[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * OneR.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.rules; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Sourcable; |
---|
| 28 | import weka.core.Attribute; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.Instance; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.core.Option; |
---|
| 33 | import weka.core.RevisionHandler; |
---|
| 34 | import weka.core.RevisionUtils; |
---|
| 35 | import weka.core.TechnicalInformation; |
---|
| 36 | import weka.core.TechnicalInformationHandler; |
---|
| 37 | import weka.core.Utils; |
---|
| 38 | import weka.core.WekaException; |
---|
| 39 | import weka.core.Capabilities.Capability; |
---|
| 40 | import weka.core.TechnicalInformation.Field; |
---|
| 41 | import weka.core.TechnicalInformation.Type; |
---|
| 42 | |
---|
| 43 | import java.io.Serializable; |
---|
| 44 | import java.util.Enumeration; |
---|
| 45 | import java.util.Vector; |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | <!-- globalinfo-start --> |
---|
| 49 | * Class for building and using a 1R classifier; in other words, uses the minimum-error attribute for prediction, discretizing numeric attributes. For more information, see:<br/> |
---|
| 50 | * <br/> |
---|
| 51 | * R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91. |
---|
| 52 | * <p/> |
---|
| 53 | <!-- globalinfo-end --> |
---|
| 54 | * |
---|
| 55 | <!-- technical-bibtex-start --> |
---|
| 56 | * BibTeX: |
---|
| 57 | * <pre> |
---|
| 58 | * @article{Holte1993, |
---|
| 59 | * author = {R.C. Holte}, |
---|
| 60 | * journal = {Machine Learning}, |
---|
| 61 | * pages = {63-91}, |
---|
| 62 | * title = {Very simple classification rules perform well on most commonly used datasets}, |
---|
| 63 | * volume = {11}, |
---|
| 64 | * year = {1993} |
---|
| 65 | * } |
---|
| 66 | * </pre> |
---|
| 67 | * <p/> |
---|
| 68 | <!-- technical-bibtex-end --> |
---|
| 69 | * |
---|
| 70 | <!-- options-start --> |
---|
| 71 | * Valid options are: <p/> |
---|
| 72 | * |
---|
| 73 | * <pre> -B <minimum bucket size> |
---|
| 74 | * The minimum number of objects in a bucket (default: 6).</pre> |
---|
| 75 | * |
---|
| 76 | <!-- options-end --> |
---|
| 77 | * |
---|
| 78 | * @author Ian H. Witten (ihw@cs.waikato.ac.nz) |
---|
| 79 | * @version $Revision: 5928 $ |
---|
| 80 | */ |
---|
| 81 | public class OneR |
---|
| 82 | extends AbstractClassifier |
---|
| 83 | implements TechnicalInformationHandler, Sourcable { |
---|
| 84 | |
---|
| 85 | /** for serialization */ |
---|
| 86 | static final long serialVersionUID = -2459427002147861445L; |
---|
| 87 | |
---|
| 88 | /** |
---|
| 89 | * Returns a string describing classifier |
---|
| 90 | * @return a description suitable for |
---|
| 91 | * displaying in the explorer/experimenter gui |
---|
| 92 | */ |
---|
| 93 | public String globalInfo() { |
---|
| 94 | |
---|
| 95 | return "Class for building and using a 1R classifier; in other words, uses " |
---|
| 96 | + "the minimum-error attribute for prediction, discretizing numeric " |
---|
| 97 | + "attributes. For more information, see:\n\n" |
---|
| 98 | + getTechnicalInformation().toString(); |
---|
| 99 | } |
---|
| 100 | |
---|
| 101 | /** |
---|
| 102 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 103 | * detailed information about the technical background of this class, |
---|
| 104 | * e.g., paper reference or book this class is based on. |
---|
