1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RuleSetModel.java |
---|
19 | * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.pmml.consumer; |
---|
24 | |
---|
25 | import java.io.Serializable; |
---|
26 | import java.util.ArrayList; |
---|
27 | |
---|
28 | import org.w3c.dom.Element; |
---|
29 | import org.w3c.dom.Node; |
---|
30 | import org.w3c.dom.NodeList; |
---|
31 | |
---|
32 | import weka.classifiers.pmml.consumer.TreeModel.MiningFunction; |
---|
33 | import weka.core.Attribute; |
---|
34 | import weka.core.Instance; |
---|
35 | import weka.core.Instances; |
---|
36 | import weka.core.RevisionUtils; |
---|
37 | import weka.core.Utils; |
---|
38 | import weka.core.pmml.MiningSchema; |
---|
39 | |
---|
40 | /** |
---|
41 | * Class implementing import of PMML RuleSetModel. Can be used as a Weka |
---|
42 | * classifier for prediction only (buildClassifier() raises an Exception). |
---|
43 | * |
---|
44 | * @author Mark Hall (mhall{[at]}pentaho{[dot]}com) |
---|
45 | * @version $Revision: 5987 $ |
---|
46 | */ |
---|
47 | public class RuleSetModel extends PMMLClassifier { |
---|
48 | |
---|
49 | /** For serialization */ |
---|
50 | private static final long serialVersionUID = 1993161168811020547L; |
---|
51 | |
---|
52 | /** |
---|
53 | * Abstract inner base class for Rules |
---|
54 | */ |
---|
55 | static abstract class Rule implements Serializable { |
---|
56 | |
---|
57 | /** For serialization */ |
---|
58 | private static final long serialVersionUID = 6236231263477446102L; |
---|
59 | |
---|
60 | /** The predicate for this rule */ |
---|
61 | protected TreeModel.Predicate m_predicate; |
---|
62 | |
---|
63 | public Rule(Element ruleE, MiningSchema miningSchema) throws Exception { |
---|
64 | // Set up the predicate |
---|
65 | m_predicate = TreeModel.Predicate.getPredicate(ruleE, miningSchema); |
---|
66 | } |
---|
67 | |
---|
68 | /** |
---|
69 | * Collect the rule(s) that fire for the supplied incoming instance |
---|
70 | * |
---|
71 | * @param input a vector of independent and derived independent variables |
---|
72 | * @param ruleCollection the array list to add any firing rules into |
---|
73 | */ |
---|
74 | public abstract void fires(double[] input, ArrayList<SimpleRule> ruleCollection); |
---|
75 | |
---|
76 | /** |
---|
77 | * Get a textual description of this Rule |
---|
78 | * |
---|
79 | * @param prefix prefix string (typically some number of spaces) to prepend |
---|
80 | * @param indent the number of additional spaces to add to the prefix |
---|
81 | * @return a description of this Rule as a String |
---|
82 | */ |
---|
83 | public abstract String toString(String prefix, int indent); |
---|
84 | |
---|
85 | } |
---|
86 | |
---|
87 | /** |
---|
88 | * Inner class for representing simple rules |
---|
89 | */ |
---|
90 | static class SimpleRule extends Rule { |
---|
91 | |
---|
92 | /** For serialization */ |
---|
93 | private static final long serialVersionUID = -2612893679476049682L; |
---|
94 | |
---|
95 | /** The ID for the rule (optional) */ |
---|
96 | protected String m_ID; |
---|
97 | |
---|
98 | /** The predicted value when the rule fires (required) */ |
---|
99 | protected String m_scoreString; |
---|
100 | |
---|
101 | /** |
---|
102 | * The predicted value as a number (regression) or index (classification) |
---|
103 | * when the rule fires (required) |
---|
104 | */ |
---|
105 | protected double m_score = Utils.missingValue(); |
---|
106 | |
---|
107 | /** The number of training/test instances on which the rule fired (optional) */ |
---|
108 | protected double m_recordCount = Utils.missingValue(); |
---|
109 | |
---|
110 | /** |
---|
111 | * The number of training/test instances on which the rule fired and the |
---|
112 | * prediction was correct (optional) |
---|
113 | */ |
---|
114 | protected double m_nbCorrect = Utils.missingValue(); |
---|
115 | |
---|
116 | /** The confidence of the rule (optional) */ |
---|
117 | protected double m_confidence = Utils.missingValue(); |
---|
118 | |
---|
