1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * DecisionTable.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.rules; |
---|
24 | |
---|
25 | import weka.attributeSelection.ASSearch; |
---|
26 | import weka.attributeSelection.BestFirst; |
---|
27 | import weka.attributeSelection.SubsetEvaluator; |
---|
28 | import weka.attributeSelection.ASEvaluation; |
---|
29 | import weka.classifiers.Classifier; |
---|
30 | import weka.classifiers.AbstractClassifier; |
---|
31 | import weka.classifiers.Evaluation; |
---|
32 | import weka.classifiers.lazy.IBk; |
---|
33 | import weka.core.AdditionalMeasureProducer; |
---|
34 | import weka.core.Capabilities; |
---|
35 | import weka.core.Instance; |
---|
36 | import weka.core.Instances; |
---|
37 | import weka.core.Option; |
---|
38 | import weka.core.OptionHandler; |
---|
39 | import weka.core.RevisionUtils; |
---|
40 | import weka.core.SelectedTag; |
---|
41 | import weka.core.Tag; |
---|
42 | import weka.core.TechnicalInformation; |
---|
43 | import weka.core.TechnicalInformationHandler; |
---|
44 | import weka.core.Utils; |
---|
45 | import weka.core.WeightedInstancesHandler; |
---|
46 | import weka.core.Capabilities.Capability; |
---|
47 | import weka.core.TechnicalInformation.Field; |
---|
48 | import weka.core.TechnicalInformation.Type; |
---|
49 | import weka.filters.Filter; |
---|
50 | import weka.filters.unsupervised.attribute.Remove; |
---|
51 | |
---|
52 | import java.util.Arrays; |
---|
53 | import java.util.BitSet; |
---|
54 | import java.util.Enumeration; |
---|
55 | import java.util.Hashtable; |
---|
56 | import java.util.Random; |
---|
57 | import java.util.Vector; |
---|
58 | |
---|
59 | /** |
---|
60 | <!-- globalinfo-start --> |
---|
61 | * Class for building and using a simple decision table majority classifier.<br/> |
---|
62 | * <br/> |
---|
63 | * For more information see: <br/> |
---|
64 | * <br/> |
---|
65 | * Ron Kohavi: The Power of Decision Tables. In: 8th European Conference on Machine Learning, 174-189, 1995. |
---|
66 | * <p/> |
---|
67 | <!-- globalinfo-end --> |
---|
68 | * |
---|
69 | <!-- technical-bibtex-start --> |
---|
70 | * BibTeX: |
---|
71 | * <pre> |
---|
72 | * @inproceedings{Kohavi1995, |
---|
73 | * author = {Ron Kohavi}, |
---|
74 | * booktitle = {8th European Conference on Machine Learning}, |
---|
75 | * pages = {174-189}, |
---|
76 | * publisher = {Springer}, |
---|
77 | * title = {The Power of Decision Tables}, |
---|
78 | * year = {1995} |
---|
79 | * } |
---|
80 | * </pre> |
---|
81 | * <p/> |
---|
82 | <!-- technical-bibtex-end --> |
---|
83 | * |
---|
84 | <!-- options-start --> |
---|
85 | * Valid options are: <p/> |
---|
86 | * |
---|
87 | * <pre> -S <search method specification> |
---|
88 | * Full class name of search method, followed |
---|
89 | * by its options. |
---|
90 | * eg: "weka.attributeSelection.BestFirst -D 1" |
---|
91 | * (default weka.attributeSelection.BestFirst)</pre> |
---|
92 | * |
---|
93 | * <pre> -X <number of folds> |
---|
94 | * Use cross validation to evaluate features. |
---|
95 | * Use number of folds = 1 for leave one out CV. |
---|
96 | * (Default = leave one out CV)</pre> |
---|
97 | * |
---|
98 | * <pre> -E <acc | rmse | mae | auc> |
---|
99 | * Performance evaluation measure to use for selecting attributes. |
---|
100 | * (Default = accuracy for discrete class and rmse for numeric class)</pre> |
---|
101 | * |
---|
102 | * <pre> -I |
---|
103 | * Use nearest neighbour instead of global table majority.</pre> |
---|
104 | * |
---|
105 | * <pre> -R |
---|
106 | * Display decision table rules. |
---|
107 | * </pre> |
---|
108 | * |
---|
109 | * <pre> |
---|
110 | * Options specific to search method weka.attributeSelection.BestFirst: |
---|
111 | * </pre> |
---|
112 | * |
---|
113 | * <pre> -P <start set> |
---|
114 | * Specify a starting set of attributes. |
---|
115 | * Eg. 1,3,5-7.</pre> |
---|
116 | * |
---|
117 | * <pre> -D <0 = backward | 1 = forward | 2 = bi-directional> |
---|
118 | * Direction of search. (default = 1).</pre> |
---|
119 | * |
---|
120 | * <pre> -N <num> |
---|
121 | * Number of non-improving nodes to |
---|
122 | * consider before terminating search.</pre> |
---|
123 | * |
---|
124 | * <pre> -S <num> |
---|
125 | * Size of lookup cache for evaluated subsets. |
---|
126 | * Expressed as a multiple of the number of |
---|
127 | * attributes in the data set. (default = 1)</pre> |
---|
128 | * |
---|
129 | <!-- options-end --> |
---|
130 | * |
---|
131 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
132 | * @version $Revision: 5987 $ |
---|
133 | */ |
---|
134 | public class DecisionTable |
---|
135 | extends AbstractClassifier |
---|
136 | implements OptionHandler, WeightedInstancesHandler, |
---|
137 | AdditionalMeasureProducer, TechnicalInformationHandler { |
---|
138 | |
---|
139 | /** for serialization */ |
---|
140 | static final long serialVersionUID = 2888557078165701326L; |
---|
141 | |
---|
142 | /** The hashtable used to hold training instances */ |
---|
143 | protected Hashtable m_entries; |
---|
144 | |
---|
145 | /** The class priors to use when there is no match in the table */ |
---|
146 | protected double [] m_classPriorCounts; |
---|
147 | protected double [] m_classPriors; |
---|
148 | |
---|
149 | /** Holds the final feature set */ |
---|
150 | protected int [] m_decisionFeatures; |
---|
151 | |
---|
152 | /** Discretization filter */ |
---|
153 | protected Filter m_disTransform; |
---|
154 | |
---|
155 | /** Filter used to remove columns discarded by feature selection */ |
---|
156 | protected Remove m_delTransform; |
---|
157 | |
---|
158 | /** IB1 used to classify non matching instances rather than majority class */ |
---|
159 | protected IBk m_ibk; |
---|
160 | |
---|
161 | /** Holds the original training instances */ |
---|
162 | protected Instances m_theInstances; |
---|
163 | |
---|
164 | /** Holds the final feature selected set of instances */ |
---|
165 | protected Instances m_dtInstances; |
---|
166 | |
---|
167 | /** The number of attributes in the dataset */ |
---|
168 | protected int m_numAttributes; |
---|
169 | |
---|
170 | /** The number of instances in the dataset */ |
---|
171 | private int m_numInstances; |
---|
172 | |
---|
173 | /** Class is nominal */ |
---|
174 | protected boolean m_classIsNominal; |
---|
175 | |
---|
176 | /** Use the IBk classifier rather than majority class */ |
---|
177 | protected boolean m_useIBk; |
---|
178 | |
---|
179 | /** Display Rules */ |
---|
180 | protected boolean m_displayRules; |
---|
181 | |
---|
182 | /** Number of folds for cross validating feature sets */ |
---|
183 | private int m_CVFolds; |
---|
184 | |
---|
185 | /** Random numbers for use in cross validation */ |