| 105 | * |
---|
| 106 | * @return the technical information about this class |
---|
| 107 | */ |
---|
| 108 | public TechnicalInformation getTechnicalInformation() { |
---|
| 109 | TechnicalInformation result; |
---|
| 110 | |
---|
| 111 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 112 | result.setValue(Field.AUTHOR, "R.C. Holte"); |
---|
| 113 | result.setValue(Field.YEAR, "1993"); |
---|
| 114 | result.setValue(Field.TITLE, "Very simple classification rules perform well on most commonly used datasets"); |
---|
| 115 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
| 116 | result.setValue(Field.VOLUME, "11"); |
---|
| 117 | result.setValue(Field.PAGES, "63-91"); |
---|
| 118 | |
---|
| 119 | return result; |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | /** |
---|
| 123 | * Class for storing store a 1R rule. |
---|
| 124 | */ |
---|
| 125 | private class OneRRule |
---|
| 126 | implements Serializable, RevisionHandler { |
---|
| 127 | |
---|
| 128 | /** for serialization */ |
---|
| 129 | static final long serialVersionUID = 1152814630957092281L; |
---|
| 130 | |
---|
| 131 | /** The class attribute. */ |
---|
| 132 | private Attribute m_class; |
---|
| 133 | |
---|
| 134 | /** The number of instances used for building the rule. */ |
---|
| 135 | private int m_numInst; |
---|
| 136 | |
---|
| 137 | /** Attribute to test */ |
---|
| 138 | private Attribute m_attr; |
---|
| 139 | |
---|
| 140 | /** Training set examples this rule gets right */ |
---|
| 141 | private int m_correct; |
---|
| 142 | |
---|
| 143 | /** Predicted class for each value of attr */ |
---|
| 144 | private int[] m_classifications; |
---|
| 145 | |
---|
| 146 | /** Predicted class for missing values */ |
---|
| 147 | private int m_missingValueClass = -1; |
---|
| 148 | |
---|
| 149 | /** Breakpoints (numeric attributes only) */ |
---|
| 150 | private double[] m_breakpoints; |
---|
| 151 | |
---|
| 152 | /** |
---|
| 153 | * Constructor for nominal attribute. |
---|
| 154 | * |
---|
| 155 | * @param data the data to work with |
---|
| 156 | * @param attribute the attribute to use |
---|
| 157 | * @throws Exception if something goes wrong |
---|
| 158 | */ |
---|
| 159 | public OneRRule(Instances data, Attribute attribute) throws Exception { |
---|
| 160 | |
---|
| 161 | m_class = data.classAttribute(); |
---|
| 162 | m_numInst = data.numInstances(); |
---|
| 163 | m_attr = attribute; |
---|
| 164 | m_correct = 0; |
---|
| 165 | m_classifications = new int[m_attr.numValues()]; |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | /** |
---|
| 169 | * Constructor for numeric attribute. |
---|
| 170 | * |
---|
| 171 | * @param data the data to work with |
---|
| 172 | * @param attribute the attribute to use |
---|
| 173 | * @param nBreaks the break point |
---|
| 174 | * @throws Exception if something goes wrong |
---|
| 175 | */ |
---|
| 176 | public OneRRule(Instances data, Attribute attribute, int nBreaks) throws Exception { |
---|
| 177 | |
---|
| 178 | m_class = data.classAttribute(); |
---|
| 179 | m_numInst = data.numInstances(); |
---|
| 180 | m_attr = attribute; |
---|
| 181 | m_correct = 0; |
---|
| 182 | m_classifications = new int[nBreaks]; |
---|
| 183 | m_breakpoints = new double[nBreaks - 1]; // last breakpoint is infinity |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | /** |
---|
| 187 | * Returns a description of the rule. |
---|
| 188 | * |
---|
