[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * OLM.java |
---|
| 19 | * Copyright (C) 2009 TriDat Tran |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.rules; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Evaluation; |
---|
| 28 | import java.io.*; |
---|
| 29 | import java.util.*; |
---|
| 30 | import weka.core.*; |
---|
| 31 | import weka.core.Capabilities.Capability; |
---|
| 32 | import weka.core.TechnicalInformation.Field; |
---|
| 33 | import weka.core.TechnicalInformation.Type; |
---|
| 34 | |
---|
| 35 | /** |
---|
| 36 | * |
---|
| 37 | <!-- globalinfo-start --> |
---|
| 38 | * This class is an implementation of the Ordinal Learning Method (OLM).<br/> |
---|
| 39 | * Further information regarding the algorithm and variants can be found in:<br/> |
---|
| 40 | * <br/> |
---|
| 41 | * Arie Ben-David (1992). Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based DSSs: methodology and Applications. Decision Sciences. 23:1357-1372. |
---|
| 42 | * <p/> |
---|
| 43 | <!-- globalinfo-end --> |
---|
| 44 | * |
---|
| 45 | <!-- technical-bibtex-start --> |
---|
| 46 | * BibTeX: |
---|
| 47 | * <pre> |
---|
| 48 | * @article{Ben-David1992, |
---|
| 49 | * author = {Arie Ben-David}, |
---|
| 50 | * journal = {Decision Sciences}, |
---|
| 51 | * pages = {1357-1372}, |
---|
| 52 | * title = {Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based DSSs: methodology and Applications}, |
---|
| 53 | * volume = {23}, |
---|
| 54 | * year = {1992} |
---|
| 55 | * } |
---|
| 56 | * </pre> |
---|
| 57 | * <p/> |
---|
| 58 | <!-- technical-bibtex-end --> |
---|
| 59 | * |
---|
| 60 | <!-- options-start --> |
---|
| 61 | * Valid options are: <p/> |
---|
| 62 | * |
---|
| 63 | * <pre> -R <integer> |
---|
| 64 | * The resolution mode. Valid values are: |
---|
| 65 | * 0 for conservative resolution, 1 for random resolution, 2 for average, and 3 for no resolution. (default 0).</pre> |
---|
| 66 | * |
---|
| 67 | * <pre> -C <integer> |
---|
| 68 | * The classification mode. Valid values are: |
---|
| 69 | * 0 for conservative classification, 1 for nearest neighbour classification. (default 0).</pre> |
---|
| 70 | * |
---|
| 71 | * <pre> -U <size> |
---|
| 72 | * SSet maximum size of rule base |
---|
| 73 | * (default: -U <number of examples>)</pre> |
---|
| 74 | * |
---|
| 75 | <!-- options-end --> |
---|
| 76 | * |
---|
| 77 | * @author TriDat Tran |
---|
| 78 | * @version $Revision: 5928 $ |
---|
| 79 | */ |
---|
| 80 | public class OLM extends AbstractClassifier |
---|
| 81 | implements OptionHandler, TechnicalInformationHandler { |
---|
| 82 | |
---|
| 83 | /** |
---|
| 84 | * For serialization |
---|
| 85 | */ |
---|
| 86 | private static final long serialVersionUID = -381974207649598344L; |
---|
| 87 | |
---|
| 88 | //protected Instance ist; |
---|
| 89 | protected int printR; |
---|
| 90 | protected int numExamples; |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | /* The conflict resolution modes */ |
---|
| 94 | public static final int RESOLUTION_NONE = 3; |
---|
| 95 | public static final int RESOLUTION_AVERAGE = 2; |
---|
| 96 | public static final int RESOLUTION_RANDOM = 1; |
---|
| 97 | public static final int RESOLUTION_CONSERVATIVE = 0; |
---|
| 98 | public static final Tag [] TAGS_RESOLUTION = { |
---|
| 99 | new Tag(RESOLUTION_NONE, "No conflict resolution"), |
---|
| 100 | new Tag(RESOLUTION_AVERAGE, "Resolution using average"), |
---|
| 101 | new Tag(RESOLUTION_RANDOM, "Random resolution"), |
---|
| 102 | new Tag(RESOLUTION_CONSERVATIVE, "Conservative resolution") |
---|
| 103 | }; |
---|
| 104 | |
---|
| 105 | /** The conflict resolution mode */ |
---|
| 106 | protected int m_resolutionMode = RESOLUTION_CONSERVATIVE; |
---|
| 107 | |
---|
| 108 | /* The classification modes */ |
---|
| 109 | public static final int CLASSIFICATION_CONSERVATIVE = 1; |
---|
| 110 | public static final int CLASSIFICATION_NEARESTNEIGHBOUR = 0; |
---|
| 111 | public static final Tag[] TAGS_CLASSIFICATION = { |