119 | /** The score distributions for this rule (if any) */ |
---|
120 | protected ArrayList<TreeModel.ScoreDistribution> m_scoreDistributions = |
---|
121 | new ArrayList<TreeModel.ScoreDistribution>(); |
---|
122 | |
---|
123 | /** |
---|
124 | * The relative importance of the rule. May or may not be equal to the |
---|
125 | * confidence (optional). |
---|
126 | */ |
---|
127 | protected double m_weight = Utils.missingValue(); |
---|
128 | |
---|
129 | public String toString(String prefix, int indent) { |
---|
130 | StringBuffer temp = new StringBuffer(); |
---|
131 | |
---|
132 | for (int i = 0; i < indent; i++) { |
---|
133 | prefix += " "; |
---|
134 | } |
---|
135 | |
---|
136 | temp.append(prefix + "Simple rule: " + m_predicate + "\n"); |
---|
137 | temp.append(prefix + " => " + m_scoreString + "\n"); |
---|
138 | if (!Utils.isMissingValue(m_recordCount)) { |
---|
139 | temp.append(prefix + " recordCount: " + m_recordCount + "\n"); |
---|
140 | } |
---|
141 | if (!Utils.isMissingValue(m_nbCorrect)) { |
---|
142 | temp.append(prefix + " nbCorrect: " + m_nbCorrect + "\n"); |
---|
143 | } |
---|
144 | if (!Utils.isMissingValue(m_confidence)) { |
---|
145 | temp.append(prefix + " confidence: " + m_confidence + "\n"); |
---|
146 | } |
---|
147 | if (!Utils.isMissingValue(m_weight)) { |
---|
148 | temp.append(prefix + " weight: " + m_weight + "\n"); |
---|
149 | } |
---|
150 | |
---|
151 | return temp.toString(); |
---|
152 | } |
---|
153 | |
---|
154 | public String toString() { |
---|
155 | return toString("", 0); |
---|
156 | } |
---|
157 | |
---|
158 | /** |
---|
159 | * Constructor for a simple rule |
---|
160 | * |
---|
161 | * @param ruleE the XML element holding the simple rule |
---|
162 | * @param miningSchema the mining schema to use |
---|
163 | * @throws Exception if something goes wrong |
---|
164 | */ |
---|
165 | public SimpleRule(Element ruleE, MiningSchema miningSchema) throws Exception { |
---|
166 | super(ruleE, miningSchema); |
---|
167 | |
---|
168 | String id = ruleE.getAttribute("id"); |
---|
169 | if (id != null && id.length() > 0) { |
---|
170 | m_ID = id; |
---|
171 | } |
---|
172 | |
---|
173 | m_scoreString = ruleE.getAttribute("score"); |
---|
174 | Attribute classAtt = miningSchema.getFieldsAsInstances().classAttribute(); |
---|
175 | if (classAtt.isNumeric()) { |
---|
176 | m_score = Double.parseDouble(m_scoreString); |
---|
177 | } else { |
---|
178 | if (classAtt.indexOfValue(m_scoreString) < 0) { |
---|
179 | throw new Exception("[SimpleRule] class value " + m_scoreString + |
---|
180 | "does not exist in class attribute " + classAtt.name()); |
---|
181 | } |
---|
182 | m_score = classAtt.indexOfValue(m_scoreString); |
---|
183 | } |
---|
184 | |
---|
185 | String recordCount = ruleE.getAttribute("recordCount"); |
---|
186 | if (recordCount != null && recordCount.length() > 0) { |
---|
187 | m_recordCount = Double.parseDouble(recordCount); |
---|
188 | } |
---|
189 | |
---|
190 | String nbCorrect = ruleE.getAttribute("nbCorrect"); |
---|
191 | if (nbCorrect != null && nbCorrect.length() > 0) { |
---|
192 | m_nbCorrect = Double.parseDouble(nbCorrect); |
---|
193 | } |
---|
194 | |
---|
195 | String confidence = ruleE.getAttribute("confidence"); |
---|
196 | if (confidence != null && confidence.length() > 0) { |
---|
197 | m_confidence = Double.parseDouble(confidence); |
---|
198 | } |
---|
199 | |
---|
200 | String weight = ruleE.getAttribute("weight"); |
---|
201 | if (weight != null && weight.length() > 0) { |
---|
202 | m_weight = Double.parseDouble(weight); |
---|
203 | } |
---|
204 | |
---|
205 | // get the ScoreDistributions (if any) |
---|
206 | if (miningSchema.getFieldsAsInstances().classAttribute().isNominal()) { |
---|
207 | // see if we have any ScoreDistribution entries |
---|
208 | NodeList scoreChildren = ruleE.getChildNodes(); |
---|
209 | |
---|
210 | for (int i = 0; i < scoreChildren.getLength(); i++) { |
---|
211 | Node child = scoreChildren.item(i); |
---|
212 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
---|
