
226 | } |
---|
227 | } |
---|
228 | |
---|
229 | /** A 1-R rule */ |
---|
230 | private OneRRule m_rule; |
---|
231 | |
---|
232 | /** The minimum bucket size */ |
---|
233 | private int m_minBucketSize = 6; |
---|
234 | |
---|
235 | /** a ZeroR model in case no model can be built from the data */ |
---|
236 | private Classifier m_ZeroR; |
---|
237 | |
---|
238 | /** |
---|
239 | * Classifies a given instance. |
---|
240 | * |
---|
241 | * @param inst the instance to be classified |
---|
242 | * @return the classification of the instance |
---|
243 | */ |
---|
244 | public double classifyInstance(Instance inst) throws Exception { |
---|
245 | |
---|
246 | // default model? |
---|
247 | if (m_ZeroR != null) { |
---|
248 | return m_ZeroR.classifyInstance(inst); |
---|
249 | } |
---|
250 | |
---|
251 | int v = 0; |
---|
252 | if (inst.isMissing(m_rule.m_attr)) { |
---|
253 | if (m_rule.m_missingValueClass != -1) { |
---|
254 | return m_rule.m_missingValueClass; |
---|
255 | } else { |
---|
256 | return 0; // missing values occur in test but not training set |
---|
257 | } |
---|
258 | } |
---|
259 | if (m_rule.m_attr.isNominal()) { |
---|
260 | v = (int) inst.value(m_rule.m_attr); |
---|
261 | } else { |
---|
262 | while (v < m_rule.m_breakpoints.length && |
---|
263 | inst.value(m_rule.m_attr) >= m_rule.m_breakpoints[v]) { |
---|
264 | v++; |
---|
265 | } |
---|
266 | } |
---|
267 | return m_rule.m_classifications[v]; |
---|
268 | } |
---|
269 | |
---|
270 | /** |
---|
271 | * Returns default capabilities of the classifier. |
---|
272 | * |
---|
273 | * @return the capabilities of this classifier |
---|
274 | */ |
---|
275 | public Capabilities getCapabilities() { |
---|
276 | Capabilities result = super.getCapabilities(); |
---|
277 | result.disableAll(); |
---|
278 | |
---|
279 | // attributes |
---|
280 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
281 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
282 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
283 | result.enable(Capability.MISSING_VALUES); |
---|
284 | |
---|
285 | // class |
---|
286 | result.enable(Capability.NOMINAL_CLASS); |
---|
287 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
288 | |
---|
289 | return result; |
---|
290 | } |
---|
291 | |
---|
292 | /** |
---|
293 | * Generates the classifier. |
---|
294 | * |
---|
295 | * @param instances the instances to be used for building the classifier |
---|
296 | * @throws Exception if the classifier can't be built successfully |
---|
297 | */ |
---|
298 | public void buildClassifier(Instances instances) |
---|
299 | throws Exception { |
---|
300 | |
---|
301 | boolean noRule = true; |
---|
302 | |
---|
303 | // can classifier handle the data? |
---|
304 | getCapabilities().testWithFail(instances); |
---|
305 | |
---|
306 | // remove instances with missing class |
---|
307 | Instances data = new Instances(instances); |
---|
308 | data.deleteWithMissingClass(); |
---|
309 | |
---|
310 | // only class? -> build ZeroR model |
---|
311 | if (data.numAttributes() == 1) { |
---|
312 | System.err.println( |
---|
313 | "Cannot build model (only class attribute present in data!), " |
---|
314 | + "using ZeroR model instead!"); |
---|
315 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
316 | m_ZeroR.buildClassifier(data); |
---|
317 | return; |
---|
318 | } |
---|
319 | else { |
---|
320 | m_ZeroR = null; |
---|
321 | } |
---|
322 | |
---|
323 | // for each attribute ... |
---|
324 | Enumeration enu = instances.enumerateAttributes(); |
---|
325 | while (enu.hasMoreElements()) { |
---|
326 | try { |
---|
327 | OneRRule r = newRule((Attribute) enu.nextElement(), data); |