---|
186 | private Random m_rr; |
---|
187 | |
---|
188 | /** Holds the majority class */ |
---|
189 | protected double m_majority; |
---|
190 | |
---|
191 | /** The search method to use */ |
---|
192 | protected ASSearch m_search = new BestFirst(); |
---|
193 | |
---|
194 | /** Our own internal evaluator */ |
---|
195 | protected ASEvaluation m_evaluator; |
---|
196 | |
---|
197 | /** The evaluation object used to evaluate subsets */ |
---|
198 | protected Evaluation m_evaluation; |
---|
199 | |
---|
200 | /** default is accuracy for discrete class and RMSE for numeric class */ |
---|
201 | public static final int EVAL_DEFAULT = 1; |
---|
202 | public static final int EVAL_ACCURACY = 2; |
---|
203 | public static final int EVAL_RMSE = 3; |
---|
204 | public static final int EVAL_MAE = 4; |
---|
205 | public static final int EVAL_AUC = 5; |
---|
206 | |
---|
207 | public static final Tag [] TAGS_EVALUATION = { |
---|
208 | new Tag(EVAL_DEFAULT, "Default: accuracy (discrete class); RMSE (numeric class)"), |
---|
209 | new Tag(EVAL_ACCURACY, "Accuracy (discrete class only"), |
---|
210 | new Tag(EVAL_RMSE, "RMSE (of the class probabilities for discrete class)"), |
---|
211 | new Tag(EVAL_MAE, "MAE (of the class probabilities for discrete class)"), |
---|
212 | new Tag(EVAL_AUC, "AUC (area under the ROC curve - discrete class only)") |
---|
213 | }; |
---|
214 | |
---|
215 | protected int m_evaluationMeasure = EVAL_DEFAULT; |
---|
216 | |
---|
217 | /** |
---|
218 | * Returns a string describing classifier |
---|
219 | * @return a description suitable for |
---|
220 | * displaying in the explorer/experimenter gui |
---|
221 | */ |
---|
222 | public String globalInfo() { |
---|
223 | |
---|
224 | return |
---|
225 | "Class for building and using a simple decision table majority " |
---|
226 | + "classifier.\n\n" |
---|
227 | + "For more information see: \n\n" |
---|
228 | + getTechnicalInformation().toString(); |
---|
229 | } |
---|
230 | |
---|
231 | /** |
---|
232 | * Returns an instance of a TechnicalInformation object, containing |
---|
233 | * detailed information about the technical background of this class, |
---|
234 | * e.g., paper reference or book this class is based on. |
---|
235 | * |
---|
236 | * @return the technical information about this class |
---|
237 | */ |
---|
238 | public TechnicalInformation getTechnicalInformation() { |
---|
239 | TechnicalInformation result; |
---|
240 | |
---|
241 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
242 | result.setValue(Field.AUTHOR, "Ron Kohavi"); |
---|
243 | result.setValue(Field.TITLE, "The Power of Decision Tables"); |
---|
244 | result.setValue(Field.BOOKTITLE, "8th European Conference on Machine Learning"); |
---|
245 | result.setValue(Field.YEAR, "1995"); |
---|
246 | result.setValue(Field.PAGES, "174-189"); |
---|
247 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
248 | |
---|
249 | return result; |
---|
250 | } |
---|
251 | |
---|
252 | /** |
---|
253 | * Inserts an instance into the hash table |
---|
254 | * |
---|
255 | * @param inst instance to be inserted |
---|
256 | * @param instA to create the hash key from |
---|
257 | * @throws Exception if the instance can't be inserted |
---|
258 | */ |
---|
259 | private void insertIntoTable(Instance inst, double [] instA) |
---|
260 | throws Exception { |
---|
261 | |
---|
262 | double [] tempClassDist2; |
---|
263 | double [] newDist; |
---|
264 | DecisionTableHashKey thekey; |
---|
265 | |
---|
266 | if (instA != null) { |
---|
267 | thekey = new DecisionTableHashKey(instA); |
---|
268 | } else { |
---|
269 | thekey = new DecisionTableHashKey(inst, inst.numAttributes(), false); |
---|
270 | } |
---|
271 | |
---|
272 | // see if this one is already in the table |
---|
273 | tempClassDist2 = (double []) m_entries.get(thekey); |
---|
274 | if (tempClassDist2 == null) { |
---|
275 | if (m_classIsNominal) { |
---|
276 | newDist = new double [m_theInstances.classAttribute().numValues()]; |
---|
277 | |
---|
278 | //Leplace estimation |
---|
279 | for (int i = 0; i < m_theInstances.classAttribute().numValues(); i++) { |
---|
280 | newDist[i] = 1.0; |
---|
281 | } |
---|
282 | |
---|
283 | newDist[(int)inst.classValue()] = inst.weight(); |
---|
284 | |
---|
285 | // add to the table |
---|
286 | m_entries.put(thekey, newDist); |
---|
287 | } else { |
---|
288 | newDist = new double [2]; |
---|
289 | newDist[0] = inst.classValue() * inst.weight(); |
---|
290 | newDist[1] = inst.weight(); |
---|
291 | |
---|
292 | // add to the table |
---|
293 | m_entries.put(thekey, newDist); |
---|
294 | } |
---|
295 | } else { |
---|
296 | |
---|
297 | // update the distribution for this instance |
---|
298 | if (m_classIsNominal) { |
---|
299 | tempClassDist2[(int)inst.classValue()]+=inst.weight(); |
---|
300 | |
---|
301 | // update the table |
---|
302 | m_entries.put(thekey, tempClassDist2); |
---|
303 | } else { |
---|
304 | tempClassDist2[0] += (inst.classValue() * inst.weight()); |
---|
305 | tempClassDist2[1] += inst.weight(); |
---|
306 | |
---|
307 | // update the table |
---|
308 | m_entries.put(thekey, tempClassDist2); |
---|
309 | } |
---|
310 | } |
---|
311 | } |
---|
312 | |
---|
313 | /** |
---|
314 | * Classifies an instance for internal leave one out cross validation |
---|
315 | * of feature sets |
---|
316 | * |
---|
317 | * @param instance instance to be "left out" and classified |
---|
318 | * @param instA feature values of the selected features for the instance |
---|
319 | * @return the classification of the instance |
---|
320 | * @throws Exception if something goes wrong |
---|
321 | */ |
---|
322 | double evaluateInstanceLeaveOneOut(Instance instance, double [] instA) |
---|
323 | throws Exception { |
---|
324 | |
---|
325 | DecisionTableHashKey thekey; |
---|
326 | double [] tempDist; |
---|
327 | double [] normDist; |
---|
328 | |
---|
329 | thekey = new DecisionTableHashKey(instA); |
---|
330 | if (m_classIsNominal) { |
---|
331 | |
---|
332 | // if this one is not in the table |
---|
333 | if ((tempDist = (double [])m_entries.get(thekey)) == null) { |
---|
334 | throw new Error("This should never happen!"); |
---|
335 | } else { |
---|
336 | normDist = new double [tempDist.length]; |
---|
337 | System.arraycopy(tempDist,0,normDist,0,tempDist.length); |
---|
338 | normDist[(int)instance.classValue()] -= instance.weight(); |
---|
339 | |
---|
340 | // update the table |
---|
341 | // first check to see if the class counts are all zero now |
---|
342 | boolean ok = false; |
---|
343 | for (int i=0;i<normDist.length;i++) { |
---|
344 | if (Utils.gr(normDist[i],1.0)) { |
---|
345 | ok = true; |
---|
346 | break; |
---|
347 | } |
---|
348 | } |
---|