| 189 | * @return a string representation of the rule |
---|
| 190 | */ |
---|
| 191 | public String toString() { |
---|
| 192 | |
---|
| 193 | try { |
---|
| 194 | StringBuffer text = new StringBuffer(); |
---|
| 195 | text.append(m_attr.name() + ":\n"); |
---|
| 196 | for (int v = 0; v < m_classifications.length; v++) { |
---|
| 197 | text.append("\t"); |
---|
| 198 | if (m_attr.isNominal()) { |
---|
| 199 | text.append(m_attr.value(v)); |
---|
| 200 | } else if (v < m_breakpoints.length) { |
---|
| 201 | text.append("< " + m_breakpoints[v]); |
---|
| 202 | } else if (v > 0) { |
---|
| 203 | text.append(">= " + m_breakpoints[v - 1]); |
---|
| 204 | } else { |
---|
| 205 | text.append("not ?"); |
---|
| 206 | } |
---|
| 207 | text.append("\t-> " + m_class.value(m_classifications[v]) + "\n"); |
---|
| 208 | } |
---|
| 209 | if (m_missingValueClass != -1) { |
---|
| 210 | text.append("\t?\t-> " + m_class.value(m_missingValueClass) + "\n"); |
---|
| 211 | } |
---|
| 212 | text.append("(" + m_correct + "/" + m_numInst + " instances correct)\n"); |
---|
| 213 | return text.toString(); |
---|
| 214 | } catch (Exception e) { |
---|
| 215 | return "Can't print OneR classifier!"; |
---|
| 216 | } |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /** |
---|
| 220 | * Returns the revision string. |
---|
| 221 | * |
---|
| 222 | * @return the revision |
---|
| 223 | */ |
---|
| 224 | public String getRevision() { |
---|
| 225 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | /** A 1-R rule */ |
---|
| 230 | private OneRRule m_rule; |
---|
| 231 | |
---|
| 232 | /** The minimum bucket size */ |
---|
| 233 | private int m_minBucketSize = 6; |
---|
| 234 | |
---|
| 235 | /** a ZeroR model in case no model can be built from the data */ |
---|
| 236 | private Classifier m_ZeroR; |
---|
| 237 | |
---|
| 238 | /** |
---|
| 239 | * Classifies a given instance. |
---|
| 240 | * |
---|
| 241 | * @param inst the instance to be classified |
---|
| 242 | * @return the classification of the instance |
---|
| 243 | */ |
---|
| 244 | public double classifyInstance(Instance inst) throws Exception { |
---|
| 245 | |
---|
| 246 | // default model? |
---|
| 247 | if (m_ZeroR != null) { |
---|
| 248 | return m_ZeroR.classifyInstance(inst); |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | int v = 0; |
---|
| 252 | if (inst.isMissing(m_rule.m_attr)) { |
---|
| 253 | if (m_rule.m_missingValueClass != -1) { |
---|
| 254 | return m_rule.m_missingValueClass; |
---|
| 255 | } else { |
---|
| 256 | return 0; // missing values occur in test but not training set |
---|
| 257 | } |
---|
| 258 | } |
---|
| 259 | if (m_rule.m_attr.isNominal()) { |
---|
| 260 | v = (int) inst.value(m_rule.m_attr); |
---|
| 261 | } else { |
---|
| 262 | while (v < m_rule.m_breakpoints.length && |
---|
| 263 | inst.value(m_rule.m_attr) >= m_rule.m_breakpoints[v]) { |
---|
| 264 | v++; |
---|
| 265 | } |
---|
| 266 | } |
---|
| 267 | return m_rule.m_classifications[v]; |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | /** |
---|
| 271 | * Returns default capabilities of the classifier. |
---|
| 272 | * |
---|
| 273 | * @return the capabilities of this classifier |
---|
| 274 | */ |
---|
| 275 | public Capabilities getCapabilities() { |
---|
| 276 | Capabilities result = super.getCapabilities(); |
---|
| 277 | result.disableAll(); |
---|
| 278 | |
---|
| 279 | // attributes |
---|