213 | String tagName = ((Element)child).getTagName(); |
---|
214 | if (tagName.equals("ScoreDistribution")) { |
---|
215 | TreeModel.ScoreDistribution newDist = |
---|
216 | new TreeModel.ScoreDistribution((Element)child, |
---|
217 | miningSchema, m_recordCount); |
---|
218 | m_scoreDistributions.add(newDist); |
---|
219 | } |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | // check that we have as many score distribution elements as there |
---|
224 | // are class labels in the data |
---|
225 | if (m_scoreDistributions.size() > 0 && |
---|
226 | m_scoreDistributions.size() != |
---|
227 | miningSchema.getFieldsAsInstances().classAttribute().numValues()) { |
---|
228 | throw new Exception("[SimpleRule] Number of score distribution elements is " |
---|
229 | + " different than the number of class labels!"); |
---|
230 | } |
---|
231 | |
---|
232 | //backfit the confidence values (if necessary) |
---|
233 | if (Utils.isMissingValue(m_recordCount)) { |
---|
234 | double baseCount = 0; |
---|
235 | for (TreeModel.ScoreDistribution s : m_scoreDistributions) { |
---|
236 | baseCount += s.getRecordCount(); |
---|
237 | } |
---|
238 | |
---|
239 | for (TreeModel.ScoreDistribution s : m_scoreDistributions) { |
---|
240 | s.deriveConfidenceValue(baseCount); |
---|
241 | } |
---|
242 | } |
---|
243 | } |
---|
244 | } |
---|
245 | |
---|
246 | /** |
---|
247 | * Collect the rule(s) that fire for the supplied incoming instance |
---|
248 | * |
---|
249 | * @param input a vector of independent and derived independent variables |
---|
250 | * @param ruleCollection the array list to add any firing rules into |
---|
251 | */ |
---|
252 | public void fires(double[] input, ArrayList<SimpleRule> ruleCollection) { |
---|
253 | if (m_predicate.evaluate(input) == TreeModel.Predicate.Eval.TRUE) { |
---|
254 | ruleCollection.add(this); |
---|
255 | } |
---|
256 | } |
---|
257 | |
---|
258 | /** |
---|
259 | * Score the incoming instance |
---|
260 | * |
---|
261 | * @param instance a vector containing the incoming independent and |
---|
262 | * derived independent variables |
---|
263 | * @param classAtt the class attribute |
---|
264 | * @param rsm the rule selection method (ignored by simple rules) |
---|
265 | * @return a probability distribution over the class labels or |
---|
266 | * the predicted value (in element zero of the array if the class is numeric) |
---|
267 | * @throws Exception if something goes wrong |
---|
268 | */ |
---|
269 | public double[] score(double[] instance, Attribute classAtt) |
---|
270 | throws Exception { |
---|
271 | |
---|
272 | double[] preds; |
---|
273 | if (classAtt.isNumeric()) { |
---|
274 | preds = new double[1]; |
---|
275 | preds[0] = m_score; |
---|
276 | } else { |
---|
277 | preds = new double[classAtt.numValues()]; |
---|
278 | if (m_scoreDistributions.size() > 0) { |
---|
279 | for (TreeModel.ScoreDistribution s : m_scoreDistributions) { |
---|
280 | preds[s.getClassLabelIndex()] = s.getConfidence(); |
---|
281 | } |
---|
282 | } else if (!Utils.isMissingValue(m_confidence)) { |
---|
283 | preds[classAtt.indexOfValue(m_scoreString)] = m_confidence; |
---|
284 | } else { |
---|
285 | preds[classAtt.indexOfValue(m_scoreString)] = 1.0; |
---|
286 | } |
---|
287 | } |
---|
288 | |
---|
289 | return preds; |
---|
290 | } |
---|
291 | |
---|
292 | /** |
---|
293 | * Get the weight of the rule |
---|
294 | * |
---|
295 | * @return the weight of the rule |
---|
296 | */ |
---|
297 | public double getWeight() { |
---|
298 | return m_weight; |
---|
299 | } |
---|
300 | |
---|
301 | /** |
---|
302 | * Get the ID of the rule |
---|
303 | * |
---|
304 | * @return the ID of the rule |
---|
305 | */ |
---|
306 | public String getID() { |
---|
307 | return m_ID; |
---|
308 | } |
---|
309 | |
---|
310 | /** |
---|
311 | * Get the predicted value of this rule (either a number |
---|
312 | * for regression problems or an index of a class label for |
---|
313 | * classification problems) |
---|
314 | * |
---|
315 | * @return the predicted value of this rule |