---|
| 112 | new Tag(CLASSIFICATION_NEARESTNEIGHBOUR, "Nearest neighbour classification"), |
---|
| 113 | new Tag(CLASSIFICATION_CONSERVATIVE, "Conservative classification") |
---|
| 114 | }; |
---|
| 115 | |
---|
| 116 | /** The classification mode */ |
---|
| 117 | protected int m_classificationMode = CLASSIFICATION_CONSERVATIVE; |
---|
| 118 | |
---|
| 119 | protected int upperBaseLimit = -1; |
---|
| 120 | protected int randSeed = 0; |
---|
| 121 | protected Random rand = new Random(0); |
---|
| 122 | |
---|
| 123 | protected boolean print_msg = false; |
---|
| 124 | |
---|
| 125 | /** |
---|
| 126 | * Returns default capabilities of the classifier. |
---|
| 127 | * |
---|
| 128 | * @return the capabilities of this classifier |
---|
| 129 | */ |
---|
| 130 | public Capabilities getCapabilities() { |
---|
| 131 | Capabilities result = super.getCapabilities(); |
---|
| 132 | result.disableAll(); |
---|
| 133 | |
---|
| 134 | // attributes |
---|
| 135 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 136 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 137 | result.enable(Capability.MISSING_VALUES); |
---|
| 138 | |
---|
| 139 | // class |
---|
| 140 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 141 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 142 | |
---|
| 143 | // instances |
---|
| 144 | result.setMinimumNumberInstances(1); |
---|
| 145 | |
---|
| 146 | return result; |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | /** |
---|
| 150 | * Returns a string describing the classifier. |
---|
| 151 | * @return a description suitable for displaying in the |
---|
| 152 | * explorer/experimenter gui |
---|
| 153 | */ |
---|
| 154 | public String globalInfo() { |
---|
| 155 | return "This class is an implementation of the Ordinal Learning " |
---|
| 156 | + "Method (OLM).\n" |
---|
| 157 | + "Further information regarding the algorithm and variants " |
---|
| 158 | + "can be found in:\n\n" |
---|
| 159 | + getTechnicalInformation().toString(); |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | /** |
---|
| 163 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 164 | * detailed information about the technical background of this class, |
---|
| 165 | * e.g., paper reference or book this class is based on. |
---|
| 166 | * |
---|
| 167 | * @return the technical information about this class |
---|
| 168 | */ |
---|
| 169 | public TechnicalInformation getTechnicalInformation() { |
---|
| 170 | TechnicalInformation result; |
---|
| 171 | TechnicalInformation additional; |
---|
| 172 | |
---|
| 173 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 174 | result.setValue(Field.AUTHOR, "Arie Ben-David"); |
---|
| 175 | result.setValue(Field.YEAR, "1992"); |
---|
| 176 | result.setValue(Field.TITLE, "Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based DSSs: methodology and Applications"); |
---|
| 177 | result.setValue(Field.JOURNAL, "Decision Sciences"); |
---|
| 178 | result.setValue(Field.PAGES, "1357-1372"); |
---|
| 179 | result.setValue(Field.VOLUME, "23"); |
---|
| 180 | |
---|
| 181 | return result; |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | /** |
---|
| 186 | * Classifies a given instance. |
---|
| 187 | * |
---|
| 188 | * @param inst the instance to be classified |
---|
| 189 | * @return the classification |
---|
| 190 | */ |
---|
| 191 | public double classifyInstance(Instance inst) { |
---|
| 192 | return olmrules.classify(inst); |
---|
| 193 | } |
---|
| 194 | |
---|
| 195 | /** |
---|
| 196 | * Returns an enumeration describing the available options |
---|
| 197 | * Valid options are: |
---|
| 198 | * @return an enumeration of all the available options |
---|
| 199 | */ |
---|
| 200 | public Enumeration listOptions() { |
---|
| 201 | Vector newVector = new Vector(3); |
---|
| 202 | |
---|
| 203 | newVector.addElement(new Option( |
---|
| 204 | "\tThe resolution mode. Valid values are:\n" + |
---|
| 205 | "\t0 for conservative resolution, 1 for random resolution," + |