| 280 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 281 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 282 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 283 | result.enable(Capability.MISSING_VALUES); |
---|
| 284 | |
---|
| 285 | // class |
---|
| 286 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 287 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 288 | |
---|
| 289 | return result; |
---|
| 290 | } |
---|
| 291 | |
---|
| 292 | /** |
---|
| 293 | * Generates the classifier. |
---|
| 294 | * |
---|
| 295 | * @param instances the instances to be used for building the classifier |
---|
| 296 | * @throws Exception if the classifier can't be built successfully |
---|
| 297 | */ |
---|
| 298 | public void buildClassifier(Instances instances) |
---|
| 299 | throws Exception { |
---|
| 300 | |
---|
| 301 | boolean noRule = true; |
---|
| 302 | |
---|
| 303 | // can classifier handle the data? |
---|
| 304 | getCapabilities().testWithFail(instances); |
---|
| 305 | |
---|
| 306 | // remove instances with missing class |
---|
| 307 | Instances data = new Instances(instances); |
---|
| 308 | data.deleteWithMissingClass(); |
---|
| 309 | |
---|
| 310 | // only class? -> build ZeroR model |
---|
| 311 | if (data.numAttributes() == 1) { |
---|
| 312 | System.err.println( |
---|
| 313 | "Cannot build model (only class attribute present in data!), " |
---|
| 314 | + "using ZeroR model instead!"); |
---|
| 315 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
| 316 | m_ZeroR.buildClassifier(data); |
---|
| 317 | return; |
---|
| 318 | } |
---|
| 319 | else { |
---|
| 320 | m_ZeroR = null; |
---|
| 321 | } |
---|
| 322 | |
---|
| 323 | // for each attribute ... |
---|
| 324 | Enumeration enu = instances.enumerateAttributes(); |
---|
| 325 | while (enu.hasMoreElements()) { |
---|
| 326 | try { |
---|
| 327 | OneRRule r = newRule((Attribute) enu.nextElement(), data); |
---|
| 328 | |
---|
| 329 | // if this attribute is the best so far, replace the rule |
---|
| 330 | if (noRule || r.m_correct > m_rule.m_correct) { |
---|
| 331 | m_rule = r; |
---|
| 332 | } |
---|
| 333 | noRule = false; |
---|
| 334 | } catch (Exception ex) { |
---|
| 335 | } |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | if (noRule) |
---|
| 339 | throw new WekaException("No attributes found to work with!"); |
---|
| 340 | } |
---|
| 341 | |
---|
| 342 | /** |
---|
| 343 | * Create a rule branching on this attribute. |
---|
| 344 | * |
---|
| 345 | * @param attr the attribute to branch on |
---|
| 346 | * @param data the data to be used for creating the rule |
---|
| 347 | * @return the generated rule |
---|
| 348 | * @throws Exception if the rule can't be built successfully |
---|
| 349 | */ |
---|
| 350 | public OneRRule newRule(Attribute attr, Instances data) throws Exception { |
---|
| 351 | |
---|
| 352 | OneRRule r; |
---|
| 353 | |
---|
| 354 | // ... create array to hold the missing value counts |
---|
| 355 | int[] missingValueCounts = |
---|
| 356 | new int [data.classAttribute().numValues()]; |
---|
| 357 | |
---|
| 358 | if (attr.isNominal()) { |
---|
| 359 | r = newNominalRule(attr, data, missingValueCounts); |
---|
| 360 | } else { |
---|
| 361 | r = newNumericRule(attr, data, missingValueCounts); |
---|
| 362 | } |
---|
| 363 | r.m_missingValueClass = Utils.maxIndex(missingValueCounts); |
---|
| 364 | if (missingValueCounts[r.m_missingValueClass] == 0) { |
---|
| 365 | r.m_missingValueClass = -1; // signal for no missing value class |