349 | |
---|
350 | // downdate the class prior counts |
---|
351 | m_classPriorCounts[(int)instance.classValue()] -= |
---|
352 | instance.weight(); |
---|
353 | double [] classPriors = m_classPriorCounts.clone(); |
---|
354 | Utils.normalize(classPriors); |
---|
355 | if (!ok) { // majority class |
---|
356 | normDist = classPriors; |
---|
357 | } |
---|
358 | |
---|
359 | m_classPriorCounts[(int)instance.classValue()] += |
---|
360 | instance.weight(); |
---|
361 | |
---|
362 | //if (ok) { |
---|
363 | Utils.normalize(normDist); |
---|
364 | if (m_evaluationMeasure == EVAL_AUC) { |
---|
365 | m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, instance); |
---|
366 | } else { |
---|
367 | m_evaluation.evaluateModelOnce(normDist, instance); |
---|
368 | } |
---|
369 | return Utils.maxIndex(normDist); |
---|
370 | /*} else { |
---|
371 | normDist = new double [normDist.length]; |
---|
372 | normDist[(int)m_majority] = 1.0; |
---|
373 | if (m_evaluationMeasure == EVAL_AUC) { |
---|
374 | m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, instance); |
---|
375 | } else { |
---|
376 | m_evaluation.evaluateModelOnce(normDist, instance); |
---|
377 | } |
---|
378 | return m_majority; |
---|
379 | } */ |
---|
380 | } |
---|
381 | // return Utils.maxIndex(tempDist); |
---|
382 | } else { |
---|
383 | |
---|
384 | // see if this one is already in the table |
---|
385 | if ((tempDist = (double[])m_entries.get(thekey)) != null) { |
---|
386 | normDist = new double [tempDist.length]; |
---|
387 | System.arraycopy(tempDist,0,normDist,0,tempDist.length); |
---|
388 | normDist[0] -= (instance.classValue() * instance.weight()); |
---|
389 | normDist[1] -= instance.weight(); |
---|
390 | if (Utils.eq(normDist[1],0.0)) { |
---|
391 | double [] temp = new double[1]; |
---|
392 | temp[0] = m_majority; |
---|
393 | m_evaluation.evaluateModelOnce(temp, instance); |
---|
394 | return m_majority; |
---|
395 | } else { |
---|
396 | double [] temp = new double[1]; |
---|
397 | temp[0] = normDist[0] / normDist[1]; |
---|
398 | m_evaluation.evaluateModelOnce(temp, instance); |
---|
399 | return temp[0]; |
---|
400 | } |
---|
401 | } else { |
---|
402 | throw new Error("This should never happen!"); |
---|
403 | } |
---|
404 | } |
---|
405 | |
---|
406 | // shouldn't get here |
---|
407 | // return 0.0; |
---|
408 | } |
---|
409 | |
---|
410 | /** |
---|
411 | * Calculates the accuracy on a test fold for internal cross validation |
---|
412 | * of feature sets |
---|
413 | * |
---|
414 | * @param fold set of instances to be "left out" and classified |
---|
415 | * @param fs currently selected feature set |
---|
416 | * @return the accuracy for the fold |
---|
417 | * @throws Exception if something goes wrong |
---|
418 | */ |
---|
419 | double evaluateFoldCV(Instances fold, int [] fs) throws Exception { |
---|
420 | |
---|
421 | int i; |
---|
422 | int ruleCount = 0; |
---|
423 | int numFold = fold.numInstances(); |
---|
424 | int numCl = m_theInstances.classAttribute().numValues(); |
---|
425 | double [][] class_distribs = new double [numFold][numCl]; |
---|
426 | double [] instA = new double [fs.length]; |
---|
427 | double [] normDist; |
---|
428 | DecisionTableHashKey thekey; |
---|
429 | double acc = 0.0; |
---|
430 | int classI = m_theInstances.classIndex(); |
---|
431 | Instance inst; |
---|
432 | |
---|
433 | if (m_classIsNominal) { |
---|
434 | normDist = new double [numCl]; |
---|
435 | } else { |
---|
436 | normDist = new double [2]; |
---|
437 | } |
---|
438 | |
---|
439 | // first *remove* instances |
---|
440 | for (i=0;i<numFold;i++) { |
---|
441 | inst = fold.instance(i); |
---|
442 | for (int j=0;j<fs.length;j++) { |
---|
443 | if (fs[j] == classI) { |
---|
444 | instA[j] = Double.MAX_VALUE; // missing for the class |
---|
445 | } else if (inst.isMissing(fs[j])) { |
---|
446 | instA[j] = Double.MAX_VALUE; |
---|
447 | } else{ |
---|
448 | instA[j] = inst.value(fs[j]); |
---|
449 | } |
---|
450 | } |
---|
451 | thekey = new DecisionTableHashKey(instA); |
---|
452 | if ((class_distribs[i] = (double [])m_entries.get(thekey)) == null) { |
---|
453 | throw new Error("This should never happen!"); |
---|
454 | } else { |
---|
455 | if (m_classIsNominal) { |
---|
456 | class_distribs[i][(int)inst.classValue()] -= inst.weight(); |
---|
457 | } else { |
---|
458 | class_distribs[i][0] -= (inst.classValue() * inst.weight()); |
---|
459 | class_distribs[i][1] -= inst.weight(); |
---|
460 | } |
---|
461 | ruleCount++; |
---|
462 | } |
---|
463 | m_classPriorCounts[(int)inst.classValue()] -= |
---|
464 | inst.weight(); |
---|
465 | } |
---|
466 | double [] classPriors = m_classPriorCounts.clone(); |
---|
467 | Utils.normalize(classPriors); |
---|
468 | |
---|
469 | // now classify instances |
---|
470 | for (i=0;i<numFold;i++) { |
---|
471 | inst = fold.instance(i); |
---|
472 | System.arraycopy(class_distribs[i],0,normDist,0,normDist.length); |
---|
473 | if (m_classIsNominal) { |
---|
474 | boolean ok = false; |
---|
475 | for (int j=0;j<normDist.length;j++) { |
---|
476 | if (Utils.gr(normDist[j],1.0)) { |
---|
477 | ok = true; |
---|
478 | break; |
---|
479 | } |
---|
480 | } |
---|
481 | |
---|
482 | if (!ok) { // majority class |
---|
483 | normDist = classPriors.clone(); |
---|
484 | } |
---|
485 | |
---|
486 | // if (ok) { |
---|
487 | Utils.normalize(normDist); |
---|
488 | if (m_evaluationMeasure == EVAL_AUC) { |
---|
489 | m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, inst); |
---|
490 | } else { |
---|
491 | m_evaluation.evaluateModelOnce(normDist, inst); |
---|
492 | } |
---|
493 | /* } else { |
---|
494 | normDist[(int)m_majority] = 1.0; |
---|
495 | if (m_evaluationMeasure == EVAL_AUC) { |
---|
496 | m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, inst); |
---|
497 | } else { |
---|
498 | m_evaluation.evaluateModelOnce(normDist, inst); |
---|
499 | } |
---|
500 | } */ |
---|
501 | } else { |
---|
502 | if (Utils.eq(normDist[1],0.0)) { |
---|
503 | double [] temp = new double[1]; |
---|
504 | temp[0] = m_majority; |
---|
505 | m_evaluation.evaluateModelOnce(temp, inst); |
---|
506 | } else { |
---|
507 | double [] temp = new double[1]; |
---|
508 | temp[0] = normDist[0] / normDist[1]; |
---|
509 | m_evaluation.evaluateModelOnce(temp, inst); |
---|
510 | } |
---|
511 | } |
---|
512 | } |
---|
513 | |
---|
514 | // now re-insert instances |
---|
515 | for (i=0;i<numFold;i++) { |
---|
516 | inst = fold.instance(i); |
---|
517 | |
---|
518 | m_classPriorCounts[(int)inst.classValue()] += |
---|
519 | inst.weight(); |
---|
520 | |
---|
521 | if (m_classIsNominal) { |
---|
522 | class_distribs[i][(int)inst.classValue()] += inst.weight(); |
---|
523 | } else { |
---|