---|
316 | */ |
---|
317 | public double getScore() { |
---|
318 | return m_score; |
---|
319 | } |
---|
320 | } |
---|
321 | |
---|
322 | /** |
---|
323 | * Inner class representing a compound rule |
---|
324 | */ |
---|
325 | static class CompoundRule extends Rule { |
---|
326 | |
---|
327 | /** For serialization */ |
---|
328 | private static final long serialVersionUID = -2853658811459970718L; |
---|
329 | |
---|
330 | /** The child rules of this compound rule */ |
---|
331 | ArrayList<Rule> m_childRules = new ArrayList<Rule>(); |
---|
332 | |
---|
333 | public String toString(String prefix, int indent) { |
---|
334 | StringBuffer temp = new StringBuffer(); |
---|
335 | |
---|
336 | for (int i = 0; i < indent; i++) { |
---|
337 | prefix += " "; |
---|
338 | } |
---|
339 | |
---|
340 | temp.append(prefix + "Compound rule: " + m_predicate + "\n"); |
---|
341 | |
---|
342 | for (Rule r : m_childRules) { |
---|
343 | temp.append(r.toString(prefix, indent + 1)); |
---|
344 | } |
---|
345 | |
---|
346 | return temp.toString(); |
---|
347 | } |
---|
348 | |
---|
349 | public String toString() { |
---|
350 | return toString("", 0); |
---|
351 | } |
---|
352 | |
---|
353 | /** |
---|
354 | * Constructor. |
---|
355 | * |
---|
356 | * @param ruleE XML node holding the rule |
---|
357 | * @param miningSchema the mining schema to use |
---|
358 | * @throws Exception if something goes wrong |
---|
359 | */ |
---|
360 | public CompoundRule(Element ruleE, MiningSchema miningSchema) throws Exception { |
---|
361 | |
---|
362 | // get the Predicate |
---|
363 | super(ruleE, miningSchema); |
---|
364 | |
---|
365 | // get the nested rules |
---|
366 | NodeList ruleChildren = ruleE.getChildNodes(); |
---|
367 | for (int i = 0; i < ruleChildren.getLength(); i++) { |
---|
368 | Node child = ruleChildren.item(i); |
---|
369 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
---|
370 | String tagName = ((Element)child).getTagName(); |
---|
371 | if (tagName.equals("SimpleRule")) { |
---|
372 | Rule childRule = new SimpleRule(((Element)child), miningSchema); |
---|
373 | m_childRules.add(childRule); |
---|
374 | } else if (tagName.equals("CompoundRule")) { |
---|
375 | Rule childRule = new CompoundRule(((Element)child), miningSchema); |
---|
376 | m_childRules.add(childRule); |
---|
377 | } |
---|
378 | } |
---|
379 | } |
---|
380 | } |
---|
381 | |
---|
382 | /** |
---|
383 | * Collect the rule(s) that fire for the supplied incoming instance |
---|
384 | * |
---|
385 | * @param input a vector of independent and derived independent variables |
---|
386 | * @param ruleCollection the array list to add any firing rules into |
---|
387 | */ |
---|
388 | public void fires(double[] input, ArrayList<SimpleRule> ruleCollection) { |
---|
389 | |
---|
390 | // evaluate our predicate first |
---|
391 | if (m_predicate.evaluate(input) == TreeModel.Predicate.Eval.TRUE) { |
---|
392 | // now check the child rules |
---|
393 | for (Rule r : m_childRules) { |
---|
394 | r.fires(input, ruleCollection); |
---|
395 | } |
---|
396 | } |
---|
397 | } |
---|
398 | } |
---|
399 | |
---|
400 | /** |
---|
401 | * Inner class representing a set of rules |
---|
402 | */ |
---|
403 | static class RuleSet implements Serializable { |
---|
404 | |
---|
405 | /** For serialization */ |
---|
406 | private static final long serialVersionUID = -8718126887943074376L; |
---|
407 | |
---|
408 | enum RuleSelectionMethod { |
---|
409 | WEIGHTEDSUM("weightedSum"), |
---|
410 | WEIGHTEDMAX("weightedMax"), |
---|
411 | FIRSTHIT("firstHit"); |
---|
412 | |
---|
413 | private final String m_stringVal; |
---|
414 | |
---|
415 | RuleSelectionMethod(String name) { |
---|
416 | m_stringVal = name; |
---|
417 | } |
---|
418 | |
---|
419 | public String toString() { |
---|
420 | return m_stringVal; |
---|
421 | } |
---|
422 | } |
---|
423 | |
---|
424 | /** |
---|
425 | * The number of training/test cases to which the ruleset was |
---|
426 | * applied to generate support and confidence measures for individual |