---|
| 366 | } else { |
---|
| 367 | r.m_correct += missingValueCounts[r.m_missingValueClass]; |
---|
| 368 | } |
---|
| 369 | return r; |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | /** |
---|
| 373 | * Create a rule branching on this nominal attribute. |
---|
| 374 | * |
---|
| 375 | * @param attr the attribute to branch on |
---|
| 376 | * @param data the data to be used for creating the rule |
---|
| 377 | * @param missingValueCounts to be filled in |
---|
| 378 | * @return the generated rule |
---|
| 379 | * @throws Exception if the rule can't be built successfully |
---|
| 380 | */ |
---|
| 381 | public OneRRule newNominalRule(Attribute attr, Instances data, |
---|
| 382 | int[] missingValueCounts) throws Exception { |
---|
| 383 | |
---|
| 384 | // ... create arrays to hold the counts |
---|
| 385 | int[][] counts = new int [attr.numValues()] |
---|
| 386 | [data.classAttribute().numValues()]; |
---|
| 387 | |
---|
| 388 | // ... calculate the counts |
---|
| 389 | Enumeration enu = data.enumerateInstances(); |
---|
| 390 | while (enu.hasMoreElements()) { |
---|
| 391 | Instance i = (Instance) enu.nextElement(); |
---|
| 392 | if (i.isMissing(attr)) { |
---|
| 393 | missingValueCounts[(int) i.classValue()]++; |
---|
| 394 | } else { |
---|
| 395 | counts[(int) i.value(attr)][(int) i.classValue()]++; |
---|
| 396 | } |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | OneRRule r = new OneRRule(data, attr); // create a new rule |
---|
| 400 | for (int value = 0; value < attr.numValues(); value++) { |
---|
| 401 | int best = Utils.maxIndex(counts[value]); |
---|
| 402 | r.m_classifications[value] = best; |
---|
| 403 | r.m_correct += counts[value][best]; |
---|
| 404 | } |
---|
| 405 | return r; |
---|
| 406 | } |
---|
| 407 | |
---|
| 408 | /** |
---|
| 409 | * Create a rule branching on this numeric attribute |
---|
| 410 | * |
---|
| 411 | * @param attr the attribute to branch on |
---|
| 412 | * @param data the data to be used for creating the rule |
---|
| 413 | * @param missingValueCounts to be filled in |
---|
| 414 | * @return the generated rule |
---|
| 415 | * @throws Exception if the rule can't be built successfully |
---|
| 416 | */ |
---|
| 417 | public OneRRule newNumericRule(Attribute attr, Instances data, |
---|
| 418 | int[] missingValueCounts) throws Exception { |
---|
| 419 | |
---|
| 420 | |
---|
| 421 | // ... can't be more than numInstances buckets |
---|
| 422 | int [] classifications = new int[data.numInstances()]; |
---|
| 423 | double [] breakpoints = new double[data.numInstances()]; |
---|
| 424 | |
---|
| 425 | // create array to hold the counts |
---|
| 426 | int [] counts = new int[data.classAttribute().numValues()]; |
---|
| 427 | int correct = 0; |
---|
| 428 | int lastInstance = data.numInstances(); |
---|
| 429 | |
---|
| 430 | // missing values get sorted to the end of the instances |
---|
| 431 | data.sort(attr); |
---|
| 432 | while (lastInstance > 0 && |
---|
| 433 | data.instance(lastInstance-1).isMissing(attr)) { |
---|
| 434 | lastInstance--; |
---|
| 435 | missingValueCounts[(int) data.instance(lastInstance). |
---|
| 436 | classValue()]++; |
---|
| 437 | } |
---|
| 438 | int i = 0; |
---|
| 439 | int cl = 0; // index of next bucket to create |
---|
| 440 | int it; |
---|
| 441 | while (i < lastInstance) { // start a new bucket |
---|
| 442 | for (int j = 0; j < counts.length; j++) counts[j] = 0; |
---|