524 | class_distribs[i][0] += (inst.classValue() * inst.weight()); |
---|
525 | class_distribs[i][1] += inst.weight(); |
---|
526 | } |
---|
527 | } |
---|
528 | return acc; |
---|
529 | } |
---|
530 | |
---|
531 | |
---|
532 | /** |
---|
533 | * Evaluates a feature subset by cross validation |
---|
534 | * |
---|
535 | * @param feature_set the subset to be evaluated |
---|
536 | * @param num_atts the number of attributes in the subset |
---|
537 | * @return the estimated accuracy |
---|
538 | * @throws Exception if subset can't be evaluated |
---|
539 | */ |
---|
540 | protected double estimatePerformance(BitSet feature_set, int num_atts) |
---|
541 | throws Exception { |
---|
542 | |
---|
543 | m_evaluation = new Evaluation(m_theInstances); |
---|
544 | int i; |
---|
545 | int [] fs = new int [num_atts]; |
---|
546 | |
---|
547 | double [] instA = new double [num_atts]; |
---|
548 | int classI = m_theInstances.classIndex(); |
---|
549 | |
---|
550 | int index = 0; |
---|
551 | for (i=0;i<m_numAttributes;i++) { |
---|
552 | if (feature_set.get(i)) { |
---|
553 | fs[index++] = i; |
---|
554 | } |
---|
555 | } |
---|
556 | |
---|
557 | // create new hash table |
---|
558 | m_entries = new Hashtable((int)(m_theInstances.numInstances() * 1.5)); |
---|
559 | |
---|
560 | // insert instances into the hash table |
---|
561 | for (i=0;i<m_numInstances;i++) { |
---|
562 | |
---|
563 | Instance inst = m_theInstances.instance(i); |
---|
564 | for (int j=0;j<fs.length;j++) { |
---|
565 | if (fs[j] == classI) { |
---|
566 | instA[j] = Double.MAX_VALUE; // missing for the class |
---|
567 | } else if (inst.isMissing(fs[j])) { |
---|
568 | instA[j] = Double.MAX_VALUE; |
---|
569 | } else { |
---|
570 | instA[j] = inst.value(fs[j]); |
---|
571 | } |
---|
572 | } |
---|
573 | insertIntoTable(inst, instA); |
---|
574 | } |
---|
575 | |
---|
576 | |
---|
577 | if (m_CVFolds == 1) { |
---|
578 | |
---|
579 | // calculate leave one out error |
---|
580 | for (i=0;i<m_numInstances;i++) { |
---|
581 | Instance inst = m_theInstances.instance(i); |
---|
582 | for (int j=0;j<fs.length;j++) { |
---|
583 | if (fs[j] == classI) { |
---|
584 | instA[j] = Double.MAX_VALUE; // missing for the class |
---|
585 | } else if (inst.isMissing(fs[j])) { |
---|
586 | instA[j] = Double.MAX_VALUE; |
---|
587 | } else { |
---|
588 | instA[j] = inst.value(fs[j]); |
---|
589 | } |
---|
590 | } |
---|
591 | evaluateInstanceLeaveOneOut(inst, instA); |
---|
592 | } |
---|
593 | } else { |
---|
594 | m_theInstances.randomize(m_rr); |
---|
595 | m_theInstances.stratify(m_CVFolds); |
---|
596 | |
---|
597 | // calculate 10 fold cross validation error |
---|
598 | for (i=0;i<m_CVFolds;i++) { |
---|
599 | Instances insts = m_theInstances.testCV(m_CVFolds,i); |
---|
600 | evaluateFoldCV(insts, fs); |
---|
601 | } |
---|
602 | } |
---|
603 | |
---|
604 | switch (m_evaluationMeasure) { |
---|
605 | case EVAL_DEFAULT: |
---|
606 | if (m_classIsNominal) { |
---|
607 | return m_evaluation.pctCorrect(); |
---|
608 | } |
---|
609 | return -m_evaluation.rootMeanSquaredError(); |
---|
610 | case EVAL_ACCURACY: |
---|
611 | return m_evaluation.pctCorrect(); |
---|
612 | case EVAL_RMSE: |
---|
613 | return -m_evaluation.rootMeanSquaredError(); |
---|
614 | case EVAL_MAE: |
---|
615 | return -m_evaluation.meanAbsoluteError(); |
---|
616 | case EVAL_AUC: |
---|
617 | double [] classPriors = m_evaluation.getClassPriors(); |
---|
618 | Utils.normalize(classPriors); |
---|
619 | double weightedAUC = 0; |
---|
620 | for (i = 0; i < m_theInstances.classAttribute().numValues(); i++) { |
---|
621 | double tempAUC = m_evaluation.areaUnderROC(i); |
---|
622 | if (!Utils.isMissingValue(tempAUC)) { |
---|
623 | weightedAUC += (classPriors[i] * tempAUC); |
---|
624 | } else { |
---|
625 | System.err.println("Undefined AUC!!"); |
---|
626 | } |
---|
627 | } |
---|
628 | return weightedAUC; |
---|
629 | } |
---|
630 | // shouldn't get here |
---|
631 | return 0.0; |
---|
632 | } |
---|
633 | |
---|
634 | /** |
---|
635 | * Returns a String representation of a feature subset |
---|
636 | * |
---|
637 | * @param sub BitSet representation of a subset |
---|
638 | * @return String containing subset |
---|
639 | */ |
---|
640 | private String printSub(BitSet sub) { |
---|
641 | |
---|
642 | String s=""; |
---|
643 | for (int jj=0;jj<m_numAttributes;jj++) { |
---|
644 | if (sub.get(jj)) { |
---|
645 | s += " "+(jj+1); |
---|
646 | } |
---|
647 | } |
---|
648 | return s; |
---|
649 | } |
---|
650 | |
---|
651 | /** |
---|
652 | * Resets the options. |
---|
653 | */ |
---|
654 | protected void resetOptions() { |
---|
655 | |
---|
656 | m_entries = null; |
---|
657 | m_decisionFeatures = null; |
---|
658 | m_useIBk = false; |
---|
659 | m_CVFolds = 1; |
---|
660 | m_displayRules = false; |
---|
661 | m_evaluationMeasure = EVAL_DEFAULT; |
---|
662 | } |
---|
663 | |
---|
664 | /** |
---|
665 | * Constructor for a DecisionTable |
---|
666 | */ |
---|
667 | public DecisionTable() { |
---|
668 | |
---|
669 | resetOptions(); |
---|
670 | } |
---|
671 | |
---|
672 | /** |
---|
673 | * Returns an enumeration describing the available options. |
---|
674 | * |
---|
675 | * @return an enumeration of all the available options. |
---|
676 | */ |
---|
677 | public Enumeration listOptions() { |
---|
678 | |
---|
679 | Vector newVector = new Vector(7); |
---|
680 | |
---|
681 | newVector.addElement(new Option( |
---|
682 | "\tFull class name of search method, followed\n" |
---|
683 | + "\tby its options.\n" |
---|
684 | + "\teg: \"weka.attributeSelection.BestFirst -D 1\"\n" |
---|
685 | + "\t(default weka.attributeSelection.BestFirst)", |
---|
686 | "S", 1, "-S <search method specification>")); |
---|
687 | |
---|
688 | newVector.addElement(new Option( |
---|
689 | "\tUse cross validation to evaluate features.\n" + |
---|
690 | "\tUse number of folds = 1 for leave one out CV.\n" + |
---|
691 | "\t(Default = leave one out CV)", |
---|
692 | "X", 1, "-X <number of folds>")); |
---|
693 | |
---|
694 | newVector.addElement(new Option( |
---|
695 | "\tPerformance evaluation measure to use for selecting attributes.\n" + |
---|
696 | "\t(Default = accuracy for discrete class and rmse for numeric class)", |
---|
697 | "E", 1, "-E <acc | rmse | mae | auc>")); |
---|
698 | |
---|
699 | newVector.addElement(new Option( |
---|
700 | "\tUse nearest neighbour instead of global table majority.", |
---|
701 | "I", 0, "-I")); |
---|
702 | |
---|
703 | newVector.addElement(new Option( |
---|
704 | "\tDisplay decision table rules.\n", |
---|
705 | "R", 0, "-R")); |
---|
706 | |
---|
707 | newVector.addElement(new Option( |
---|
708 | "", |
---|
709 | "", 0, "\nOptions specific to search method " |
---|
710 | + m_search.getClass().getName() + ":")); |