---|
328 | |
---|
329 | // if this attribute is the best so far, replace the rule |
---|
330 | if (noRule || r.m_correct > m_rule.m_correct) { |
---|
331 | m_rule = r; |
---|
332 | } |
---|
333 | noRule = false; |
---|
334 | } catch (Exception ex) { |
---|
335 | } |
---|
336 | } |
---|
337 | |
---|
338 | if (noRule) |
---|
339 | throw new WekaException("No attributes found to work with!"); |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * Create a rule branching on this attribute. |
---|
344 | * |
---|
345 | * @param attr the attribute to branch on |
---|
346 | * @param data the data to be used for creating the rule |
---|
347 | * @return the generated rule |
---|
348 | * @throws Exception if the rule can't be built successfully |
---|
349 | */ |
---|
350 | public OneRRule newRule(Attribute attr, Instances data) throws Exception { |
---|
351 | |
---|
352 | OneRRule r; |
---|
353 | |
---|
354 | // ... create array to hold the missing value counts |
---|
355 | int[] missingValueCounts = |
---|
356 | new int [data.classAttribute().numValues()]; |
---|
357 | |
---|
358 | if (attr.isNominal()) { |
---|
359 | r = newNominalRule(attr, data, missingValueCounts); |
---|
360 | } else { |
---|
361 | r = newNumericRule(attr, data, missingValueCounts); |
---|
362 | } |
---|
363 | r.m_missingValueClass = Utils.maxIndex(missingValueCounts); |
---|
364 | if (missingValueCounts[r.m_missingValueClass] == 0) { |
---|
365 | r.m_missingValueClass = -1; // signal for no missing value class |
---|
366 | } else { |
---|
367 | r.m_correct += missingValueCounts[r.m_missingValueClass]; |
---|
368 | } |
---|
369 | return r; |
---|
370 | } |
---|
371 | |
---|
372 | /** |
---|
373 | * Create a rule branching on this nominal attribute. |
---|
374 | * |
---|
375 | * @param attr the attribute to branch on |
---|
376 | * @param data the data to be used for creating the rule |
---|
377 | * @param missingValueCounts to be filled in |
---|
378 | * @return the generated rule |
---|
379 | * @throws Exception if the rule can't be built successfully |
---|
380 | */ |
---|
381 | public OneRRule newNominalRule(Attribute attr, Instances data, |
---|
382 | int[] missingValueCounts) throws Exception { |
---|
383 | |
---|
384 | // ... create arrays to hold the counts |
---|
385 | int[][] counts = new int [attr.numValues()] |
---|
386 | [data.classAttribute().numValues()]; |
---|
387 | |
---|
388 | // ... calculate the counts |
---|
389 | Enumeration enu = data.enumerateInstances(); |
---|
390 | while (enu.hasMoreElements()) { |
---|
391 | Instance i = (Instance) enu.nextElement(); |
---|
392 | if (i.isMissing(attr)) { |
---|
393 | missingValueCounts[(int) i.classValue()]++; |
---|
394 | } else { |
---|
395 | counts[(int) i.value(attr)][(int) i.classValue()]++; |
---|
396 | } |
---|
397 | } |
---|
398 | |
---|
399 | OneRRule r = new OneRRule(data, attr); // create a new rule |
---|
400 | for (int value = 0; value < attr.numValues(); value++) { |
---|
401 | int best = Utils.maxIndex(counts[value]); |
---|
402 | r.m_classifications[value] = best; |
---|
403 | r.m_correct += counts[value][best]; |
---|
404 | } |
---|
405 | return r; |
---|
406 | } |
---|
407 | |
---|
408 | /** |
---|
409 | * Create a rule branching on this numeric attribute |
---|
410 | * |
---|
411 | * @param attr the attribute to branch on |
---|
412 | * @param data the data to be used for creating the rule |
---|
413 | * @param missingValueCounts to be filled in |
---|
414 | * @return the generated rule |
---|
415 | * @throws Exception if the rule can't be built successfully |
---|
416 | */ |
---|
417 | public OneRRule newNumericRule(Attribute attr, Instances data, |