| 443 | do { // fill it until it has enough of the majority class |
---|
| 444 | it = (int) data.instance(i++).classValue(); |
---|
| 445 | counts[it]++; |
---|
| 446 | } while (counts[it] < m_minBucketSize && i < lastInstance); |
---|
| 447 | |
---|
| 448 | // while class remains the same, keep on filling |
---|
| 449 | while (i < lastInstance && |
---|
| 450 | (int) data.instance(i).classValue() == it) { |
---|
| 451 | counts[it]++; |
---|
| 452 | i++; |
---|
| 453 | } |
---|
| 454 | while (i < lastInstance && // keep on while attr value is the same |
---|
| 455 | (data.instance(i - 1).value(attr) |
---|
| 456 | == data.instance(i).value(attr))) { |
---|
| 457 | counts[(int) data.instance(i++).classValue()]++; |
---|
| 458 | } |
---|
| 459 | for (int j = 0; j < counts.length; j++) { |
---|
| 460 | if (counts[j] > counts[it]) { |
---|
| 461 | it = j; |
---|
| 462 | } |
---|
| 463 | } |
---|
| 464 | if (cl > 0) { // can we coalesce with previous class? |
---|
| 465 | if (counts[classifications[cl - 1]] == counts[it]) { |
---|
| 466 | it = classifications[cl - 1]; |
---|
| 467 | } |
---|
| 468 | if (it == classifications[cl - 1]) { |
---|
| 469 | cl--; // yes! |
---|
| 470 | } |
---|
| 471 | } |
---|
| 472 | correct += counts[it]; |
---|
| 473 | classifications[cl] = it; |
---|
| 474 | if (i < lastInstance) { |
---|
| 475 | breakpoints[cl] = (data.instance(i - 1).value(attr) |
---|
| 476 | + data.instance(i).value(attr)) / 2; |
---|
| 477 | } |
---|
| 478 | cl++; |
---|
| 479 | } |
---|
| 480 | if (cl == 0) { |
---|
| 481 | throw new Exception("Only missing values in the training data!"); |
---|
| 482 | } |
---|
| 483 | OneRRule r = new OneRRule(data, attr, cl); // new rule with cl branches |
---|
| 484 | r.m_correct = correct; |
---|
| 485 | for (int v = 0; v < cl; v++) { |
---|
| 486 | r.m_classifications[v] = classifications[v]; |
---|
| 487 | if (v < cl-1) { |
---|
| 488 | r.m_breakpoints[v] = breakpoints[v]; |
---|
| 489 | } |
---|
| 490 | } |
---|
| 491 | |
---|
| 492 | return r; |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | /** |
---|
| 496 | * Returns an enumeration describing the available options.. |
---|
| 497 | * |
---|
| 498 | * @return an enumeration of all the available options. |
---|
| 499 | */ |
---|
| 500 | public Enumeration listOptions() { |
---|
| 501 | |
---|
| 502 | String string = "\tThe minimum number of objects in a bucket (default: 6)."; |
---|
| 503 | |
---|
| 504 | Vector newVector = new Vector(1); |
---|
| 505 | |
---|
| 506 | newVector.addElement(new Option(string, "B", 1, |
---|
| 507 | "-B <minimum bucket size>")); |
---|
| 508 | |
---|
| 509 | return newVector.elements(); |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | /** |
---|
| 513 | * Parses a given list of options. <p/> |
---|
| 514 | * |
---|
| 515 | <!-- options-start --> |
---|
| 516 | * Valid options are: <p/> |
---|
| 517 | * |
---|
| 518 | * <pre> -B <minimum bucket size> |
---|
| 519 | * The minimum number of objects in a bucket (default: 6).</pre> |
---|
| 520 | * |
---|
| 521 | <!-- options-end --> |
---|
| 522 | * |
---|
| 523 | * @param options the list of options as an array of strings |
---|
| 524 | * @throws Exception if an option is not supported |
---|
| 525 | */ |
---|
| 526 | public void setOptions(String[] options) throws Exception { |
---|
| 527 | |
---|
| 528 | String bucketSizeString = Utils.getOption('B', options); |
---|
| 529 | if (bucketSizeString.length() != 0) { |
---|