---|
711 | Enumeration enu = ((OptionHandler)m_search).listOptions(); |
---|
712 | while (enu.hasMoreElements()) { |
---|
713 | newVector.addElement(enu.nextElement()); |
---|
714 | } |
---|
715 | return newVector.elements(); |
---|
716 | } |
---|
717 | |
---|
718 | /** |
---|
719 | * Returns the tip text for this property |
---|
720 | * @return tip text for this property suitable for |
---|
721 | * displaying in the explorer/experimenter gui |
---|
722 | */ |
---|
723 | public String crossValTipText() { |
---|
724 | return "Sets the number of folds for cross validation (1 = leave one out)."; |
---|
725 | } |
---|
726 | |
---|
727 | /** |
---|
728 | * Sets the number of folds for cross validation (1 = leave one out) |
---|
729 | * |
---|
730 | * @param folds the number of folds |
---|
731 | */ |
---|
732 | public void setCrossVal(int folds) { |
---|
733 | |
---|
734 | m_CVFolds = folds; |
---|
735 | } |
---|
736 | |
---|
737 | /** |
---|
738 | * Gets the number of folds for cross validation |
---|
739 | * |
---|
740 | * @return the number of cross validation folds |
---|
741 | */ |
---|
742 | public int getCrossVal() { |
---|
743 | |
---|
744 | return m_CVFolds; |
---|
745 | } |
---|
746 | |
---|
747 | /** |
---|
748 | * Returns the tip text for this property |
---|
749 | * @return tip text for this property suitable for |
---|
750 | * displaying in the explorer/experimenter gui |
---|
751 | */ |
---|
752 | public String useIBkTipText() { |
---|
753 | return "Sets whether IBk should be used instead of the majority class."; |
---|
754 | } |
---|
755 | |
---|
756 | /** |
---|
757 | * Sets whether IBk should be used instead of the majority class |
---|
758 | * |
---|
759 | * @param ibk true if IBk is to be used |
---|
760 | */ |
---|
761 | public void setUseIBk(boolean ibk) { |
---|
762 | |
---|
763 | m_useIBk = ibk; |
---|
764 | } |
---|
765 | |
---|
766 | /** |
---|
767 | * Gets whether IBk is being used instead of the majority class |
---|
768 | * |
---|
769 | * @return true if IBk is being used |
---|
770 | */ |
---|
771 | public boolean getUseIBk() { |
---|
772 | |
---|
773 | return m_useIBk; |
---|
774 | } |
---|
775 | |
---|
776 | /** |
---|
777 | * Returns the tip text for this property |
---|
778 | * @return tip text for this property suitable for |
---|
779 | * displaying in the explorer/experimenter gui |
---|
780 | */ |
---|
781 | public String displayRulesTipText() { |
---|
782 | return "Sets whether rules are to be printed."; |
---|
783 | } |
---|
784 | |
---|
785 | /** |
---|
786 | * Sets whether rules are to be printed |
---|
787 | * |
---|
788 | * @param rules true if rules are to be printed |
---|
789 | */ |
---|
790 | public void setDisplayRules(boolean rules) { |
---|
791 | |
---|
792 | m_displayRules = rules; |
---|
793 | } |
---|
794 | |
---|
795 | /** |
---|
796 | * Gets whether rules are being printed |
---|
797 | * |
---|
798 | * @return true if rules are being printed |
---|
799 | */ |
---|
800 | public boolean getDisplayRules() { |
---|
801 | |
---|
802 | return m_displayRules; |
---|
803 | } |
---|
804 | |
---|
805 | /** |
---|
806 | * Returns the tip text for this property |
---|
807 | * @return tip text for this property suitable for |
---|
808 | * displaying in the explorer/experimenter gui |
---|
809 | */ |
---|
810 | public String searchTipText() { |
---|
811 | return "The search method used to find good attribute combinations for the " |
---|
812 | + "decision table."; |
---|
813 | } |
---|
814 | /** |
---|
815 | * Sets the search method to use |
---|
816 | * |
---|
817 | * @param search |
---|
818 | */ |
---|
819 | public void setSearch(ASSearch search) { |
---|
820 | m_search = search; |
---|
821 | } |
---|
822 | |
---|
823 | /** |
---|
824 | * Gets the current search method |
---|
825 | * |
---|
826 | * @return the search method used |
---|
827 | */ |
---|
828 | public ASSearch getSearch() { |
---|
829 | return m_search; |
---|
830 | } |
---|
831 | |
---|
832 | /** |
---|
833 | * Returns the tip text for this property |
---|
834 | * @return tip text for this property suitable for |
---|
835 | * displaying in the explorer/experimenter gui |
---|
836 | */ |
---|
837 | public String evaluationMeasureTipText() { |
---|
838 | return "The measure used to evaluate the performance of attribute combinations " |
---|
839 | + "used in the decision table."; |
---|
840 | } |
---|
841 | /** |
---|
842 | * Gets the currently set performance evaluation measure used for selecting |
---|
843 | * attributes for the decision table |
---|
844 | * |
---|
845 | * @return the performance evaluation measure |
---|
846 | */ |
---|
847 | public SelectedTag getEvaluationMeasure() { |
---|
848 | return new SelectedTag(m_evaluationMeasure, TAGS_EVALUATION); |
---|
849 | } |
---|
850 | |
---|
851 | /** |
---|
852 | * Sets the performance evaluation measure to use for selecting attributes |
---|
853 | * for the decision table |
---|
854 | * |
---|
855 | * @param newMethod the new performance evaluation metric to use |
---|
856 | */ |
---|
857 | public void setEvaluationMeasure(SelectedTag newMethod) { |
---|
858 | if (newMethod.getTags() == TAGS_EVALUATION) { |
---|
859 | m_evaluationMeasure = newMethod.getSelectedTag().getID(); |
---|
860 | } |
---|
861 | } |
---|
862 | |
---|
863 | /** |
---|
864 | * Parses the options for this object. <p/> |
---|
865 | * |
---|
866 | <!-- options-start --> |
---|
867 | * Valid options are: <p/> |
---|
868 | * |
---|
869 | * <pre> -S <search method specification> |
---|
870 | * Full class name of search method, followed |
---|
871 | * by its options. |
---|
872 | * eg: "weka.attributeSelection.BestFirst -D 1" |
---|
873 | * (default weka.attributeSelection.BestFirst)</pre> |
---|
874 | * |
---|
875 | * <pre> -X <number of folds> |
---|
876 | * Use cross validation to evaluate features. |
---|
877 | * Use number of folds = 1 for leave one out CV. |
---|
878 | * (Default = leave one out CV)</pre> |
---|
879 | * |
---|
880 | * <pre> -E <acc | rmse | mae | auc> |
---|
881 | * Performance evaluation measure to use for selecting attributes. |
---|
882 | * (Default = accuracy for discrete class and rmse for numeric class)</pre> |
---|
883 | * |
---|
884 | * <pre> -I |
---|
885 | * Use nearest neighbour instead of global table majority.</pre> |
---|
886 | * |
---|
887 | * <pre> -R |
---|
888 | * Display decision table rules. |
---|
889 | * </pre> |
---|
890 | * |
---|
891 | * <pre> |
---|
892 | * Options specific to search method weka.attributeSelection.BestFirst: |
---|
893 | * </pre> |
---|
894 | * |
---|
895 | * <pre> -P <start set> |
---|
896 | * Specify a starting set of attributes. |
---|
897 | * Eg. 1,3,5-7.</pre> |
---|
898 | * |
---|
