/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * OLM.java * Copyright (C) 2009 TriDat Tran * */ package weka.classifiers.rules; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.classifiers.Evaluation; import java.io.*; import java.util.*; import weka.core.*; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; /** * * This class is an implementation of the Ordinal Learning Method (OLM).
* Further information regarding the algorithm and variants can be found in:
*
* Arie Ben-David (1992). Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based DSSs: methodology and Applications. Decision Sciences. 23:1357-1372. *

* * BibTeX: *

 * @article{Ben-David1992,
 *    author = {Arie Ben-David},
 *    journal = {Decision Sciences},
 *    pages = {1357-1372},
 *    title = {Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based DSSs: methodology and Applications},
 *    volume = {23},
 *    year = {1992}
 * }
 * 
*

* * Valid options are:

* *

 -R <integer>
 *  The resolution mode. Valid values are:
 *  0 for conservative resolution, 1 for random resolution, 2 for average, and 3 for no resolution. (default 0).
* *
 -C <integer>
 *  The classification mode. Valid values are:
 *  0 for conservative classification, 1 for nearest neighbour classification. (default 0).
* *
 -U <size>
 *  SSet maximum size of rule base
 *  (default: -U <number of examples>)
* * * @author TriDat Tran * @version $Revision: 5928 $ */ public class OLM extends AbstractClassifier implements OptionHandler, TechnicalInformationHandler { /** * For serialization */ private static final long serialVersionUID = -381974207649598344L; //protected Instance ist; protected int printR; protected int numExamples; /* The conflict resolution modes */ public static final int RESOLUTION_NONE = 3; public static final int RESOLUTION_AVERAGE = 2; public static final int RESOLUTION_RANDOM = 1; public static final int RESOLUTION_CONSERVATIVE = 0; public static final Tag [] TAGS_RESOLUTION = { new Tag(RESOLUTION_NONE, "No conflict resolution"), new Tag(RESOLUTION_AVERAGE, "Resolution using average"), new Tag(RESOLUTION_RANDOM, "Random resolution"), new Tag(RESOLUTION_CONSERVATIVE, "Conservative resolution") }; /** The conflict resolution mode */ protected int m_resolutionMode = RESOLUTION_CONSERVATIVE; /* The classification modes */ public static final int CLASSIFICATION_CONSERVATIVE = 1; public static final int CLASSIFICATION_NEARESTNEIGHBOUR = 0; public static final Tag[] TAGS_CLASSIFICATION = { new Tag(CLASSIFICATION_NEARESTNEIGHBOUR, "Nearest neighbour classification"), new Tag(CLASSIFICATION_CONSERVATIVE, "Conservative classification") }; /** The classification mode */ protected int m_classificationMode = CLASSIFICATION_CONSERVATIVE; protected int upperBaseLimit = -1; protected int randSeed = 0; protected Random rand = new Random(0); protected boolean print_msg = false; /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(1); return result; } /** * Returns a string describing the classifier. * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "This class is an implementation of the Ordinal Learning " + "Method (OLM).\n" + "Further information regarding the algorithm and variants " + "can be found in:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Arie Ben-David"); result.setValue(Field.YEAR, "1992"); result.setValue(Field.TITLE, "Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based DSSs: methodology and Applications"); result.setValue(Field.JOURNAL, "Decision Sciences"); result.setValue(Field.PAGES, "1357-1372"); result.setValue(Field.VOLUME, "23"); return result; } /** * Classifies a given instance. * * @param inst the instance to be classified * @return the classification */ public double classifyInstance(Instance inst) { return olmrules.classify(inst); } /** * Returns an enumeration describing the available options * Valid options are: * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(3); newVector.addElement(new Option( "\tThe resolution mode. Valid values are:\n" + "\t0 for conservative resolution, 1 for random resolution," + "\t2 for average, and 3 for no resolution. (default 0).", "R", 1, "-R ")); newVector.addElement(new Option( "\tThe classification mode. Valid values are:\n" + "\t0 for conservative classification, 1 for nearest neighbour classification." + " (default 0).", "C", 1, "-C ")); newVector.addElement(new Option("\tSSet maximum size of rule base\n" + "\t(default: -U )","U", 1, "-U ")); return newVector.elements(); } /** * Parses a given list of options. * * Valid options are:

* *

 -R <integer>
   *  The resolution mode. Valid values are:
   *  0 for conservative resolution, 1 for random resolution, 2 for average, and 3 for no resolution. (default 0).
* *
 -C <integer>
   *  The classification mode. Valid values are:
   *  0 for conservative classification, 1 for nearest neighbour classification. (default 0).
* *
 -U <size>
   *  SSet maximum size of rule base
   *  (default: -U <number of examples>)
* * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String resolutionMode = Utils.getOption('R', options); if (resolutionMode.length() > 0) { setResolutionMode(new SelectedTag(Integer.parseInt(resolutionMode), TAGS_RESOLUTION)); } String classificationMode = Utils.getOption('C', options); if (classificationMode.length() > 0) { setClassificationMode(new SelectedTag(Integer.parseInt(classificationMode), TAGS_CLASSIFICATION)); } String upperBase = Utils.getOption('U', options); if (upperBase.length() != 0) upperBaseLimit = Integer.parseInt(upperBase); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [6]; int current = 0; if(upperBaseLimit == -1) upperBaseLimit = numExamples; options[current++] = "-R"; options[current++] = "" + m_resolutionMode; options[current++] = "-C"; options[current++] = "" + m_classificationMode; options[current++] = "-U"; options[current++] = "" + upperBaseLimit; return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String resolutionModeTipText() { return "The resolution mode to use."; } /** * Sets the resolution mode. * * @param newMethod the new evaluation mode. */ public void setResolutionMode(SelectedTag newMethod) { if (newMethod.getTags() == TAGS_RESOLUTION) { m_resolutionMode = newMethod.getSelectedTag().getID(); } } /** * Gets the resolution mode. * * @return the evaluation mode. */ public SelectedTag getResolutionMode() { return new SelectedTag(m_resolutionMode, TAGS_RESOLUTION); } /** * Sets the classification mode. * * @param newMethod the new classification mode. */ public void setClassificationMode(SelectedTag newMethod) { m_classificationMode = newMethod.getSelectedTag().getID(); } /** * Gets the classification mode. * * @return the classiciation mode */ public SelectedTag getClassificationMode() { return new SelectedTag(m_classificationMode, TAGS_CLASSIFICATION); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String classificationModeTipText() { return "The classification mode to use."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String ruleSizeTipText() { return "Set the rule base size\n" + "0 - unlimited\n"; } public int getRuleSize(){ return upperBaseLimit;} public void setRuleSize(int s){ upperBaseLimit = s;} /** * Class to store CISE (Consistent and Irredundant Set of Examples) rules */ private class OLMRules implements Serializable{ private Vector rules; /** * Constructor */ public OLMRules() { rules = new Vector(); } public int distance(Instance inst1, Instance inst2) { double values1[] = inst1.toDoubleArray(); double values2[] = inst2.toDoubleArray(); int classindex = inst1.classIndex(); int numAtt = inst1.numAttributes(); int dist = 0; for(int i=0; i < numAtt; i++) { if(i != classindex) dist += Math.abs(values1[i] - values2[i]); } return dist; } public Instance averageRule(Instance inst1, Instance inst2) { Instance inst = inst1; double values1[] = inst1.toDoubleArray(); double values2[] = inst2.toDoubleArray(); int classindex = inst1.classIndex(); int numAtt = inst1.numAttributes(); for(int i=0; i < numAtt; i++) { inst.setValue(i,Math.round((values1[i] + values2[i])/2)); } return inst; } public void printRules() { Instance inst; for(int i=0; i < rules.size(); i++) { inst = (Instance)rules.elementAt(i); System.out.print(i+": "); System.out.println(inst.toString()); } } /** * Checks if the input (non-class) attributes in inst1 is greater * than in inst2. * * @param inst1 Instance1 * @param inst2 Instance2 */ private boolean isGreaterInput(Instance inst1, Instance inst2) { double values1[] = inst1.toDoubleArray(); double values2[] = inst2.toDoubleArray(); int classindex = inst1.classIndex(); int numAtt = inst1.numAttributes(); for(int i=0; i < numAtt; i++) { if(i!