| 530 | m_minBucketSize = Integer.parseInt(bucketSizeString); |
---|
| 531 | } else { |
---|
| 532 | m_minBucketSize = 6; |
---|
| 533 | } |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | /** |
---|
| 537 | * Gets the current settings of the OneR classifier. |
---|
| 538 | * |
---|
| 539 | * @return an array of strings suitable for passing to setOptions |
---|
| 540 | */ |
---|
| 541 | public String [] getOptions() { |
---|
| 542 | |
---|
| 543 | String [] options = new String [2]; |
---|
| 544 | int current = 0; |
---|
| 545 | |
---|
| 546 | options[current++] = "-B"; options[current++] = "" + m_minBucketSize; |
---|
| 547 | |
---|
| 548 | while (current < options.length) { |
---|
| 549 | options[current++] = ""; |
---|
| 550 | } |
---|
| 551 | return options; |
---|
| 552 | } |
---|
| 553 | |
---|
| 554 | /** |
---|
| 555 | * Returns a string that describes the classifier as source. The |
---|
| 556 | * classifier will be contained in a class with the given name (there may |
---|
| 557 | * be auxiliary classes), |
---|
| 558 | * and will contain a method with the signature: |
---|
| 559 | * <pre><code> |
---|
| 560 | * public static double classify(Object[] i); |
---|
| 561 | * </code></pre> |
---|
| 562 | * where the array <code>i</code> contains elements that are either |
---|
| 563 | * Double, String, with missing values represented as null. The generated |
---|
| 564 | * code is public domain and comes with no warranty. |
---|
| 565 | * |
---|
| 566 | * @param className the name that should be given to the source class. |
---|
| 567 | * @return the object source described by a string |
---|
| 568 | * @throws Exception if the souce can't be computed |
---|
| 569 | */ |
---|
| 570 | public String toSource(String className) throws Exception { |
---|
| 571 | StringBuffer result; |
---|
| 572 | int i; |
---|
| 573 | |
---|
| 574 | result = new StringBuffer(); |
---|
| 575 | |
---|
| 576 | if (m_ZeroR != null) { |
---|
| 577 | result.append(((ZeroR) m_ZeroR).toSource(className)); |
---|
| 578 | } |
---|
| 579 | else { |
---|
| 580 | result.append("class " + className + " {\n"); |
---|
| 581 | result.append(" public static double classify(Object[] i) {\n"); |
---|
| 582 | result.append(" // chosen attribute: " + m_rule.m_attr.name() + " (" + m_rule.m_attr.index() + ")\n"); |
---|
| 583 | result.append("\n"); |
---|
| 584 | // missing values |
---|
| 585 | result.append(" // missing value?\n"); |
---|
| 586 | result.append(" if (i[" + m_rule.m_attr.index() + "] == null)\n"); |
---|
| 587 | if (m_rule.m_missingValueClass != -1) |
---|
| 588 | result.append(" return Double.NaN;\n"); |
---|
| 589 | else |
---|
| 590 | result.append(" return 0;\n"); |
---|
| 591 | result.append("\n"); |
---|
| 592 | |
---|
| 593 | // actual prediction |
---|
| 594 | result.append(" // prediction\n"); |
---|
| 595 | result.append(" double v = 0;\n"); |
---|
| 596 | result.append(" double[] classifications = new double[]{" + Utils.arrayToString(m_rule.m_classifications) + "};"); |
---|
| 597 | result.append(" // "); |
---|
| 598 | for (i = 0; i < m_rule.m_classifications.length; i++) { |
---|
| 599 | if (i > 0) |
---|
| 600 | result.append(", "); |
---|
| 601 | result.append(m_rule.m_class.value(m_rule.m_classifications[i])); |
---|
| 602 | } |
---|
| 603 | result.append("\n"); |
---|
| 604 | if (m_rule.m_attr.isNominal()) { |
---|
| 605 | for (i = 0; i < m_rule.m_attr.numValues(); i++) { |
---|