---|
427 | * rules (optional) |
---|
428 | */ |
---|
429 | private double m_recordCount = Utils.missingValue(); |
---|
430 | |
---|
431 | /** |
---|
432 | * The number of training/test cases for which the default |
---|
433 | * score is correct (optional) |
---|
434 | */ |
---|
435 | private double m_nbCorrect = Utils.missingValue(); |
---|
436 | |
---|
437 | /** |
---|
438 | * The default value to predict when no rule in the |
---|
439 | * ruleset fires (as a String; optional) |
---|
440 | * */ |
---|
441 | private String m_defaultScore; |
---|
442 | |
---|
443 | /** |
---|
444 | * The default value to predict (either a real value or an |
---|
445 | * index) |
---|
446 | * */ |
---|
447 | private double m_defaultPrediction = Utils.missingValue(); |
---|
448 | |
---|
449 | /** |
---|
450 | * The default distribution to predict when no rule in the |
---|
451 | * ruleset fires (nominal class only, optional) |
---|
452 | */ |
---|
453 | private ArrayList<TreeModel.ScoreDistribution> m_scoreDistributions = |
---|
454 | new ArrayList<TreeModel.ScoreDistribution>(); |
---|
455 | |
---|
456 | /** |
---|
457 | * The default confidence value to return along with a score |
---|
458 | * when no rules in the set fire (optional) |
---|
459 | */ |
---|
460 | private double m_defaultConfidence = Utils.missingValue(); |
---|
461 | |
---|
462 | /** The active rule selection method */ |
---|
463 | private RuleSelectionMethod m_currentMethod; |
---|
464 | |
---|
465 | /** The selection of rule selection methods allowed */ |
---|
466 | private ArrayList<RuleSelectionMethod> m_availableRuleSelectionMethods = |
---|
467 | new ArrayList<RuleSelectionMethod>(); |
---|
468 | |
---|
469 | /** The rules contained in the rule set */ |
---|
470 | private ArrayList<Rule> m_rules = new ArrayList<Rule>(); |
---|
471 | |
---|
472 | /* (non-Javadoc) |
---|
473 | * @see java.lang.Object#toString() |
---|
474 | */ |
---|
475 | public String toString() { |
---|
476 | StringBuffer temp = new StringBuffer(); |
---|
477 | |
---|
478 | temp.append("Rule selection method: " + m_currentMethod + "\n"); |
---|
479 | if (m_defaultScore != null) { |
---|
480 | temp.append("Default prediction: " + m_defaultScore + "\n"); |
---|
481 | |
---|
482 | if (!Utils.isMissingValue(m_recordCount)) { |
---|
483 | temp.append(" recordCount: " + m_recordCount + "\n"); |
---|
484 | } |
---|
485 | if (!Utils.isMissingValue(m_nbCorrect)) { |
---|
486 | temp.append(" nbCorrect: " + m_nbCorrect + "\n"); |
---|
487 | } |
---|
488 | if (!Utils.isMissingValue(m_defaultConfidence)) { |
---|
489 | temp.append(" defaultConfidence: " + m_defaultConfidence + "\n"); |
---|
490 | } |
---|
491 | |
---|
492 | temp.append("\n"); |
---|
493 | } |
---|
494 | |
---|
495 | for (Rule r : m_rules) { |
---|
496 | temp.append(r + "\n"); |
---|
497 | } |
---|
498 | |
---|
499 | return temp.toString(); |
---|
500 | } |
---|
501 | |
---|
502 | /** |
---|
503 | * Constructor for a RuleSet. |
---|
504 | * |
---|
505 | * @param ruleSetNode the XML node holding the RuleSet |
---|
506 | * @param miningSchema the mining schema to use |
---|
507 | * @throws Exception if something goes wrong |
---|
508 | */ |
---|
509 | public RuleSet(Element ruleSetNode, MiningSchema miningSchema) |
---|
510 | throws Exception { |
---|
511 | |
---|
512 | String recordCount = ruleSetNode.getAttribute("recordCount"); |
---|
513 | if (recordCount != null && recordCount.length() > 0) { |
---|
514 | m_recordCount = Double.parseDouble(recordCount); |
---|
515 | } |
---|
516 | |
---|
517 | String nbCorrect = ruleSetNode.getAttribute("nbCorrect"); |
---|
518 | if (nbCorrect != null & nbCorrect.length() > 0) { |
---|
519 | m_nbCorrect = Double.parseDouble(nbCorrect); |
---|
520 | } |
---|
521 | |
---|
522 | String defaultScore = ruleSetNode.getAttribute("defaultScore"); |
---|
523 | if (defaultScore != null && defaultScore.length() > 0) { |
---|
524 | m_defaultScore = defaultScore; |
---|
525 | |
---|
526 | Attribute classAtt = miningSchema.getFieldsAsInstances().classAttribute(); |