---|
418 | int[] missingValueCounts) throws Exception { |
---|
419 | |
---|
420 | |
---|
421 | // ... can't be more than numInstances buckets |
---|
422 | int [] classifications = new int[data.numInstances()]; |
---|
423 | double [] breakpoints = new double[data.numInstances()]; |
---|
424 | |
---|
425 | // create array to hold the counts |
---|
426 | int [] counts = new int[data.classAttribute().numValues()]; |
---|
427 | int correct = 0; |
---|
428 | int lastInstance = data.numInstances(); |
---|
429 | |
---|
430 | // missing values get sorted to the end of the instances |
---|
431 | data.sort(attr); |
---|
432 | while (lastInstance > 0 && |
---|
433 | data.instance(lastInstance-1).isMissing(attr)) { |
---|
434 | lastInstance--; |
---|
435 | missingValueCounts[(int) data.instance(lastInstance). |
---|
436 | classValue()]++; |
---|
437 | } |
---|
438 | int i = 0; |
---|
439 | int cl = 0; // index of next bucket to create |
---|
440 | int it; |
---|
441 | while (i < lastInstance) { // start a new bucket |
---|
442 | for (int j = 0; j < counts.length; j++) counts[j] = 0; |
---|
443 | do { // fill it until it has enough of the majority class |
---|
444 | it = (int) data.instance(i++).classValue(); |
---|
445 | counts[it]++; |
---|
446 | } while (counts[it] < m_minBucketSize && i < lastInstance); |
---|
447 | |
---|
448 | // while class remains the same, keep on filling |
---|
449 | while (i < lastInstance && |
---|
450 | (int) data.instance(i).classValue() == it) { |
---|
451 | counts[it]++; |
---|
452 | i++; |
---|
453 | } |
---|
454 | while (i < lastInstance && // keep on while attr value is the same |
---|
455 | (data.instance(i - 1).value(attr) |
---|
456 | == data.instance(i).value(attr))) { |
---|
457 | counts[(int) data.instance(i++).classValue()]++; |
---|
458 | } |
---|
459 | for (int j = 0; j < counts.length; j++) { |
---|
460 | if (counts[j] > counts[it]) { |
---|
461 | it = j; |
---|
462 | } |
---|
463 | } |
---|
464 | if (cl > 0) { // can we coalesce with previous class? |
---|
465 | if (counts[classifications[cl - 1]] == counts[it]) { |
---|
466 | it = classifications[cl - 1]; |
---|
467 | } |
---|
468 | if (it == classifications[cl - 1]) { |
---|
469 | cl--; // yes! |
---|
470 | } |
---|
471 | } |
---|
472 | correct += counts[it]; |
---|
473 | classifications[cl] = it; |
---|
474 | if (i < lastInstance) { |
---|
475 | breakpoints[cl] = (data.instance(i - 1).value(attr) |
---|
476 | + data.instance(i).value(attr)) / 2; |
---|
477 | } |
---|
478 | cl++; |
---|
479 | } |
---|
480 | if (cl == 0) { |
---|
481 | throw new Exception("Only missing values in the training data!"); |
---|
482 | } |
---|
483 | OneRRule r = new OneRRule(data, attr, cl); // new rule with cl branches |
---|
484 | r.m_correct = correct; |
---|
485 | for (int v = 0; v < cl; v++) { |
---|
486 | r.m_classifications[v] = classifications[v]; |
---|
487 | if (v < cl-1) { |
---|
488 | r.m_breakpoints[v] = breakpoints[v]; |
---|
489 | } |
---|
490 | } |
---|
491 | |
---|
492 | return r; |
---|
493 | } |
---|
494 | |
---|
495 | /** |
---|
496 | * Returns an enumeration describing the available options.. |
---|
497 | * |
---|
498 | * @return an enumeration of all the available options. |
---|
499 | */ |
---|
500 | public Enumeration listOptions() { |
---|
501 | |
---|
502 | String string = "\tThe minimum number of objects in a bucket (default: 6)."; |
---|
503 | |
---|
504 | Vector newVector = new Vector(1); |
---|
505 | |
---|
506 | newVector.addElement(new Option(string, "B", 1, |
---|
507 | "-B <minimum bucket size>")); |
---|
508 | |
---|
509 | return newVector.elements(); |
