1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NominalLossFunction.java |
---|
19 | * Copyright (C) 2004 Stijn Lievens |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.misc.monotone; |
---|
24 | |
---|
25 | /** |
---|
26 | * Interface for incorporating different loss functions. |
---|
27 | * <p> |
---|
28 | * This interface contains only one method, namely <code> loss |
---|
29 | * </code> that measures the error between an actual class |
---|
30 | * value <code> actual </code> and a predicted value <code> |
---|
31 | * predicted. </code> It is understood that the return value |
---|
32 | * of this method is always be positive and that it is zero |
---|
33 | * if and only if the actual and the predicted value coincide. |
---|
34 | * </p> |
---|
35 | * <p> |
---|
36 | * This implementation is done as part of the master's thesis: "Studie |
---|
37 | * en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd |
---|
38 | * rangschikken", Stijn Lievens, Ghent University, 2004. |
---|
39 | * </p> |
---|
40 | * |
---|
41 | * @author Stijn Lievens (stijn.lievens@ugent.be) |
---|
42 | * @version $Revision: 5922 $ |
---|
43 | */ |
---|
44 | public interface NominalLossFunction { |
---|
45 | |
---|
46 | /** |
---|
47 | * Calculate the loss between an actual and a predicted class value. |
---|
48 | * |
---|
49 | * @param actual the actual class value |
---|
50 | * @param predicted the predicted class value |
---|
51 | * @return a measure for the error of making the prediction |
---|
52 | * <code> predicted </code> instead of <code> actual </code> |
---|
53 | */ |
---|
54 | public double loss(double actual, double predicted); |
---|
55 | } |
---|