899 | * <pre> -D <0 = backward | 1 = forward | 2 = bi-directional> |
---|
900 | * Direction of search. (default = 1).</pre> |
---|
901 | * |
---|
902 | * <pre> -N <num> |
---|
903 | * Number of non-improving nodes to |
---|
904 | * consider before terminating search.</pre> |
---|
905 | * |
---|
906 | * <pre> -S <num> |
---|
907 | * Size of lookup cache for evaluated subsets. |
---|
908 | * Expressed as a multiple of the number of |
---|
909 | * attributes in the data set. (default = 1)</pre> |
---|
910 | * |
---|
911 | <!-- options-end --> |
---|
912 | * |
---|
913 | * @param options the list of options as an array of strings |
---|
914 | * @throws Exception if an option is not supported |
---|
915 | */ |
---|
916 | public void setOptions(String[] options) throws Exception { |
---|
917 | |
---|
918 | String optionString; |
---|
919 | |
---|
920 | resetOptions(); |
---|
921 | |
---|
922 | optionString = Utils.getOption('X',options); |
---|
923 | if (optionString.length() != 0) { |
---|
924 | m_CVFolds = Integer.parseInt(optionString); |
---|
925 | } |
---|
926 | |
---|
927 | m_useIBk = Utils.getFlag('I',options); |
---|
928 | |
---|
929 | m_displayRules = Utils.getFlag('R',options); |
---|
930 | |
---|
931 | optionString = Utils.getOption('E', options); |
---|
932 | if (optionString.length() != 0) { |
---|
933 | if (optionString.equals("acc")) { |
---|
934 | setEvaluationMeasure(new SelectedTag(EVAL_ACCURACY, TAGS_EVALUATION)); |
---|
935 | } else if (optionString.equals("rmse")) { |
---|
936 | setEvaluationMeasure(new SelectedTag(EVAL_RMSE, TAGS_EVALUATION)); |
---|
937 | } else if (optionString.equals("mae")) { |
---|
938 | setEvaluationMeasure(new SelectedTag(EVAL_MAE, TAGS_EVALUATION)); |
---|
939 | } else if (optionString.equals("auc")) { |
---|
940 | setEvaluationMeasure(new SelectedTag(EVAL_AUC, TAGS_EVALUATION)); |
---|
941 | } else { |
---|
942 | throw new IllegalArgumentException("Invalid evaluation measure"); |
---|
943 | } |
---|
944 | } |
---|
945 | |
---|
946 | String searchString = Utils.getOption('S', options); |
---|
947 | if (searchString.length() == 0) |
---|
948 | searchString = weka.attributeSelection.BestFirst.class.getName(); |
---|
949 | String [] searchSpec = Utils.splitOptions(searchString); |
---|
950 | if (searchSpec.length == 0) { |
---|
951 | throw new IllegalArgumentException("Invalid search specification string"); |
---|
952 | } |
---|
953 | String searchName = searchSpec[0]; |
---|
954 | searchSpec[0] = ""; |
---|
955 | setSearch(ASSearch.forName(searchName, searchSpec)); |
---|
956 | } |
---|
957 | |
---|
958 | /** |
---|
959 | * Gets the current settings of the classifier. |
---|
960 | * |
---|
961 | * @return an array of strings suitable for passing to setOptions |
---|
962 | */ |
---|
963 | public String [] getOptions() { |
---|
964 | |
---|
965 | String [] options = new String [9]; |
---|
966 | int current = 0; |
---|
967 | |
---|
968 | options[current++] = "-X"; options[current++] = "" + m_CVFolds; |
---|
969 | |
---|
970 | if (m_evaluationMeasure != EVAL_DEFAULT) { |
---|
971 | options[current++] = "-E"; |
---|
972 | switch (m_evaluationMeasure) { |
---|
973 | case EVAL_ACCURACY: |
---|
974 | options[current++] = "acc"; |
---|
975 | break; |
---|
976 | case EVAL_RMSE: |
---|
977 | options[current++] = "rmse"; |
---|
978 | break; |
---|
979 | case EVAL_MAE: |
---|
980 | options[current++] = "mae"; |
---|
981 | break; |
---|
982 | case EVAL_AUC: |
---|
983 | options[current++] = "auc"; |
---|
984 | break; |
---|
985 | } |
---|
986 | } |
---|
987 | if (m_useIBk) { |
---|
988 | options[current++] = "-I"; |
---|
989 | } |
---|
990 | if (m_displayRules) { |
---|
991 | options[current++] = "-R"; |
---|
992 | } |
---|
993 | |
---|
994 | options[current++] = "-S"; |
---|
995 | options[current++] = "" + getSearchSpec(); |
---|
996 | |
---|
997 | while (current < options.length) { |
---|
998 | options[current++] = ""; |
---|
999 | } |
---|
1000 | return options; |
---|
1001 | } |
---|
1002 | |
---|
1003 | /** |
---|
1004 | * Gets the search specification string, which contains the class name of |
---|
1005 | * the search method and any options to it |
---|
1006 | * |
---|
1007 | * @return the search string. |
---|
1008 | */ |
---|
1009 | protected String getSearchSpec() { |
---|
1010 | |
---|
1011 | ASSearch s = getSearch(); |
---|
1012 | if (s instanceof OptionHandler) { |
---|
1013 | return s.getClass().getName() + " " |
---|
1014 | + Utils.joinOptions(((OptionHandler)s).getOptions()); |
---|
1015 | } |
---|
1016 | return s.getClass().getName(); |
---|
1017 | } |
---|
1018 | |
---|
1019 | /** |
---|
1020 | * Returns default capabilities of the classifier. |
---|
1021 | * |
---|
1022 | * @return the capabilities of this classifier |
---|
1023 | */ |
---|
1024 | public Capabilities getCapabilities() { |
---|
1025 | Capabilities result = super.getCapabilities(); |
---|
1026 | result.disableAll(); |
---|
1027 | |
---|
1028 | // attributes |
---|
1029 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
1030 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
1031 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
1032 | result.enable(Capability.MISSING_VALUES); |
---|
1033 | |
---|
1034 | // class |
---|
1035 | result.enable(Capability.NOMINAL_CLASS); |
---|
1036 | if (m_evaluationMeasure != EVAL_ACCURACY && m_evaluationMeasure != EVAL_AUC) { |
---|
1037 | result.enable(Capability.NUMERIC_CLASS); |
---|
1038 | result.enable(Capability.DATE_CLASS); |
---|
1039 | } |
---|
1040 | |
---|
1041 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
1042 | |
---|
1043 | return result; |
---|
1044 | } |
---|
1045 | |
---|
1046 | private class DummySubsetEvaluator extends ASEvaluation implements SubsetEvaluator { |
---|
1047 | /** for serialization */ |
---|
1048 | private static final long serialVersionUID = 3927442457704974150L; |
---|
1049 | |
---|
1050 | public void buildEvaluator(Instances data) throws Exception { |
---|
1051 | } |
---|
1052 | |
---|
1053 | public double evaluateSubset(BitSet subset) throws Exception { |
---|
1054 | |
---|
1055 | int fc = 0; |
---|
1056 | for (int jj = 0;jj < m_numAttributes; jj++) { |
---|
1057 | if (subset.get(jj)) { |
---|
1058 | fc++; |
---|
1059 | } |
---|
1060 | } |
---|
1061 | |
---|
1062 | return estimatePerformance(subset, fc); |
---|
1063 | } |
---|
1064 | } |
---|
1065 | |
---|
1066 | /** |
---|
1067 | * Sets up a dummy subset evaluator that basically just delegates |
---|
1068 | * evaluation to the estimatePerformance method in DecisionTable |
---|
1069 | */ |
---|
1070 | protected void setUpEvaluator() throws Exception { |
---|
1071 | m_evaluator = new DummySubsetEvaluator(); |
---|
1072 | } |
---|
1073 | |
---|