---|
527 | if (classAtt == null) { |
---|
528 | throw new Exception("[RuleSet] class attribute not set!"); |
---|
529 | } |
---|
530 | |
---|
531 | if (classAtt.isNumeric()) { |
---|
532 | m_defaultPrediction = Double.parseDouble(defaultScore); |
---|
533 | } else { |
---|
534 | if (classAtt.indexOfValue(defaultScore) < 0) { |
---|
535 | throw new Exception("[RuleSet] class value " + defaultScore + |
---|
536 | " not found!"); |
---|
537 | } |
---|
538 | m_defaultPrediction = classAtt.indexOfValue(defaultScore); |
---|
539 | } |
---|
540 | } |
---|
541 | |
---|
542 | String defaultConfidence = ruleSetNode.getAttribute("defaultConfidence"); |
---|
543 | if (defaultConfidence != null && defaultConfidence.length() > 0) { |
---|
544 | m_defaultConfidence = Double.parseDouble(defaultConfidence); |
---|
545 | } |
---|
546 | |
---|
547 | // get the rule selection methods |
---|
548 | NodeList selectionNL = ruleSetNode.getElementsByTagName("RuleSelectionMethod"); |
---|
549 | for (int i = 0; i < selectionNL.getLength(); i++) { |
---|
550 | Node selectN = selectionNL.item(i); |
---|
551 | if (selectN.getNodeType() == Node.ELEMENT_NODE) { |
---|
552 | Element sN = (Element)selectN; |
---|
553 | String criterion = sN.getAttribute("criterion"); |
---|
554 | for (RuleSelectionMethod m : RuleSelectionMethod.values()) { |
---|
555 | if (m.toString().equals(criterion)) { |
---|
556 | m_availableRuleSelectionMethods.add(m); |
---|
557 | if (i == 0) { |
---|
558 | // set the default (first specified one) |
---|
559 | m_currentMethod = m; |
---|
560 | } |
---|
561 | } |
---|
562 | } |
---|
563 | } |
---|
564 | } |
---|
565 | |
---|
566 | if (miningSchema.getFieldsAsInstances().classAttribute().isNominal()) { |
---|
567 | // see if we have any ScoreDistribution entries |
---|
568 | NodeList scoreChildren = ruleSetNode.getChildNodes(); |
---|
569 | for (int i = 0; i < scoreChildren.getLength(); i++) { |
---|
570 | Node child = scoreChildren.item(i); |
---|
571 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
---|
572 | String tagName = ((Element)child).getTagName(); |
---|
573 | if (tagName.equals("ScoreDistribution")) { |
---|
574 | TreeModel.ScoreDistribution newDist = |
---|
575 | new TreeModel.ScoreDistribution((Element)child, |
---|
576 | miningSchema, m_recordCount); |
---|
577 | m_scoreDistributions.add(newDist); |
---|
578 | } |
---|
579 | } |
---|
580 | } |
---|
581 | |
---|
582 | //backfit the confidence values (if necessary) |
---|
583 | if (Utils.isMissingValue(m_recordCount)) { |
---|
584 | double baseCount = 0; |
---|
585 | for (TreeModel.ScoreDistribution s : m_scoreDistributions) { |
---|
586 | baseCount += s.getRecordCount(); |
---|
587 | } |
---|
588 | |
---|
589 | for (TreeModel.ScoreDistribution s : m_scoreDistributions) { |
---|
590 | s.deriveConfidenceValue(baseCount); |
---|
591 | } |
---|
592 | } |
---|
593 | } |
---|
594 | |
---|
595 | // Get the rules in this rule set |
---|
596 | NodeList ruleChildren = ruleSetNode.getChildNodes(); |
---|
597 | for (int i = 0; i < ruleChildren.getLength(); i++) { |
---|
598 | Node child = ruleChildren.item(i); |
---|
599 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
---|
600 | String tagName = ((Element)child).getTagName(); |
---|
601 | if (tagName.equals("SimpleRule")) { |
---|
602 | Rule tempRule = new SimpleRule(((Element)child), miningSchema); |
---|
603 | m_rules.add(tempRule); |
---|
604 | } else if (tagName.equals("CompoundRule")) { |
---|
605 | Rule tempRule = new CompoundRule(((Element)child), miningSchema); |
---|
606 | m_rules.add(tempRule); |
---|
607 | } |
---|
608 | } |
---|
609 | } |
---|
610 | } |
---|
611 | |
---|
612 | /** |
---|
613 | * Score an incoming instance by collecting all rules that fire. |
---|
614 | * |
---|
615 | * @param instance a vector of incoming attribte and derived field values |
---|
616 | * @param classAtt the class attribute |
---|
617 | * @return a predicted probability distribution |
---|
618 | * @throws Exception is something goes wrong |
---|
619 | */ |
