| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * DistributionUtils.java |
|---|
| 19 | * Copyright (C) 2004 Stijn Lievens |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.misc.monotone; |
|---|
| 24 | |
|---|
| 25 | import weka.core.RevisionHandler; |
|---|
| 26 | import weka.core.RevisionUtils; |
|---|
| 27 | import weka.estimators.DiscreteEstimator; |
|---|
| 28 | |
|---|
| 29 | import java.util.Arrays; |
|---|
| 30 | |
|---|
| 31 | /** |
|---|
| 32 | * Class with some simple methods acting on |
|---|
| 33 | * <code> CumulativeDiscreteDistribution. </code> |
|---|
| 34 | * All of the methods in this class are very easily implemented |
|---|
| 35 | * and the main use of this class is to gather all these methods |
|---|
| 36 | * in a single place. It could be argued that some of the methods |
|---|
| 37 | * should be implemented in the class |
|---|
| 38 | * <code> CumulativeDiscreteDistribution </code> itself. |
|---|
| 39 | * <p> |
|---|
| 40 | * This implementation is part of the master's thesis: "Studie |
|---|
| 41 | * en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd |
|---|
| 42 | * rangschikken", Stijn Lievens, Ghent University, 2004. |
|---|
| 43 | * </p> |
|---|
| 44 | * |
|---|
| 45 | * @author Stijn Lievens (stijn.lievens@ugent.be) |
|---|
| 46 | * @version $Revision: 5922 $ |
|---|
| 47 | */ |
|---|
| 48 | public class DistributionUtils |
|---|
| 49 | implements RevisionHandler { |
|---|
| 50 | |
|---|
| 51 | /** |
|---|
| 52 | * Constant indicating the maximal number of classes |
|---|
| 53 | * for which there is a minimal and maximal distribution |
|---|
| 54 | * present in the pool. |
|---|
| 55 | * One of the purposes of this class is to serve as a factory |
|---|
| 56 | * for minimal and maximal cumulative probability distributions. |
|---|
| 57 | * Since instances of <code> CumulativeDiscreteDistribution </code> |
|---|
| 58 | * are immutable, we can create them beforehand and reuse them |
|---|
| 59 | * every time one is needed. |
|---|
| 60 | */ |
|---|
| 61 | private static final int MAX_CLASSES = 20; |
|---|
| 62 | |
|---|
| 63 | /** |
|---|
| 64 | * Array filled with minimal cumulative discrete probability |
|---|
| 65 | * distributions. This means that probability one is given to the |
|---|
| 66 | * first element. This array serves as a pool for the method |
|---|
| 67 | * <code> getMinimalCumulativeDiscreteDistribution. </code> |
|---|
| 68 | */ |
|---|
| 69 | private static final CumulativeDiscreteDistribution[] m_minimalDistributions; |
|---|
| 70 | |
|---|
| 71 | /** |
|---|
| 72 | * Array filled with maximal cumulative discrete probability |
|---|
| 73 | * distributions. This means that probability one is given to the |
|---|
| 74 | * largest element. This array serves as a pool for the method |
|---|
| 75 | * <code> getMaximalCumulativeDiscreteDistribution. </code> |
|---|
| 76 | */ |
|---|
| 77 | private static final CumulativeDiscreteDistribution[] m_maximalDistributions; |
|---|
| 78 | |
|---|
| 79 | // fill both static arrays with the correct distributions |
|---|
| 80 | static { |
|---|
| 81 | m_minimalDistributions = new CumulativeDiscreteDistribution[MAX_CLASSES + 1]; |
|---|
| 82 | m_maximalDistributions = new CumulativeDiscreteDistribution[MAX_CLASSES + 1]; |
|---|
| 83 | |
|---|
| 84 | for (int i = 1; i <= MAX_CLASSES; i++) { |
|---|
| 85 | double[] dd = new double[i]; |
|---|
| 86 | dd[dd.length - 1] = 1; |
|---|
| 87 | m_maximalDistributions[i] = new CumulativeDiscreteDistribution(dd); |
|---|
| 88 | Arrays.fill(dd,1); |
|---|
| 89 | m_minimalDistributions[i] = new CumulativeDiscreteDistribution(dd); |
|---|
| 90 | } |
|---|
| 91 | } |
|---|
| 92 | |
|---|
| 93 | /** |
|---|
| 94 | * Compute a linear interpolation between the two given |
|---|
| 95 | * <code> CumulativeDiscreteDistribution. </code> |