---|
| 206 | "\t2 for average, and 3 for no resolution. (default 0).", |
---|
| 207 | "R", 1, "-R <integer>")); |
---|
| 208 | |
---|
| 209 | newVector.addElement(new Option( |
---|
| 210 | "\tThe classification mode. Valid values are:\n" + |
---|
| 211 | "\t0 for conservative classification, 1 for nearest neighbour classification." + |
---|
| 212 | " (default 0).", |
---|
| 213 | "C", 1, "-C <integer>")); |
---|
| 214 | |
---|
| 215 | newVector.addElement(new Option("\tSSet maximum size of rule base\n" + |
---|
| 216 | "\t(default: -U <number of examples>)","U", 1, "-U <size>")); |
---|
| 217 | |
---|
| 218 | return newVector.elements(); |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | /** |
---|
| 222 | * Parses a given list of options. |
---|
| 223 | * |
---|
| 224 | <!-- options-start --> |
---|
| 225 | * Valid options are: <p/> |
---|
| 226 | * |
---|
| 227 | * <pre> -R <integer> |
---|
| 228 | * The resolution mode. Valid values are: |
---|
| 229 | * 0 for conservative resolution, 1 for random resolution, 2 for average, and 3 for no resolution. (default 0).</pre> |
---|
| 230 | * |
---|
| 231 | * <pre> -C <integer> |
---|
| 232 | * The classification mode. Valid values are: |
---|
| 233 | * 0 for conservative classification, 1 for nearest neighbour classification. (default 0).</pre> |
---|
| 234 | * |
---|
| 235 | * <pre> -U <size> |
---|
| 236 | * SSet maximum size of rule base |
---|
| 237 | * (default: -U <number of examples>)</pre> |
---|
| 238 | * |
---|
| 239 | <!-- options-end --> |
---|
| 240 | * |
---|
| 241 | * @param options the list of options as an array of strings |
---|
| 242 | * @exception Exception if an option is not supported |
---|
| 243 | */ |
---|
| 244 | public void setOptions(String[] options) throws Exception { |
---|
| 245 | String resolutionMode = Utils.getOption('R', options); |
---|
| 246 | if (resolutionMode.length() > 0) { |
---|
| 247 | setResolutionMode(new SelectedTag(Integer.parseInt(resolutionMode), |
---|
| 248 | TAGS_RESOLUTION)); |
---|
| 249 | } |
---|
| 250 | |
---|
| 251 | String classificationMode = Utils.getOption('C', options); |
---|
| 252 | if (classificationMode.length() > 0) { |
---|
| 253 | setClassificationMode(new SelectedTag(Integer.parseInt(classificationMode), |
---|
| 254 | TAGS_CLASSIFICATION)); |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | String upperBase = Utils.getOption('U', options); |
---|
| 258 | if (upperBase.length() != 0) |
---|
| 259 | upperBaseLimit = Integer.parseInt(upperBase); |
---|
| 260 | } |
---|
| 261 | |
---|
| 262 | /** |
---|
| 263 | * Gets the current settings of the Classifier. |
---|
| 264 | * |
---|
| 265 | * @return an array of strings suitable for passing to setOptions |
---|
| 266 | */ |
---|
| 267 | public String [] getOptions() { |
---|
| 268 | String [] options = new String [6]; |
---|
| 269 | int current = 0; |
---|
| 270 | |
---|
| 271 | if(upperBaseLimit == -1) upperBaseLimit = numExamples; |
---|
| 272 | |
---|
| 273 | options[current++] = "-R"; options[current++] = "" + m_resolutionMode; |
---|
| 274 | options[current++] = "-C"; options[current++] = "" + m_classificationMode; |
---|
| 275 | options[current++] = "-U"; options[current++] = "" + upperBaseLimit; |
---|
| 276 | |
---|
| 277 | return options; |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | /** |
---|
| 281 | * Returns the tip text for this property |
---|
| 282 | * @return tip text for this property suitable for |
---|
| 283 | * displaying in the explorer/experimenter gui |
---|
| 284 | */ |
---|
| 285 | public String resolutionModeTipText() { |
---|
| 286 | return "The resolution mode to use."; |
---|
| 287 | } |
---|
| 288 | |
---|
| 289 | /** |
---|
| 290 | * Sets the resolution mode. |
---|
| 291 | * |
---|
| 292 | * @param newMethod the new evaluation mode. |
---|
| 293 | */ |
---|
| 294 | public void setResolutionMode(SelectedTag newMethod) { |
---|
| 295 | |
---|
| 296 | if (newMethod.getTags() == TAGS_RESOLUTION) { |
---|