| 606 | result.append(" "); |
---|
| 607 | if (i > 0) |
---|
| 608 | result.append("else "); |
---|
| 609 | result.append("if (((String) i[" + m_rule.m_attr.index() + "]).equals(\"" + m_rule.m_attr.value(i) + "\"))\n"); |
---|
| 610 | result.append(" v = " + i + "; // " + m_rule.m_class.value(m_rule.m_classifications[i]) + "\n"); |
---|
| 611 | } |
---|
| 612 | } |
---|
| 613 | else { |
---|
| 614 | result.append(" double[] breakpoints = new double[]{" + Utils.arrayToString(m_rule.m_breakpoints) + "};\n"); |
---|
| 615 | result.append(" while (v < breakpoints.length && \n"); |
---|
| 616 | result.append(" ((Double) i[" + m_rule.m_attr.index() + "]) >= breakpoints[(int) v]) {\n"); |
---|
| 617 | result.append(" v++;\n"); |
---|
| 618 | result.append(" }\n"); |
---|
| 619 | } |
---|
| 620 | result.append(" return classifications[(int) v];\n"); |
---|
| 621 | |
---|
| 622 | result.append(" }\n"); |
---|
| 623 | result.append("}\n"); |
---|
| 624 | } |
---|
| 625 | |
---|
| 626 | return result.toString(); |
---|
| 627 | } |
---|
| 628 | |
---|
| 629 | /** |
---|
| 630 | * Returns a description of the classifier |
---|
| 631 | * |
---|
| 632 | * @return a string representation of the classifier |
---|
| 633 | */ |
---|
| 634 | public String toString() { |
---|
| 635 | |
---|
| 636 | // only ZeroR model? |
---|
| 637 | if (m_ZeroR != null) { |
---|
| 638 | StringBuffer buf = new StringBuffer(); |
---|
| 639 | buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
| 640 | buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
| 641 | buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
---|
| 642 | buf.append(m_ZeroR.toString()); |
---|
| 643 | return buf.toString(); |
---|
| 644 | } |
---|
| 645 | |
---|
| 646 | if (m_rule == null) { |
---|
| 647 | return "OneR: No model built yet."; |
---|
| 648 | } |
---|
| 649 | return m_rule.toString(); |
---|
| 650 | } |
---|
| 651 | |
---|
| 652 | /** |
---|
| 653 | * Returns the tip text for this property |
---|
| 654 | * @return tip text for this property suitable for |
---|
| 655 | * displaying in the explorer/experimenter gui |
---|
| 656 | */ |
---|
| 657 | public String minBucketSizeTipText() { |
---|
| 658 | return "The minimum bucket size used for discretizing numeric " |
---|
| 659 | + "attributes."; |
---|
| 660 | } |
---|
| 661 | |
---|
| 662 | /** |
---|
| 663 | * Get the value of minBucketSize. |
---|
| 664 | * @return Value of minBucketSize. |
---|
| 665 | */ |
---|
| 666 | public int getMinBucketSize() { |
---|
| 667 | |
---|
| 668 | return m_minBucketSize; |
---|
| 669 | } |
---|
| 670 | |
---|
| 671 | /** |
---|
| 672 | * Set the value of minBucketSize. |
---|
| 673 | * @param v Value to assign to minBucketSize. |
---|
| 674 | */ |
---|
| 675 | public void setMinBucketSize(int v) { |
---|
| 676 | |
---|
| 677 | m_minBucketSize = v; |
---|
| 678 | } |
---|
| 679 | |
---|
| 680 | /** |
---|
| 681 | * Returns the revision string. |
---|
| 682 | * |
---|
| 683 | * @return the revision |
---|
| 684 | */ |
---|
| 685 | public String getRevision() { |
---|
| 686 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 687 | } |
---|
| 688 | |
---|
| 689 | /** |
---|
| 690 | * Main method for testing this class |
---|
| 691 | * |
---|
| 692 | * @param argv the commandline options |
---|
| 693 | */ |
---|
| 694 | public static void main(String [] argv) { |
---|
| 695 | runClassifier(new OneR(), argv); |
---|
| 696 | } |
---|
| 697 | } |
---|