|---|
| 96 | * |
|---|
| 97 | * @param cdf1 the first <code> CumulativeDiscreteDistribution </code> |
|---|
| 98 | * @param cdf2 the second <code> CumulativeDiscreteDistribution </code> |
|---|
| 99 | * @param s the interpolation parameter |
|---|
| 100 | * @return (1 - s) × cdf1 + s × cdf2 |
|---|
| 101 | * @throws IllegalArgumentException if the two distributions |
|---|
| 102 | * don't have the same size or if the parameter <code> s </code> |
|---|
| 103 | * is not in the range [0,1] |
|---|
| 104 | */ |
|---|
| 105 | public static CumulativeDiscreteDistribution interpolate( |
|---|
| 106 | CumulativeDiscreteDistribution cdf1, |
|---|
| 107 | CumulativeDiscreteDistribution cdf2, double s) throws IllegalArgumentException { |
|---|
| 108 | |
|---|
| 109 | if (cdf1.getNumSymbols() != cdf2.getNumSymbols()) { |
|---|
| 110 | throw new IllegalArgumentException |
|---|
| 111 | ("CumulativeDiscreteDistributions don't have " |
|---|
| 112 | + "the same size"); |
|---|
| 113 | } |
|---|
| 114 | |
|---|
| 115 | if (s < 0 || s > 1) { |
|---|
| 116 | throw new IllegalArgumentException |
|---|
| 117 | ("Parameter s exceeds bounds"); |
|---|
| 118 | } |
|---|
| 119 | |
|---|
| 120 | double[] res = new double[cdf1.getNumSymbols()]; |
|---|
| 121 | for (int i = 0, n = cdf1.getNumSymbols(); i < n; i++) { |
|---|
| 122 | res[i] = (1 - s) * cdf1.getCumulativeProbability(i) + |
|---|
| 123 | s * cdf2.getCumulativeProbability(i); |
|---|
| 124 | } |
|---|
| 125 | return new CumulativeDiscreteDistribution(res); |
|---|
| 126 | } |
|---|
| 127 | |
|---|
| 128 | /** |
|---|
| 129 | * Compute a linear interpolation between the two given |
|---|
| 130 | * <code> CumulativeDiscreteDistribution. </code> |
|---|
| 131 | * |
|---|
| 132 | * @param cdf1 the first <code> CumulativeDiscreteDistribution </code> |
|---|
| 133 | * @param cdf2 the second <code> CumulativeDiscreteDistribution </code> |
|---|
| 134 | * @param s the interpolation parameters, only the relevant number |
|---|
| 135 | * of entries is used, so the array may be longer than the common |
|---|
| 136 | * length of <code> cdf1 </code> and <code> cdf2 </code> |
|---|
| 137 | * @return (1 - s) × cdf1 + s × cdf2, or more specifically |
|---|
| 138 | * a distribution cd such that <code> |
|---|
| 139 | * cd.getCumulativeProbability(i) = |
|---|
| 140 | * (1-s[i]) × cdf1.getCumulativeProbability(i) + |
|---|
| 141 | * s[i] × cdf2.getCumulativeProbability(i) </code> |
|---|
| 142 | * @throws IllegalArgumentException if the two distributions |
|---|
| 143 | * don't have the same size or if the array <code> s </code> |
|---|
| 144 | * contains parameters not in the range <code> [0,1] </code> |
|---|
| 145 | */ |
|---|
| 146 | public static CumulativeDiscreteDistribution interpolate( |
|---|
| 147 | CumulativeDiscreteDistribution cdf1, |
|---|
| 148 | CumulativeDiscreteDistribution cdf2, double[] s) throws IllegalArgumentException { |
|---|
| 149 | |
|---|
| 150 | if (cdf1.getNumSymbols() != cdf2.getNumSymbols()) { |
|---|
| 151 | throw new IllegalArgumentException |
|---|
| 152 | ("CumulativeDiscreteDistributions don't have " |
|---|
| 153 | + "the same size"); |
|---|
| 154 | } |
|---|
| 155 | |
|---|
| 156 | if (cdf1.getNumSymbols() > s.length) { |
|---|
| 157 | throw new IllegalArgumentException |
|---|
| 158 | ("Array with interpolation parameters is not " |
|---|
| 159 | + " long enough"); |
|---|
| 160 | } |
|---|
| 161 | |
|---|
| 162 | double[] res = new double[cdf1.getNumSymbols()]; |
|---|
| 163 | for (int i = 0, n = cdf1.getNumSymbols(); i < n; i++) { |
|---|
| 164 | if (s[i] < 0 || s[i] > 1) { |
|---|
| 165 | throw new IllegalArgumentException |
|---|
| 166 | ("Interpolation parameter exceeds bounds"); |
|---|
| 167 | } |
|---|
| 168 | res[i] = (1 - s[i]) * cdf1.getCumulativeProbability(i) + |
|---|