| 297 | m_resolutionMode = newMethod.getSelectedTag().getID(); |
---|
| 298 | } |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | /** |
---|
| 302 | * Gets the resolution mode. |
---|
| 303 | * |
---|
| 304 | * @return the evaluation mode. |
---|
| 305 | */ |
---|
| 306 | public SelectedTag getResolutionMode() { |
---|
| 307 | |
---|
| 308 | return new SelectedTag(m_resolutionMode, TAGS_RESOLUTION); |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | /** |
---|
| 312 | * Sets the classification mode. |
---|
| 313 | * |
---|
| 314 | * @param newMethod the new classification mode. |
---|
| 315 | */ |
---|
| 316 | public void setClassificationMode(SelectedTag newMethod) { |
---|
| 317 | m_classificationMode = newMethod.getSelectedTag().getID(); |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | /** |
---|
| 321 | * Gets the classification mode. |
---|
| 322 | * |
---|
| 323 | * @return the classiciation mode |
---|
| 324 | */ |
---|
| 325 | public SelectedTag getClassificationMode() { |
---|
| 326 | return new SelectedTag(m_classificationMode, TAGS_CLASSIFICATION); |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | /** |
---|
| 330 | * Returns the tip text for this property |
---|
| 331 | * @return tip text for this property suitable for |
---|
| 332 | * displaying in the explorer/experimenter gui |
---|
| 333 | */ |
---|
| 334 | public String classificationModeTipText() { |
---|
| 335 | return "The classification mode to use."; |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | /** |
---|
| 339 | * Returns the tip text for this property |
---|
| 340 | * @return tip text for this property suitable for |
---|
| 341 | * displaying in the explorer/experimenter gui |
---|
| 342 | */ |
---|
| 343 | public String ruleSizeTipText() { |
---|
| 344 | return "Set the rule base size\n" + |
---|
| 345 | "0 - unlimited\n"; |
---|
| 346 | } |
---|
| 347 | |
---|
| 348 | public int getRuleSize(){ return upperBaseLimit;} |
---|
| 349 | public void setRuleSize(int s){ upperBaseLimit = s;} |
---|
| 350 | |
---|
| 351 | /** |
---|
| 352 | * Class to store CISE (Consistent and Irredundant Set of Examples) rules |
---|
| 353 | */ |
---|
| 354 | private class OLMRules implements Serializable{ |
---|
| 355 | private Vector rules; |
---|
| 356 | |
---|
| 357 | /** |
---|
| 358 | * Constructor |
---|
| 359 | */ |
---|
| 360 | public OLMRules() |
---|
| 361 | { |
---|
| 362 | rules = new Vector(); |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | public int distance(Instance inst1, Instance inst2) |
---|
| 366 | { |
---|
| 367 | double values1[] = inst1.toDoubleArray(); |
---|
| 368 | double values2[] = inst2.toDoubleArray(); |
---|
| 369 | int classindex = inst1.classIndex(); |
---|
| 370 | int numAtt = inst1.numAttributes(); |
---|
| 371 | int dist = 0; |
---|
| 372 | |
---|
| 373 | for(int i=0; i < numAtt; i++) |
---|
| 374 | { |
---|
| 375 | if(i != classindex) |
---|
| 376 | dist += Math.abs(values1[i] - values2[i]); |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | return dist; |
---|
| 380 | } |
---|
| 381 | |
---|
| 382 | public Instance averageRule(Instance inst1, Instance inst2) |
---|
| 383 | { |
---|
| 384 | Instance inst = inst1; |
---|
| 385 | double values1[] = inst1.toDoubleArray(); |
---|
| 386 | double values2[] = inst2.toDoubleArray(); |
---|
| 387 | int classindex = inst1.classIndex(); |
---|
| 388 | int numAtt = inst1.numAttributes(); |
---|
| 389 | |
---|
| 390 | for(int i=0; i < numAtt; i++) |
---|
| 391 | { |
---|
| 392 | inst.setValue(i,Math.round((values1[i] + values2[i])/2)); |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | return inst; |
---|
| 396 | } |
---|
| 397 | |
---|
| 398 | public void printRules() |
---|
| 399 | { |
---|
| 400 | Instance inst; |
---|
| 401 | for(int i=0; i < rules.size(); i++) |
---|
| 402 | { |
---|
| 403 | inst = (Instance)rules.elementAt(i); |
---|
| 404 | System.out.print(i+": "); |
---|
| 405 | System.out.println(inst.toString()); |
---|
| 406 | } |