---|
620 | protected double[] score(double[] instance, Attribute classAtt) |
---|
621 | throws Exception { |
---|
622 | |
---|
623 | double[] preds = null; |
---|
624 | if (classAtt.isNumeric()) { |
---|
625 | preds = new double[1]; |
---|
626 | } else { |
---|
627 | preds = new double[classAtt.numValues()]; |
---|
628 | } |
---|
629 | |
---|
630 | // holds the rules that fire for this test case |
---|
631 | ArrayList<SimpleRule> firingRules = new ArrayList<SimpleRule>(); |
---|
632 | |
---|
633 | for (Rule r : m_rules) { |
---|
634 | r.fires(instance, firingRules); |
---|
635 | } |
---|
636 | |
---|
637 | if (firingRules.size() > 0) { |
---|
638 | if (m_currentMethod == RuleSelectionMethod.FIRSTHIT) { |
---|
639 | preds = firingRules.get(0).score(instance, classAtt); |
---|
640 | } else if (m_currentMethod == RuleSelectionMethod.WEIGHTEDMAX) { |
---|
641 | double wMax = Double.NEGATIVE_INFINITY; |
---|
642 | SimpleRule best = null; |
---|
643 | for (SimpleRule s : firingRules) { |
---|
644 | if (Utils.isMissingValue(s.getWeight())) { |
---|
645 | throw new Exception("[RuleSet] Scoring criterion is WEIGHTEDMAX, but " + |
---|
646 | "rule " + s.getID() + " does not have a weight defined!"); |
---|
647 | } |
---|
648 | if (s.getWeight() > wMax) { |
---|
649 | wMax = s.getWeight(); |
---|
650 | best = s; |
---|
651 | } |
---|
652 | } |
---|
653 | if (best == null) { |
---|
654 | throw new Exception("[RuleSet] Unable to determine the best rule under " + |
---|
655 | "the WEIGHTEDMAX criterion!"); |
---|
656 | } |
---|
657 | preds = best.score(instance, classAtt); |
---|
658 | } else if (m_currentMethod == RuleSelectionMethod.WEIGHTEDSUM) { |
---|
659 | double sumOfWeights = 0; |
---|
660 | for (SimpleRule s : firingRules) { |
---|
661 | if (Utils.isMissingValue(s.getWeight())) { |
---|
662 | throw new Exception("[RuleSet] Scoring criterion is WEIGHTEDSUM, but " + |
---|
663 | "rule " + s.getID() + " does not have a weight defined!"); |
---|
664 | } |
---|
665 | if (classAtt.isNumeric()) { |
---|
666 | sumOfWeights += s.getWeight(); |
---|
667 | preds[0] += (s.getScore() * s.getWeight()); |
---|
668 | } else { |
---|
669 | preds[(int)s.getScore()] += s.getWeight(); |
---|
670 | } |
---|
671 | } |
---|
672 | if (classAtt.isNumeric()) { |
---|
673 | if (sumOfWeights == 0) { |
---|
674 | throw new Exception("[RuleSet] Sum of weights is zero!"); |
---|
675 | } |
---|
676 | preds[0] /= sumOfWeights; |
---|
677 | } else { |
---|
678 | // array gets normalized in the distributionForInstance() method |
---|
679 | } |
---|
680 | } |
---|
681 | } else { |
---|
682 | // default prediction |
---|
683 | if (classAtt.isNumeric()) { |
---|
684 | preds[0] = m_defaultPrediction; |
---|
685 | } else { |
---|
686 | if (m_scoreDistributions.size() > 0) { |
---|
687 | for (TreeModel.ScoreDistribution s : m_scoreDistributions) { |
---|
688 | preds[s.getClassLabelIndex()] = s.getConfidence(); |
---|
689 | } |
---|
690 | } else if (!Utils.isMissingValue(m_defaultConfidence)) { |
---|
691 | preds[(int)m_defaultPrediction] = m_defaultConfidence; |
---|
692 | } else { |
---|
693 | preds[(int)m_defaultPrediction] = 1.0; |
---|
694 | } |
---|
695 | } |
---|
696 | } |
---|
697 | |
---|
698 | return preds; |
---|
699 | } |
---|
700 | } |
---|
701 | |
---|
702 | /** The mining function */ |
---|
703 | protected MiningFunction m_functionType = MiningFunction.CLASSIFICATION; |
---|
704 | |
---|
705 | /** The model name (if defined) */ |
---|
706 | protected String m_modelName; |
---|
707 | |
---|
708 | /** The algorithm name (if defined) */ |
---|
709 | protected String m_algorithmName; |
---|
710 | |
---|
711 | /** The set of rules */ |
---|
712 | protected RuleSet m_ruleSet; |
---|
713 | |
---|
714 | /** |
---|
715 | * Constructor for a RuleSetModel |
---|
716 | * |
---|
717 | * @param model the XML element encapsulating the RuleSetModel |
---|
718 | * @param dataDictionary the data dictionary to use |
---|
719 | * @param miningSchema the mining schema to use |
---|
720 | * @throws Exception if something goes wrong |