1074 | protected boolean m_saveMemory = true; |
---|
1075 | /** |
---|
1076 | * Generates the classifier. |
---|
1077 | * |
---|
1078 | * @param data set of instances serving as training data |
---|
1079 | * @throws Exception if the classifier has not been generated successfully |
---|
1080 | */ |
---|
1081 | public void buildClassifier(Instances data) throws Exception { |
---|
1082 | |
---|
1083 | // can classifier handle the data? |
---|
1084 | getCapabilities().testWithFail(data); |
---|
1085 | |
---|
1086 | // remove instances with missing class |
---|
1087 | m_theInstances = new Instances(data); |
---|
1088 | m_theInstances.deleteWithMissingClass(); |
---|
1089 | |
---|
1090 | m_rr = new Random(1); |
---|
1091 | |
---|
1092 | if (m_theInstances.classAttribute().isNominal()) {// Set up class priors |
---|
1093 | m_classPriorCounts = |
---|
1094 | new double [data.classAttribute().numValues()]; |
---|
1095 | Arrays.fill(m_classPriorCounts, 1.0); |
---|
1096 | for (int i = 0; i <data.numInstances(); i++) { |
---|
1097 | Instance curr = data.instance(i); |
---|
1098 | m_classPriorCounts[(int)curr.classValue()] += |
---|
1099 | curr.weight(); |
---|
1100 | } |
---|
1101 | m_classPriors = m_classPriorCounts.clone(); |
---|
1102 | Utils.normalize(m_classPriors); |
---|
1103 | } |
---|
1104 | |
---|
1105 | setUpEvaluator(); |
---|
1106 | |
---|
1107 | if (m_theInstances.classAttribute().isNumeric()) { |
---|
1108 | m_disTransform = new weka.filters.unsupervised.attribute.Discretize(); |
---|
1109 | m_classIsNominal = false; |
---|
1110 | |
---|
1111 | // use binned discretisation if the class is numeric |
---|
1112 | ((weka.filters.unsupervised.attribute.Discretize)m_disTransform). |
---|
1113 | setBins(10); |
---|
1114 | ((weka.filters.unsupervised.attribute.Discretize)m_disTransform). |
---|
1115 | setInvertSelection(true); |
---|
1116 | |
---|
1117 | // Discretize all attributes EXCEPT the class |
---|
1118 | String rangeList = ""; |
---|
1119 | rangeList+=(m_theInstances.classIndex()+1); |
---|
1120 | //System.out.println("The class col: "+m_theInstances.classIndex()); |
---|
1121 | |
---|
1122 | ((weka.filters.unsupervised.attribute.Discretize)m_disTransform). |
---|
1123 | setAttributeIndices(rangeList); |
---|
1124 | } else { |
---|
1125 | m_disTransform = new weka.filters.supervised.attribute.Discretize(); |
---|
1126 | ((weka.filters.supervised.attribute.Discretize)m_disTransform).setUseBetterEncoding(true); |
---|
1127 | m_classIsNominal = true; |
---|
1128 | } |
---|
1129 | |
---|
1130 | m_disTransform.setInputFormat(m_theInstances); |
---|
1131 | m_theInstances = Filter.useFilter(m_theInstances, m_disTransform); |
---|
1132 | |
---|
1133 | m_numAttributes = m_theInstances.numAttributes(); |
---|
1134 | m_numInstances = m_theInstances.numInstances(); |
---|
1135 | m_majority = m_theInstances.meanOrMode(m_theInstances.classAttribute()); |
---|
1136 | |
---|
1137 | // Perform the search |
---|
1138 | int [] selected = m_search.search(m_evaluator, m_theInstances); |
---|
1139 | |
---|
1140 | m_decisionFeatures = new int [selected.length+1]; |
---|
1141 | System.arraycopy(selected, 0, m_decisionFeatures, 0, selected.length); |
---|
1142 | m_decisionFeatures[m_decisionFeatures.length-1] = m_theInstances.classIndex(); |
---|
1143 | |
---|
1144 | // reduce instances to selected features |
---|
1145 | m_delTransform = new Remove(); |
---|
1146 | m_delTransform.setInvertSelection(true); |
---|
1147 | |
---|
1148 | // set features to keep |
---|
1149 | m_delTransform.setAttributeIndicesArray(m_decisionFeatures); |
---|
1150 | m_delTransform.setInputFormat(m_theInstances); |
---|
1151 | m_dtInstances = Filter.useFilter(m_theInstances, m_delTransform); |
---|
1152 | |
---|
1153 | // reset the number of attributes |
---|
1154 | m_numAttributes = m_dtInstances.numAttributes(); |
---|
1155 | |
---|
1156 | // create hash table |
---|
1157 | m_entries = new Hashtable((int)(m_dtInstances.numInstances() * 1.5)); |
---|
1158 | |
---|
1159 | // insert instances into the hash table |
---|
1160 | for (int i = 0; i < m_numInstances; i++) { |
---|
1161 | Instance inst = m_dtInstances.instance(i); |
---|
1162 | insertIntoTable(inst, null); |
---|
1163 | } |
---|
1164 | |
---|
1165 | // Replace the global table majority with nearest neighbour? |
---|
1166 | if (m_useIBk) { |
---|
1167 | m_ibk = new IBk(); |
---|
1168 | m_ibk.buildClassifier(m_theInstances); |
---|
1169 | } |
---|
1170 | |
---|
1171 | // Save memory |
---|
1172 | if (m_saveMemory) { |
---|
1173 | m_theInstances = new Instances(m_theInstances, 0); |
---|
1174 | m_dtInstances = new Instances(m_dtInstances, 0); |
---|
1175 | } |
---|
1176 | m_evaluation = null; |
---|
1177 | } |
---|
1178 | |
---|
1179 | /** |
---|
1180 | * Calculates the class membership probabilities for the given |
---|
1181 | * test instance. |
---|
1182 | * |
---|
1183 | * @param instance the instance to be classified |
---|
1184 | * @return predicted class probability distribution |
---|
1185 | * @throws Exception if distribution can't be computed |
---|
1186 | */ |
---|
1187 | public double [] distributionForInstance(Instance instance) |
---|
1188 | throws Exception { |
---|
1189 | |
---|
1190 | DecisionTableHashKey thekey; |
---|
1191 | double [] tempDist; |
---|
1192 | double [] normDist; |
---|
1193 | |
---|
1194 | m_disTransform.input(instance); |
---|
1195 | m_disTransform.batchFinished(); |
---|
1196 | instance = m_disTransform.output(); |
---|
1197 | |
---|
1198 | m_delTransform.input(instance); |
---|
1199 | m_delTransform.batchFinished(); |
---|
1200 | instance = m_delTransform.output(); |
---|
1201 | |
---|
1202 | thekey = new DecisionTableHashKey(instance, instance.numAttributes(), false); |
---|
1203 | |
---|
1204 | // if this one is not in the table |
---|
1205 | if ((tempDist = (double [])m_entries.get(thekey)) == null) { |
---|
1206 | if (m_useIBk) { |
---|
1207 | tempDist = m_ibk.distributionForInstance(instance); |
---|
1208 | } else { |
---|
1209 | if (!m_classIsNominal) { |
---|
1210 | tempDist = new double[1]; |
---|
1211 | tempDist[0] = m_majority; |
---|
1212 | } else { |
---|
1213 | tempDist = m_classPriors.clone(); |
---|
1214 | /*tempDist = new double [m_theInstances.classAttribute().numValues()]; |
---|
1215 | tempDist[(int)m_majority] = 1.0; */ |
---|
1216 | } |
---|
1217 | } |
---|
1218 | } else { |
---|
1219 | if (!m_classIsNominal) { |
---|
1220 | normDist = new double[1]; |
---|
1221 | normDist[0] = (tempDist[0] / tempDist[1]); |
---|
1222 | tempDist = normDist; |
---|
1223 | } else { |
---|
1224 | |
---|
1225 | // normalise distribution |
---|
1226 | normDist = new double [tempDist.length]; |
---|
1227 | System.arraycopy(tempDist,0,normDist,0,tempDist.length); |