---|
| 407 | } |
---|
| 408 | /** |
---|
| 409 | * Checks if the input (non-class) attributes in inst1 is greater |
---|
| 410 | * than in inst2. |
---|
| 411 | * |
---|
| 412 | * @param inst1 Instance1 |
---|
| 413 | * @param inst2 Instance2 |
---|
| 414 | */ |
---|
| 415 | private boolean isGreaterInput(Instance inst1, Instance inst2) |
---|
| 416 | { |
---|
| 417 | double values1[] = inst1.toDoubleArray(); |
---|
| 418 | double values2[] = inst2.toDoubleArray(); |
---|
| 419 | int classindex = inst1.classIndex(); |
---|
| 420 | int numAtt = inst1.numAttributes(); |
---|
| 421 | |
---|
| 422 | for(int i=0; i < numAtt; i++) |
---|
| 423 | { |
---|
| 424 | if(i!= classindex && values1[i] < values2[i]) |
---|
| 425 | return false; |
---|
| 426 | } |
---|
| 427 | return true; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | private boolean isEqualInput(Instance inst1, Instance inst2) |
---|
| 431 | { |
---|
| 432 | double values1[] = inst1.toDoubleArray(); |
---|
| 433 | double values2[] = inst2.toDoubleArray(); |
---|
| 434 | int classindex = inst1.classIndex(); |
---|
| 435 | int numAtt = inst1.numAttributes(); |
---|
| 436 | |
---|
| 437 | for(int i=0; i < numAtt; i++) |
---|
| 438 | { |
---|
| 439 | if(i!= classindex && values1[i] != values2[i]) |
---|
| 440 | return false; |
---|
| 441 | } |
---|
| 442 | return true; |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | private boolean isGreaterOutput(Instance inst1, Instance inst2) |
---|
| 446 | { |
---|
| 447 | return (inst1.toDoubleArray())[inst1.classIndex()] > |
---|
| 448 | (inst2.toDoubleArray())[inst2.classIndex()]; |
---|
| 449 | } |
---|
| 450 | |
---|
| 451 | private boolean isEqualOutput(Instance inst1, Instance inst2) |
---|
| 452 | { |
---|
| 453 | return (inst1.toDoubleArray())[inst1.classIndex()] == |
---|
| 454 | (inst2.toDoubleArray())[inst2.classIndex()]; |
---|
| 455 | } |
---|
| 456 | |
---|
| 457 | private void fillMissing(Instance inst) |
---|
| 458 | { |
---|
| 459 | ; |
---|
| 460 | } |
---|
| 461 | |
---|
| 462 | public void addRule(Instance inst) |
---|
| 463 | { |
---|
| 464 | // add new rule? |
---|
| 465 | boolean addr = true; |
---|
| 466 | boolean b = false; |
---|
| 467 | int classindex = inst.classIndex(); |
---|
| 468 | // Fill in missing values. |
---|
| 469 | fillMissing(inst); |
---|
| 470 | // Compare E with each rule in CISE |
---|
| 471 | for(int i=0; i < rules.size(); i++) |
---|
| 472 | { |
---|
| 473 | b = false; |
---|
| 474 | // Checks of Redudancies. |
---|
| 475 | if(isEqualOutput(inst, (Instance)rules.elementAt(i))) |
---|
| 476 | { |
---|
| 477 | // Is E redundant : i.e EI(1) > EI(2) and EO(1) = EO(2) |
---|
| 478 | if(isGreaterInput(inst, (Instance)rules.elementAt(i))) |
---|
| 479 | { |
---|
| 480 | // E is redundant w.r.t rule i, we discard E |
---|
| 481 | addr = false; |
---|
| 482 | if(print_msg) |
---|
| 483 | System.out.println(inst.toString() + " is (1) redundant wrt " + |
---|
| 484 | ((Instance)rules.elementAt(i)).toString()); |
---|
| 485 | continue; |
---|
| 486 | } |
---|
| 487 | else if(isGreaterInput((Instance)rules.elementAt(i), inst)) |
---|
| 488 | { |
---|
| 489 | if(print_msg) |
---|
| 490 | System.out.println(((Instance)rules.elementAt(i)).toString() + |
---|
| 491 | " is (2) redundant wrt " + inst.toString()); |
---|
| 492 | // rule i is redundant w.r.t E, discard rule i |
---|
| 493 | rules.removeElementAt(i); |
---|
| 494 | i--; |
---|
| 495 | continue; |
---|
| 496 | } |
---|
| 497 | } |
---|
| 498 | |
---|
| 499 | // is E inconsistent and has a higher output? |
---|
| 500 | if(isGreaterInput((Instance)rules.elementAt(i), inst) && |
---|
| 501 | !isGreaterOutput((Instance)rules.elementAt(i), inst)) |
---|
| 502 | { |
---|
| 503 | |
---|
| 504 | // Conservative |
---|
| 505 | if (m_resolutionMode == RESOLUTION_CONSERVATIVE) |
---|
| 506 | { |
---|
| 507 | // discard E |
---|
| 508 | addr = false; |
---|
| 509 | } |
---|
| 510 | // Random |
---|
| 511 | if (m_resolutionMode == RESOLUTION_RANDOM) |