---|
721 | */ |
---|
722 | public RuleSetModel(Element model, Instances dataDictionary, |
---|
723 | MiningSchema miningSchema) throws Exception { |
---|
724 | |
---|
725 | super(dataDictionary, miningSchema); |
---|
726 | |
---|
727 | if (!getPMMLVersion().equals("3.2")) { |
---|
728 | // TODO: might have to throw an exception and only support 3.2 |
---|
729 | } |
---|
730 | |
---|
731 | String fn = model.getAttribute("functionName"); |
---|
732 | if (fn.equals("regression")) { |
---|
733 | m_functionType = MiningFunction.REGRESSION; |
---|
734 | } |
---|
735 | |
---|
736 | String modelName = model.getAttribute("modelName"); |
---|
737 | if (modelName != null && modelName.length() > 0) { |
---|
738 | m_modelName = modelName; |
---|
739 | } |
---|
740 | |
---|
741 | String algoName = model.getAttribute("algorithmName"); |
---|
742 | if (algoName != null && algoName.length() > 0) { |
---|
743 | m_algorithmName = algoName; |
---|
744 | } |
---|
745 | |
---|
746 | NodeList ruleset = model.getElementsByTagName("RuleSet"); |
---|
747 | if (ruleset.getLength() == 1) { |
---|
748 | Node ruleSetNode = ruleset.item(0); |
---|
749 | if (ruleSetNode.getNodeType() == Node.ELEMENT_NODE) { |
---|
750 | m_ruleSet = new RuleSet((Element)ruleSetNode, miningSchema); |
---|
751 | } |
---|
752 | } else { |
---|
753 | throw new Exception ("[RuleSetModel] Should only have a single RuleSet!"); |
---|
754 | } |
---|
755 | } |
---|
756 | |
---|
757 | /** |
---|
758 | * Classifies the given test instance. The instance has to belong to a |
---|
759 | * dataset when it's being classified. |
---|
760 | * |
---|
761 | * @param inst the instance to be classified |
---|
762 | * @return the predicted most likely class for the instance or |
---|
763 | * Utils.missingValue() if no prediction is made |
---|
764 | * @exception Exception if an error occurred during the prediction |
---|
765 | */ |
---|
766 | public double[] distributionForInstance(Instance inst) throws Exception { |
---|
767 | if (!m_initialized) { |
---|
768 | mapToMiningSchema(inst.dataset()); |
---|
769 | } |
---|
770 | double[] preds = null; |
---|
771 | |
---|
772 | if (m_miningSchema.getFieldsAsInstances().classAttribute().isNumeric()) { |
---|
773 | preds = new double[1]; |
---|
774 | } else { |
---|
775 | preds = new double[m_miningSchema.getFieldsAsInstances().classAttribute().numValues()]; |
---|
776 | } |
---|
777 | |
---|
778 | double[] incoming = m_fieldsMap.instanceToSchema(inst, m_miningSchema); |
---|
779 | |
---|
780 | preds = m_ruleSet.score(incoming, |
---|
781 | m_miningSchema.getFieldsAsInstances().classAttribute()); |
---|
782 | |
---|
783 | if (m_miningSchema.getFieldsAsInstances().classAttribute().isNominal()) { |
---|
784 | Utils.normalize(preds); |
---|
785 | } |
---|
786 | |
---|
787 | return preds; |
---|
788 | } |
---|
789 | |
---|
790 | /** |
---|
791 | * Return a textual description of this model. |
---|
792 | * |
---|
793 | * @return a textual description of this model |
---|
794 | */ |
---|
795 | public String toString() { |
---|
796 | StringBuffer temp = new StringBuffer(); |
---|
797 | |
---|
798 | temp.append("PMML version " + getPMMLVersion()); |
---|
799 | if (!getCreatorApplication().equals("?")) { |
---|
800 | temp.append("\nApplication: " + getCreatorApplication()); |
---|
801 | } |
---|
802 | temp.append("\nPMML Model: RuleSetModel"); |
---|
803 | temp.append("\n\n"); |
---|
804 | temp.append(m_miningSchema); |
---|
805 | |
---|
806 | if (m_algorithmName != null) { |
---|
807 | temp.append("\nAlgorithm: " + m_algorithmName + "\n"); |
---|
808 | } |
---|
809 | |
---|
810 | temp.append(m_ruleSet); |
---|
811 | |
---|
812 | return temp.toString(); |
---|
813 | } |
---|
814 | |
---|
815 | /** |
---|
816 | * Get the revision string for this class |
---|
817 | * |
---|
818 | * @return the revision string |
---|
819 | */ |
---|
820 | public String getRevision() { |
---|
821 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
822 | } |
---|
823 | |
---|
824 | } |
---|