---|
510 | } |
---|
511 | |
---|
512 | /** |
---|
513 | * Parses a given list of options. <p/> |
---|
514 | * |
---|
515 | <!-- options-start --> |
---|
516 | * Valid options are: <p/> |
---|
517 | * |
---|
518 | * <pre> -B <minimum bucket size> |
---|
519 | * The minimum number of objects in a bucket (default: 6).</pre> |
---|
520 | * |
---|
521 | <!-- options-end --> |
---|
522 | * |
---|
523 | * @param options the list of options as an array of strings |
---|
524 | * @throws Exception if an option is not supported |
---|
525 | */ |
---|
526 | public void setOptions(String[] options) throws Exception { |
---|
527 | |
---|
528 | String bucketSizeString = Utils.getOption('B', options); |
---|
529 | if (bucketSizeString.length() != 0) { |
---|
530 | m_minBucketSize = Integer.parseInt(bucketSizeString); |
---|
531 | } else { |
---|
532 | m_minBucketSize = 6; |
---|
533 | } |
---|
534 | } |
---|
535 | |
---|
536 | /** |
---|
537 | * Gets the current settings of the OneR classifier. |
---|
538 | * |
---|
539 | * @return an array of strings suitable for passing to setOptions |
---|
540 | */ |
---|
541 | public String [] getOptions() { |
---|
542 | |
---|
543 | String [] options = new String [2]; |
---|
544 | int current = 0; |
---|
545 | |
---|
546 | options[current++] = "-B"; options[current++] = "" + m_minBucketSize; |
---|
547 | |
---|
548 | while (current < options.length) { |
---|
549 | options[current++] = ""; |
---|
550 | } |
---|
551 | return options; |
---|
552 | } |
---|
553 | |
---|
554 | /** |
---|
555 | * Returns a string that describes the classifier as source. The |
---|
556 | * classifier will be contained in a class with the given name (there may |
---|
557 | * be auxiliary classes), |
---|
558 | * and will contain a method with the signature: |
---|
559 | * <pre><code> |
---|
560 | * public static double classify(Object[] i); |
---|
561 | * </code></pre> |
---|
562 | * where the array <code>i</code> contains elements that are either |
---|
563 | * Double, String, with missing values represented as null. The generated |
---|
564 | * code is public domain and comes with no warranty. |
---|
565 | * |
---|
566 | * @param className the name that should be given to the source class. |
---|
567 | * @return the object source described by a string |
---|
568 | * @throws Exception if the souce can't be computed |
---|
569 | */ |
---|
570 | public String toSource(String className) throws Exception { |
---|
571 | StringBuffer result; |
---|
572 | int i; |
---|
573 | |
---|
574 | result = new StringBuffer(); |
---|
575 | |
---|
576 | if (m_ZeroR != null) { |
---|
577 | result.append(((ZeroR) m_ZeroR).toSource(className)); |
---|
578 | } |
---|
579 | else { |
---|
580 | result.append("class " + className + " {\n"); |
---|
581 | result.append(" public static double classify(Object[] i) {\n"); |
---|
582 | result.append(" // chosen attribute: " + m_rule.m_attr.name() + " (" + m_rule.m_attr.index() + ")\n"); |
---|
583 | result.append("\n"); |
---|
584 | // missing values |
---|
585 | result.append(" // missing value?\n"); |
---|
586 | result.append(" if (i[" + m_rule.m_attr.index() + "] == null)\n"); |
---|
587 | if (m_rule.m_missingValueClass != -1) |
---|
588 | result.append(" return Double.NaN;\n"); |
---|
589 | else |
---|
590 | result.append(" return 0;\n"); |
---|
591 | result.append("\n"); |
---|
592 | |
---|
593 | // actual prediction |
---|
594 | result.append(" // prediction\n"); |
---|
595 | result.append(" double v = 0;\n"); |
---|
596 | result.append(" double[] classifications = new double[]{" + Utils.arrayToString(m_rule.m_classifications) + "};"); |
---|
597 | result.append(" // "); |