---|
| 512 | { |
---|
| 513 | // select random rule to keep |
---|
| 514 | if(rand.nextBoolean()) |
---|
| 515 | { |
---|
| 516 | addr = addr || true; |
---|
| 517 | rules.removeElementAt(i); |
---|
| 518 | i--; |
---|
| 519 | } |
---|
| 520 | else |
---|
| 521 | addr = false; |
---|
| 522 | } |
---|
| 523 | // No Conflict Resolution, ignore new rule |
---|
| 524 | if (m_resolutionMode == RESOLUTION_NONE) |
---|
| 525 | { |
---|
| 526 | addr = false; |
---|
| 527 | } |
---|
| 528 | // Average |
---|
| 529 | if (m_resolutionMode == RESOLUTION_AVERAGE) |
---|
| 530 | { |
---|
| 531 | // create 'average rule' |
---|
| 532 | if(print_msg) |
---|
| 533 | System.out.print(inst.toString() + " - " + |
---|
| 534 | ((Instance)rules.elementAt(i)).toString()); |
---|
| 535 | inst = averageRule(inst, (Instance)rules.elementAt(i)); |
---|
| 536 | System.out.println(" : Average : " + inst.toString()); |
---|
| 537 | // Remove current rule |
---|
| 538 | rules.removeElementAt(i); |
---|
| 539 | // test average rule |
---|
| 540 | addr = true; |
---|
| 541 | i = 0; |
---|
| 542 | } |
---|
| 543 | continue; |
---|
| 544 | } |
---|
| 545 | // is E inconsistent and has a lower output? |
---|
| 546 | if(isGreaterInput(inst, (Instance)rules.elementAt(i)) && |
---|
| 547 | !isGreaterOutput(inst, (Instance)rules.elementAt(i))) |
---|
| 548 | { |
---|
| 549 | // Conservative |
---|
| 550 | if (m_resolutionMode == RESOLUTION_CONSERVATIVE) |
---|
| 551 | { |
---|
| 552 | // discard rule i |
---|
| 553 | if(print_msg) |
---|
| 554 | System.out.println("Discard rule "+ |
---|
| 555 | ((Instance)rules.elementAt(i)).toString()); |
---|
| 556 | b = true; |
---|
| 557 | rules.removeElementAt(i); |
---|
| 558 | i--; |
---|
| 559 | } |
---|
| 560 | // Random |
---|
| 561 | if (m_resolutionMode == RESOLUTION_RANDOM) |
---|
| 562 | { |
---|
| 563 | // select random rule to keep |
---|
| 564 | if(rand.nextBoolean()) |
---|
| 565 | { |
---|
| 566 | addr = addr || true; |
---|
| 567 | rules.removeElementAt(i); |
---|
| 568 | i--; |
---|
| 569 | } |
---|
| 570 | else |
---|
| 571 | addr = false; |
---|
| 572 | } |
---|
| 573 | // No Conflict Resolution, ignore new rule |
---|
| 574 | if (m_resolutionMode == RESOLUTION_NONE) |
---|
| 575 | { |
---|
| 576 | addr = false; |
---|
| 577 | } |
---|
| 578 | // Average |
---|
| 579 | if (m_resolutionMode == RESOLUTION_AVERAGE) |
---|
| 580 | { |
---|
| 581 | // create 'average rule' |
---|
| 582 | if(print_msg) |
---|
| 583 | System.out.print(inst.toString() + " - " + |
---|
| 584 | ((Instance)rules.elementAt(i)).toString()); |
---|
| 585 | inst = averageRule(inst, (Instance)rules.elementAt(i)); |
---|
| 586 | if(print_msg) |
---|
| 587 | System.out.println(" : Average : " + inst.toString()); |
---|
| 588 | // Remove current rule |
---|
| 589 | rules.removeElementAt(i); |
---|
| 590 | // test average rule |
---|
| 591 | addr = true; |
---|
| 592 | i = 0; |
---|
| 593 | } |
---|
| 594 | continue; |
---|
| 595 | } |
---|
| 596 | // check if the rule is inconsistent |
---|
| 597 | if(isEqualInput(inst,(Instance)rules.elementAt(i))) |
---|
| 598 | { |
---|
| 599 | if(isGreaterOutput(inst,(Instance)rules.elementAt(i))) |
---|
| 600 | { |
---|
| 601 | // Conservative |
---|
| 602 | if (m_resolutionMode == RESOLUTION_CONSERVATIVE) |
---|
| 603 | { |
---|
| 604 | // discard E |
---|
| 605 | addr = false; |
---|
| 606 | } |
---|
| 607 | // random |
---|
| 608 | if (m_resolutionMode == RESOLUTION_RANDOM) |
---|
| 609 | { |
---|
| 610 | // select random rule to keep |
---|
| 611 | if(rand.nextBoolean()) |
---|
| 612 | { |
---|
| 613 | addr = addr || true; |
---|
| 614 | rules.removeElementAt(i); |
---|
| 615 | i--; |
---|
| 616 | } |
---|
| 617 | else |
---|
| 618 | addr = false; |
---|
| 619 | } |
---|
| 620 | // No Conflict Resolution, ignore new rule |
---|
| 621 | if (m_resolutionMode == RESOLUTION_NONE) |
---|
| 622 | { |
---|
| 623 | addr = false; |
---|
| 624 | } |
---|
| 625 | // Average |
---|