= classindex && values1[i] < values2[i]) return false; } return true; } private boolean isEqualInput(Instance inst1, Instance inst2) { double values1[] = inst1.toDoubleArray(); double values2[] = inst2.toDoubleArray(); int classindex = inst1.classIndex(); int numAtt = inst1.numAttributes(); for(int i=0; i < numAtt; i++) { if(i!= classindex && values1[i] != values2[i]) return false; } return true; } private boolean isGreaterOutput(Instance inst1, Instance inst2) { return (inst1.toDoubleArray())[inst1.classIndex()] > (inst2.toDoubleArray())[inst2.classIndex()]; } private boolean isEqualOutput(Instance inst1, Instance inst2) { return (inst1.toDoubleArray())[inst1.classIndex()] == (inst2.toDoubleArray())[inst2.classIndex()]; } private void fillMissing(Instance inst) { ; } public void addRule(Instance inst) { // add new rule? boolean addr = true; boolean b = false; int classindex = inst.classIndex(); // Fill in missing values. fillMissing(inst); // Compare E with each rule in CISE for(int i=0; i < rules.size(); i++) { b = false; // Checks of Redudancies. if(isEqualOutput(inst, (Instance)rules.elementAt(i))) { // Is E redundant : i.e EI(1) > EI(2) and EO(1) = EO(2) if(isGreaterInput(inst, (Instance)rules.elementAt(i))) { // E is redundant w.r.t rule i, we discard E addr = false; if(print_msg) System.out.println(inst.toString() + " is (1) redundant wrt " + ((Instance)rules.elementAt(i)).toString()); continue; } else if(isGreaterInput((Instance)rules.elementAt(i), inst)) { if(print_msg) System.out.println(((Instance)rules.elementAt(i)).toString() + " is (2) redundant wrt " + inst.toString()); // rule i is redundant w.r.t E, discard rule i rules.removeElementAt(i); i--; continue; } } // is E inconsistent and has a higher output? if(isGreaterInput((Instance)rules.elementAt(i), inst) && !isGreaterOutput((Instance)rules.elementAt(i), inst)) { // Conservative if (m_resolutionMode == RESOLUTION_CONSERVATIVE) { // discard E addr = false; } // Random if (m_resolutionMode == RESOLUTION_RANDOM) { // select random rule to keep if(rand.nextBoolean()) { addr = addr || true; rules.removeElementAt(i); i--; } else addr = false; } // No Conflict Resolution, ignore new rule if (m_resolutionMode == RESOLUTION_NONE) { addr = false; } // Average if (m_resolutionMode == RESOLUTION_AVERAGE) { // create 'average rule' if(print_msg) System.out.print(inst.toString() + " - " + ((Instance)rules.elementAt(i)).toString()); inst = averageRule(inst, (Instance)rules.elementAt(i)); System.out.println(" : Average : " + inst.toString()); // Remove current rule rules.removeElementAt(i); // test average rule addr = true; i = 0; } continue; } // is E inconsistent and has a lower output? if(isGreaterInput(inst, (Instance)rules.elementAt(i)) && !isGreaterOutput(inst, (Instance)rules.elementAt(i))) { // Conservative if (m_resolutionMode == RESOLUTION_CONSERVATIVE) { // discard rule i if(print_msg) System.out.println("Discard rule "+ ((Instance)rules.elementAt(i)).toString()); b = true; rules.removeElementAt(i); i--; } // Random if (m_resolutionMode == RESOLUTION_RANDOM) { // select random rule to keep if(rand.nextBoolean()) { addr = addr || true; rules.removeElementAt(i); i--; } else addr = false; } // No Conflict Resolution, ignore new rule if (m_resolutionMode == RESOLUTION_NONE) { addr = false; } // Average if (m_resolutionMode == RESOLUTION_AVERAGE) { // create 'average rule' if(print_msg) System.out.print(inst.toString() + " - " + ((Instance)rules.elementAt(i)).toString()); inst = averageRule(inst, (Instance)rules.elementAt(i)); if(print_msg) System.out.println(" : Average : " + inst.toString()); // Remove current rule rules.removeElementAt(i); // test average rule addr = true; i = 0; } continue; } // check if the rule is inconsistent if(isEqualInput(inst,(Instance)rules.elementAt(i))) { if(isGreaterOutput(inst,(Instance)rules.elementAt(i))) { // Conservative if (m_resolutionMode == RESOLUTION_CONSERVATIVE) { // discard E addr = false; } // random if (m_resolutionMode == RESOLUTION_RANDOM) { // select random rule to keep if(rand.nextBoolean()) { addr = addr || true; rules.removeElementAt(i); i--; } else addr = false; } // No Conflict Resolution, ignore new rule if (m_resolutionMode == RESOLUTION_NONE) { addr = false; } // Average if (m_resolutionMode == RESOLUTION_AVERAGE) { // create 'average rule' if(print_msg) System.out.print(inst.toString() + " - " + ((Instance)rules.elementAt(i)).toString()); inst = averageRule(inst, (Instance)rules.elementAt(i)); if(print_msg) System.out.println(" : 2Average : " + inst.toString()); // Remove current rule rules.removeElementAt(i); // test average rule addr = true; i = 0; } continue; } else if(isGreaterOutput((Instance)rules.elementAt(i),inst)) { // Conservative if (m_resolutionMode == RESOLUTION_CONSERVATIVE) { //discard rule i rules.removeElementAt(i); i--; } //random if (m_resolutionMode == RESOLUTION_RANDOM) { // select random rule to keep if(rand.nextBoolean()) { addr = addr || true; rules.removeElementAt(i); i--; } else addr = false; } // No Conflict Resolution, ignore new rule if (m_resolutionMode == RESOLUTION_NONE) { addr = false; } // Average if (m_resolutionMode == RESOLUTION_AVERAGE) { // create 'average rule' if(print_msg) System.out.print(inst.toString() + " - " + ((Instance)rules.elementAt(i)).toString()); inst = averageRule(inst, (Instance)rules.elementAt(i)); if(print_msg) System.out.println(" : Average : " + inst.toString()); // Remove current rule rules.removeElementAt(i); // test average rule addr = true; i = 0; } continue; } } } if(b) System.out.println("broke out of loop totally!!"); // insert the new rule if it has not been discarded, based on // output order (decreasing order) // System.out.println("Adding Rule"); int i = 0; double output = inst.toDoubleArray()[classindex]; // Check Rule Base Limit if(addr && ( upperBaseLimit <= 0 || upperBaseLimit > rules.size())) { while(i < rules.size() && (((Instance)rules.elementAt(i)).toDoubleArray()) [classindex] > output) i++; if(i == rules.size()) rules.addElement(inst); else if(i == 0) rules.insertElementAt(inst, 0); else rules.insertElementAt(inst, i); } return; } public double classify(Instance inst) { Instance tInst; // fill in missing values fillMissing(inst); // Conservative if (m_classificationMode == CLASSIFICATION_CONSERVATIVE) { for(int i=0; i < rules.size(); i++) { tInst = (Instance)rules.elementAt(i); if(isGreaterInput(inst, tInst)) { return (tInst.toDoubleArray())[inst.classIndex()]; } } return (((Instance)rules.lastElement()).toDoubleArray()) [inst.classIndex()]; } // Nearest Neightbour int cDist = -1; int elem = -1; if (m_classificationMode == CLASSIFICATION_NEARESTNEIGHBOUR) { for(int i=0; i < rules.size(); i++) { tInst = (Instance)rules.elementAt(i); if(cDist == -1 || (distance(inst, tInst) < cDist)) { cDist = distance(inst, tInst); elem = i; } if(print_msg) System.out.println(((Instance)rules.elementAt(i)).toString() + " - " + inst.toString() + ": Distance is " + distance(inst,tInst)); } if(print_msg) System.out.println(((Instance)rules.elementAt(elem)).toString() + " is closest to " + inst.toString()); return (((Instance)rules.elementAt(elem)).toDoubleArray()) [inst.classIndex()]; } return 0; } } private OLMRules olmrules; /** * Generates the classifier. * * @param data the data to be used * @exception Exception if the classifier can't built successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); data = new Instances(data); numExamples = data.numInstances(); Enumeration e = data.enumerateInstances(); // Checks on data not implemented. // reset random generator to produce the same results each time rand = new Random(0); // Options if(print_msg) System.out.println("Resolution mode: " + m_resolutionMode); if(print_msg) System.out.println("Classification: " + m_classificationMode); if(print_msg) System.out.println("Rule size: " + upperBaseLimit); // initialize rules set. olmrules = new OLMRules(); int i = 0; // fill in rules. if(print_msg) System.out.println("Printing Rule Process"); while(e.hasMoreElements()) { Instance ins = (Instance)e.nextElement(); if(print_msg) System.out.println("Trying to add (" + ins.toString() + ") Rule"); olmrules.addRule(ins); if(print_msg) System.out.println("Result:"); if(print_msg) olmrules.printRules(); i++; // System.out.println("Added rule " + i); } //System.out.println("Rule set built!!"); // print rule set: } /** * Prints a description of the classifier. * * @return a description of the classifier as a string */ public String toString() { return "OLM"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class */ public static void main(String[] args) { runClassifier(new OLM(), args); } }