---|
598 | for (i = 0; i < m_rule.m_classifications.length; i++) { |
---|
599 | if (i > 0) |
---|
600 | result.append(", "); |
---|
601 | result.append(m_rule.m_class.value(m_rule.m_classifications[i])); |
---|
602 | } |
---|
603 | result.append("\n"); |
---|
604 | if (m_rule.m_attr.isNominal()) { |
---|
605 | for (i = 0; i < m_rule.m_attr.numValues(); i++) { |
---|
606 | result.append(" "); |
---|
607 | if (i > 0) |
---|
608 | result.append("else "); |
---|
609 | result.append("if (((String) i[" + m_rule.m_attr.index() + "]).equals(\"" + m_rule.m_attr.value(i) + "\"))\n"); |
---|
610 | result.append(" v = " + i + "; // " + m_rule.m_class.value(m_rule.m_classifications[i]) + "\n"); |
---|
611 | } |
---|
612 | } |
---|
613 | else { |
---|
614 | result.append(" double[] breakpoints = new double[]{" + Utils.arrayToString(m_rule.m_breakpoints) + "};\n"); |
---|
615 | result.append(" while (v < breakpoints.length && \n"); |
---|
616 | result.append(" ((Double) i[" + m_rule.m_attr.index() + "]) >= breakpoints[(int) v]) {\n"); |
---|
617 | result.append(" v++;\n"); |
---|
618 | result.append(" }\n"); |
---|
619 | } |
---|
620 | result.append(" return classifications[(int) v];\n"); |
---|
621 | |
---|
622 | result.append(" }\n"); |
---|
623 | result.append("}\n"); |
---|
624 | } |
---|
625 | |
---|
626 | return result.toString(); |
---|
627 | } |
---|
628 | |
---|
629 | /** |
---|
630 | * Returns a description of the classifier |
---|
631 | * |
---|
632 | * @return a string representation of the classifier |
---|
633 | */ |
---|
634 | public String toString() { |
---|
635 | |
---|
636 | // only ZeroR model? |
---|
637 | if (m_ZeroR != null) { |
---|
638 | StringBuffer buf = new StringBuffer(); |
---|
639 | buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
640 | buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
641 | buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
---|
642 | buf.append(m_ZeroR.toString()); |
---|
643 | return buf.toString(); |
---|
644 | } |
---|
645 | |
---|
646 | if (m_rule == null) { |
---|
647 | return "OneR: No model built yet."; |
---|
648 | } |
---|
649 | return m_rule.toString(); |
---|
650 | } |
---|
651 | |
---|
652 | /** |
---|
653 | * Returns the tip text for this property |
---|
654 | * @return tip text for this property suitable for |
---|
655 | * displaying in the explorer/experimenter gui |
---|
656 | */ |
---|
657 | public String minBucketSizeTipText() { |
---|
658 | return "The minimum bucket size used for discretizing numeric " |
---|
659 | + "attributes."; |
---|
660 | } |
---|
661 | |
---|
662 | /** |
---|
663 | * Get the value of minBucketSize. |
---|
664 | * @return Value of minBucketSize. |
---|
665 | */ |
---|
666 | public int getMinBucketSize() { |
---|
667 | |
---|
668 | return m_minBucketSize; |
---|
669 | } |
---|
670 | |
---|
671 | /** |
---|
672 | * Set the value of minBucketSize. |
---|
673 | * @param v Value to assign to minBucketSize. |
---|
674 | */ |
---|
675 | public void setMinBucketSize(int v) { |
---|
676 | |
---|
677 | m_minBucketSize = v; |
---|
678 | } |
---|
679 | |
---|
680 | /** |
---|
681 | * Returns the revision string. |
---|
682 | * |
---|
683 | * @return the revision |
---|
684 | */ |
---|
685 | public String getRevision() { |
---|
686 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
687 | } |
---|
688 | |
---|
689 | /** |
---|
690 | * Main method for testing this class |
---|
691 | * |
---|
692 | * @param argv the commandline options |
---|
693 | */ |
---|
694 | public static void main(String [] argv) { |
---|
695 | runClassifier(new OneR(), argv); |
---|
696 | } |
---|
697 | } |
---|