| 626 | if (m_resolutionMode == RESOLUTION_AVERAGE) |
---|
| 627 | { |
---|
| 628 | // create 'average rule' |
---|
| 629 | if(print_msg) |
---|
| 630 | System.out.print(inst.toString() + " - " + |
---|
| 631 | ((Instance)rules.elementAt(i)).toString()); |
---|
| 632 | inst = averageRule(inst, (Instance)rules.elementAt(i)); |
---|
| 633 | if(print_msg) |
---|
| 634 | System.out.println(" : 2Average : " + inst.toString()); |
---|
| 635 | // Remove current rule |
---|
| 636 | rules.removeElementAt(i); |
---|
| 637 | // test average rule |
---|
| 638 | addr = true; |
---|
| 639 | i = 0; |
---|
| 640 | } |
---|
| 641 | continue; |
---|
| 642 | } |
---|
| 643 | else if(isGreaterOutput((Instance)rules.elementAt(i),inst)) |
---|
| 644 | { |
---|
| 645 | |
---|
| 646 | // Conservative |
---|
| 647 | if (m_resolutionMode == RESOLUTION_CONSERVATIVE) |
---|
| 648 | { |
---|
| 649 | //discard rule i |
---|
| 650 | rules.removeElementAt(i); |
---|
| 651 | i--; |
---|
| 652 | } |
---|
| 653 | //random |
---|
| 654 | if (m_resolutionMode == RESOLUTION_RANDOM) |
---|
| 655 | { |
---|
| 656 | // select random rule to keep |
---|
| 657 | if(rand.nextBoolean()) |
---|
| 658 | { |
---|
| 659 | addr = addr || true; |
---|
| 660 | rules.removeElementAt(i); |
---|
| 661 | i--; |
---|
| 662 | } |
---|
| 663 | else |
---|
| 664 | addr = false; |
---|
| 665 | } |
---|
| 666 | // No Conflict Resolution, ignore new rule |
---|
| 667 | if (m_resolutionMode == RESOLUTION_NONE) |
---|
| 668 | { |
---|
| 669 | addr = false; |
---|
| 670 | } |
---|
| 671 | // Average |
---|
| 672 | if (m_resolutionMode == RESOLUTION_AVERAGE) |
---|
| 673 | { |
---|
| 674 | // create 'average rule' |
---|
| 675 | if(print_msg) |
---|
| 676 | System.out.print(inst.toString() + " - " + |
---|
| 677 | ((Instance)rules.elementAt(i)).toString()); |
---|
| 678 | inst = averageRule(inst, (Instance)rules.elementAt(i)); |
---|
| 679 | if(print_msg) |
---|
| 680 | System.out.println(" : Average : " + inst.toString()); |
---|
| 681 | // Remove current rule |
---|
| 682 | rules.removeElementAt(i); |
---|
| 683 | // test average rule |
---|
| 684 | addr = true; |
---|
| 685 | i = 0; |
---|
| 686 | } |
---|
| 687 | continue; |
---|
| 688 | } |
---|
| 689 | } |
---|
| 690 | } |
---|
| 691 | |
---|
| 692 | if(b) System.out.println("broke out of loop totally!!"); |
---|
| 693 | // insert the new rule if it has not been discarded, based on |
---|
| 694 | // output order (decreasing order) |
---|
| 695 | // System.out.println("Adding Rule"); |
---|
| 696 | int i = 0; |
---|
| 697 | double output = inst.toDoubleArray()[classindex]; |
---|
| 698 | |
---|
| 699 | // Check Rule Base Limit |
---|
| 700 | if(addr && ( upperBaseLimit <= 0 || upperBaseLimit > rules.size())) |
---|
| 701 | { |
---|
| 702 | while(i < rules.size() && |
---|
| 703 | (((Instance)rules.elementAt(i)).toDoubleArray()) |
---|
| 704 | [classindex] > output) i++; |
---|
| 705 | |
---|
| 706 | if(i == rules.size()) |
---|
| 707 | rules.addElement(inst); |
---|
| 708 | else if(i == 0) |
---|
| 709 | rules.insertElementAt(inst, 0); |
---|
| 710 | else |
---|
| 711 | rules.insertElementAt(inst, i); |
---|
| 712 | } |
---|
| 713 | return; |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | public double classify(Instance inst) |
---|
| 717 | { |
---|
| 718 | Instance tInst; |
---|
| 719 | |
---|
| 720 | // fill in missing values |
---|
| 721 | fillMissing(inst); |
---|
| 722 | |
---|
| 723 | // Conservative |
---|
| 724 | if (m_classificationMode == CLASSIFICATION_CONSERVATIVE) |
---|
| 725 | { |
---|
| 726 | for(int i=0; i < rules.size(); i++) |
---|
| 727 | { |
---|
| 728 | tInst = (Instance)rules.elementAt(i); |
---|
| 729 | if(isGreaterInput(inst, tInst)) |
---|
| 730 | { |
---|
| 731 | return (tInst.toDoubleArray())[inst.classIndex()]; |
---|
| 732 | } |
---|
| 733 | } |
---|
| 734 | |
---|
| 735 | return (((Instance)rules.lastElement()).toDoubleArray()) |
---|
| 736 | [inst.classIndex()]; |
---|
| 737 | } |
---|
| 738 | // Nearest Neightbour |