---|
1228 | Utils.normalize(normDist); |
---|
1229 | tempDist = normDist; |
---|
1230 | } |
---|
1231 | } |
---|
1232 | return tempDist; |
---|
1233 | } |
---|
1234 | |
---|
1235 | /** |
---|
1236 | * Returns a string description of the features selected |
---|
1237 | * |
---|
1238 | * @return a string of features |
---|
1239 | */ |
---|
1240 | public String printFeatures() { |
---|
1241 | |
---|
1242 | int i; |
---|
1243 | String s = ""; |
---|
1244 | |
---|
1245 | for (i=0;i<m_decisionFeatures.length;i++) { |
---|
1246 | if (i==0) { |
---|
1247 | s = ""+(m_decisionFeatures[i]+1); |
---|
1248 | } else { |
---|
1249 | s += ","+(m_decisionFeatures[i]+1); |
---|
1250 | } |
---|
1251 | } |
---|
1252 | return s; |
---|
1253 | } |
---|
1254 | |
---|
1255 | /** |
---|
1256 | * Returns the number of rules |
---|
1257 | * @return the number of rules |
---|
1258 | */ |
---|
1259 | public double measureNumRules() { |
---|
1260 | return m_entries.size(); |
---|
1261 | } |
---|
1262 | |
---|
1263 | /** |
---|
1264 | * Returns an enumeration of the additional measure names |
---|
1265 | * @return an enumeration of the measure names |
---|
1266 | */ |
---|
1267 | public Enumeration enumerateMeasures() { |
---|
1268 | Vector newVector = new Vector(1); |
---|
1269 | newVector.addElement("measureNumRules"); |
---|
1270 | return newVector.elements(); |
---|
1271 | } |
---|
1272 | |
---|
1273 | /** |
---|
1274 | * Returns the value of the named measure |
---|
1275 | * @param additionalMeasureName the name of the measure to query for its value |
---|
1276 | * @return the value of the named measure |
---|
1277 | * @throws IllegalArgumentException if the named measure is not supported |
---|
1278 | */ |
---|
1279 | public double getMeasure(String additionalMeasureName) { |
---|
1280 | if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { |
---|
1281 | return measureNumRules(); |
---|
1282 | } else { |
---|
1283 | throw new IllegalArgumentException(additionalMeasureName |
---|
1284 | + " not supported (DecisionTable)"); |
---|
1285 | } |
---|
1286 | } |
---|
1287 | |
---|
1288 | /** |
---|
1289 | * Returns a description of the classifier. |
---|
1290 | * |
---|
1291 | * @return a description of the classifier as a string. |
---|
1292 | */ |
---|
1293 | public String toString() { |
---|
1294 | |
---|
1295 | if (m_entries == null) { |
---|
1296 | return "Decision Table: No model built yet."; |
---|
1297 | } else { |
---|
1298 | StringBuffer text = new StringBuffer(); |
---|
1299 | |
---|
1300 | text.append("Decision Table:"+ |
---|
1301 | "\n\nNumber of training instances: "+m_numInstances+ |
---|
1302 | "\nNumber of Rules : "+m_entries.size()+"\n"); |
---|
1303 | |
---|
1304 | if (m_useIBk) { |
---|
1305 | text.append("Non matches covered by IB1.\n"); |
---|
1306 | } else { |
---|
1307 | text.append("Non matches covered by Majority class.\n"); |
---|
1308 | } |
---|
1309 | |
---|
1310 | text.append(m_search.toString()); |
---|
1311 | /*text.append("Best first search for feature set,\nterminated after "+ |
---|
1312 | m_maxStale+" non improving subsets.\n"); */ |
---|
1313 | |
---|
1314 | text.append("Evaluation (for feature selection): CV "); |
---|
1315 | if (m_CVFolds > 1) { |
---|
1316 | text.append("("+m_CVFolds+" fold) "); |
---|
1317 | } else { |
---|
1318 | text.append("(leave one out) "); |
---|
1319 | } |
---|
1320 | text.append("\nFeature set: "+printFeatures()); |
---|
1321 | |
---|
1322 | if (m_displayRules) { |
---|
1323 | |
---|
1324 | // find out the max column width |
---|
1325 | int maxColWidth = 0; |
---|
1326 | for (int i=0;i<m_dtInstances.numAttributes();i++) { |
---|
1327 | if (m_dtInstances.attribute(i).name().length() > maxColWidth) { |
---|
1328 | maxColWidth = m_dtInstances.attribute(i).name().length(); |
---|
1329 | } |
---|
1330 | |
---|
1331 | if (m_classIsNominal || (i != m_dtInstances.classIndex())) { |
---|
1332 | Enumeration e = m_dtInstances.attribute(i).enumerateValues(); |
---|
1333 | while (e.hasMoreElements()) { |
---|
1334 | String ss = (String)e.nextElement(); |
---|
1335 | if (ss.length() > maxColWidth) { |
---|
1336 | maxColWidth = ss.length(); |
---|
1337 | } |
---|
1338 | } |
---|
1339 | } |
---|
1340 | } |
---|
1341 | |
---|
1342 | text.append("\n\nRules:\n"); |
---|
1343 | StringBuffer tm = new StringBuffer(); |
---|
1344 | for (int i=0;i<m_dtInstances.numAttributes();i++) { |
---|
1345 | if (m_dtInstances.classIndex() != i) { |
---|
1346 | int d = maxColWidth - m_dtInstances.attribute(i).name().length(); |
---|
1347 | tm.append(m_dtInstances.attribute(i).name()); |
---|
1348 | for (int j=0;j<d+1;j++) { |
---|
1349 | tm.append(" "); |
---|
1350 | } |
---|
1351 | } |
---|
1352 | } |
---|
1353 | tm.append(m_dtInstances.attribute(m_dtInstances.classIndex()).name()+" "); |
---|
1354 | |
---|
1355 | for (int i=0;i<tm.length()+10;i++) { |
---|
1356 | text.append("="); |
---|
1357 | } |
---|
1358 | text.append("\n"); |
---|
1359 | text.append(tm); |
---|
1360 | text.append("\n"); |
---|
1361 | for (int i=0;i<tm.length()+10;i++) { |
---|
1362 | text.append("="); |
---|
1363 | } |
---|
1364 | text.append("\n"); |
---|
1365 | |
---|
1366 | Enumeration e = m_entries.keys(); |
---|
1367 | while (e.hasMoreElements()) { |
---|
1368 | DecisionTableHashKey tt = (DecisionTableHashKey)e.nextElement(); |
---|
1369 | text.append(tt.toString(m_dtInstances,maxColWidth)); |
---|
1370 | double [] ClassDist = (double []) m_entries.get(tt); |
---|
1371 | |
---|
1372 | if (m_classIsNominal) { |
---|
1373 | int m = Utils.maxIndex(ClassDist); |
---|
1374 | try { |
---|
1375 | text.append(m_dtInstances.classAttribute().value(m)+"\n"); |
---|
1376 | } catch (Exception ee) { |
---|
1377 | System.out.println(ee.getMessage()); |
---|
1378 | } |
---|
1379 | } else { |
---|
1380 | text.append((ClassDist[0] / ClassDist[1])+"\n"); |
---|
1381 | } |
---|
1382 | } |
---|
1383 | |
---|
1384 | for (int i=0;i<tm.length()+10;i++) { |
---|
1385 | text.append("="); |
---|
1386 | } |
---|
1387 | text.append("\n"); |
---|
1388 | text.append("\n"); |
---|
1389 | } |
---|
1390 | return text.toString(); |
---|
1391 | } |
---|
1392 | } |
---|
1393 | |
---|
1394 | /** |
---|
1395 | * Returns the revision string. |
---|
1396 | * |
---|
1397 | * @return the revision |
---|
1398 | */ |
---|
1399 | public String getRevision() { |
---|
1400 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
1401 | } |
---|
1402 | |
---|
1403 | /** |
---|
1404 | * Main method for testing this class. |
---|
1405 | * |
---|
1406 | * @param argv the command-line options |
---|
1407 | */ |
---|
1408 | public static void main(String [] argv) { |
---|
1409 | runClassifier(new DecisionTable(), argv); |
---|
1410 | } |
---|
1411 | } |
---|