---|
| 739 | int cDist = -1; |
---|
| 740 | int elem = -1; |
---|
| 741 | if (m_classificationMode == CLASSIFICATION_NEARESTNEIGHBOUR) |
---|
| 742 | { |
---|
| 743 | for(int i=0; i < rules.size(); i++) |
---|
| 744 | { |
---|
| 745 | tInst = (Instance)rules.elementAt(i); |
---|
| 746 | if(cDist == -1 || (distance(inst, tInst) < cDist)) |
---|
| 747 | { |
---|
| 748 | cDist = distance(inst, tInst); |
---|
| 749 | elem = i; |
---|
| 750 | } |
---|
| 751 | if(print_msg) |
---|
| 752 | System.out.println(((Instance)rules.elementAt(i)).toString() + |
---|
| 753 | " - " + |
---|
| 754 | inst.toString() + |
---|
| 755 | ": Distance is " + distance(inst,tInst)); |
---|
| 756 | } |
---|
| 757 | if(print_msg) |
---|
| 758 | System.out.println(((Instance)rules.elementAt(elem)).toString() + |
---|
| 759 | " is closest to " + |
---|
| 760 | inst.toString()); |
---|
| 761 | |
---|
| 762 | return (((Instance)rules.elementAt(elem)).toDoubleArray()) |
---|
| 763 | [inst.classIndex()]; |
---|
| 764 | } |
---|
| 765 | |
---|
| 766 | return 0; |
---|
| 767 | } |
---|
| 768 | } |
---|
| 769 | |
---|
| 770 | private OLMRules olmrules; |
---|
| 771 | /** |
---|
| 772 | * Generates the classifier. |
---|
| 773 | * |
---|
| 774 | * @param data the data to be used |
---|
| 775 | * @exception Exception if the classifier can't built successfully |
---|
| 776 | */ |
---|
| 777 | public void buildClassifier(Instances data) throws Exception |
---|
| 778 | { |
---|
| 779 | // can classifier handle the data? |
---|
| 780 | getCapabilities().testWithFail(data); |
---|
| 781 | |
---|
| 782 | data = new Instances(data); |
---|
| 783 | numExamples = data.numInstances(); |
---|
| 784 | Enumeration e = data.enumerateInstances(); |
---|
| 785 | |
---|
| 786 | // Checks on data not implemented. |
---|
| 787 | |
---|
| 788 | // reset random generator to produce the same results each time |
---|
| 789 | rand = new Random(0); |
---|
| 790 | // Options |
---|
| 791 | if(print_msg) |
---|
| 792 | System.out.println("Resolution mode: " + m_resolutionMode); |
---|
| 793 | if(print_msg) |
---|
| 794 | System.out.println("Classification: " + m_classificationMode); |
---|
| 795 | if(print_msg) |
---|
| 796 | System.out.println("Rule size: " + upperBaseLimit); |
---|
| 797 | |
---|
| 798 | // initialize rules set. |
---|
| 799 | olmrules = new OLMRules(); |
---|
| 800 | int i = 0; |
---|
| 801 | // fill in rules. |
---|
| 802 | if(print_msg) |
---|
| 803 | System.out.println("Printing Rule Process"); |
---|
| 804 | while(e.hasMoreElements()) |
---|
| 805 | { |
---|
| 806 | Instance ins = (Instance)e.nextElement(); |
---|
| 807 | if(print_msg) |
---|
| 808 | System.out.println("Trying to add (" + |
---|
| 809 | ins.toString() + ") Rule"); |
---|
| 810 | olmrules.addRule(ins); |
---|
| 811 | if(print_msg) |
---|
| 812 | System.out.println("Result:"); |
---|
| 813 | if(print_msg) |
---|
| 814 | olmrules.printRules(); |
---|
| 815 | i++; |
---|
| 816 | |
---|
| 817 | // System.out.println("Added rule " + i); |
---|
| 818 | } |
---|
| 819 | //System.out.println("Rule set built!!"); |
---|
| 820 | |
---|
| 821 | // print rule set: |
---|
| 822 | |
---|
| 823 | } |
---|
| 824 | |
---|
| 825 | /** |
---|
| 826 | * Prints a description of the classifier. |
---|
| 827 | * |
---|
| 828 | * @return a description of the classifier as a string |
---|
| 829 | */ |
---|
| 830 | public String toString() { |
---|
| 831 | return "OLM"; |
---|
| 832 | } |
---|
| 833 | |
---|
| 834 | /** |
---|
| 835 | * Returns the revision string. |
---|
| 836 | * |
---|
| 837 | * @return the revision |
---|
| 838 | */ |
---|
| 839 | public String getRevision() { |
---|
| 840 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 841 | } |
---|
| 842 | |
---|
| 843 | /** |
---|
| 844 | * Main method for testing this class |
---|
| 845 | */ |
---|
| 846 | public static void main(String[] args) { |
---|
| 847 | |
---|
| 848 | runClassifier(new OLM(), args); |
---|
| 849 | } |
---|
| 850 | } |
---|
| 851 | |
---|