| 169 | s[i] * cdf2.getCumulativeProbability(i); |
|---|
| 170 | } |
|---|
| 171 | return new CumulativeDiscreteDistribution(res); |
|---|
| 172 | } |
|---|
| 173 | |
|---|
| 174 | /** |
|---|
| 175 | * Compute a linear interpolation between the two given |
|---|
| 176 | * <code> DiscreteDistribution. </code> |
|---|
| 177 | * |
|---|
| 178 | * @param ddf1 the first <code> DiscreteDistribution </code> |
|---|
| 179 | * @param ddf2 the second <code> DiscreteDistribution </code> |
|---|
| 180 | * @param s the interpolation parameter |
|---|
| 181 | * @return <code> (1 - s) × ddf1 + s × ddf2 </code> |
|---|
| 182 | * @throws IllegalArgumentException if the two distributions |
|---|
| 183 | * don't have the same size or if the parameter <code> s </code> |
|---|
| 184 | * is not in the range [0,1] |
|---|
| 185 | */ |
|---|
| 186 | public static DiscreteDistribution interpolate( |
|---|
| 187 | DiscreteDistribution ddf1, |
|---|
| 188 | DiscreteDistribution ddf2, double s) throws IllegalArgumentException { |
|---|
| 189 | |
|---|
| 190 | if (ddf1.getNumSymbols() != ddf2.getNumSymbols()) { |
|---|
| 191 | throw new IllegalArgumentException |
|---|
| 192 | ("DiscreteDistributions don't have " |
|---|
| 193 | + "the same size"); |
|---|
| 194 | } |
|---|
| 195 | |
|---|
| 196 | if (s < 0 || s > 1) { |
|---|
| 197 | throw new IllegalArgumentException |
|---|
| 198 | ("Parameter s exceeds bounds"); |
|---|
| 199 | } |
|---|
| 200 | |
|---|
| 201 | double[] res = new double[ddf1.getNumSymbols()]; |
|---|
| 202 | for (int i = 0, n = ddf1.getNumSymbols(); i < n; i++) { |
|---|
| 203 | res[i] = (1 - s) * ddf1.getProbability(i) + |
|---|
| 204 | s * ddf2.getProbability(i); |
|---|
| 205 | } |
|---|
| 206 | return new DiscreteDistribution(res); |
|---|
| 207 | } |
|---|
| 208 | |
|---|
| 209 | /** |
|---|
| 210 | * Create a new <code> CumulativeDiscreteDistribution </code> |
|---|
| 211 | * that is the minimum of the two given <code> |
|---|
| 212 | * CumulativeDiscreteDistribution. </code> |
|---|
| 213 | * Each component of the resulting probability distribution |
|---|
| 214 | * is the minimum of the two corresponding components. <br/> |
|---|
| 215 | * Note: despite of its name, the returned cumulative probability |
|---|
| 216 | * distribution dominates both the arguments of this method. |
|---|
| 217 | * |
|---|
| 218 | * @param cdf1 first <code> CumulativeDiscreteDistribution </code> |
|---|
| 219 | * @param cdf2 second <code> CumulativeDiscreteDistribution </code> |
|---|
| 220 | * @return the minimum of the two distributions |
|---|
| 221 | * @throws IllegalArgumentException if the two distributions |
|---|
| 222 | * dont't have the same length |
|---|
| 223 | */ |
|---|
| 224 | public static CumulativeDiscreteDistribution takeMin( |
|---|
| 225 | CumulativeDiscreteDistribution cdf1, |
|---|
| 226 | CumulativeDiscreteDistribution cdf2) throws IllegalArgumentException { |
|---|
| 227 | |
|---|
| 228 | if (cdf1.getNumSymbols() != cdf2.getNumSymbols() ) |
|---|
| 229 | throw new IllegalArgumentException |
|---|
| 230 | ("Cumulative distributions don't have the same length"); |
|---|
| 231 | |
|---|
| 232 | double[] cdf = new double[cdf1.getNumSymbols()]; |
|---|
| 233 | int n = cdf.length; |
|---|
| 234 | for (int i = 0; i < n; i++) { |
|---|
| 235 | cdf[i] = Math.min(cdf1.getCumulativeProbability(i), |
|---|
| 236 | cdf2.getCumulativeProbability(i)); |
|---|
| 237 | } |
|---|
| 238 | return new CumulativeDiscreteDistribution(cdf); |
|---|
| 239 | } |
|---|
| 240 | |
|---|
| 241 | /** |
|---|
| 242 | * Create a new <code> CumulativeDiscreteDistribution </code> |
|---|
| 243 | * that is the maximum of the two given <code> |
|---|
| 244 | * CumulativeDiscreteDistribution. </code> |
|---|
| 245 | * Each component of the resulting probability distribution |
|---|
| 246 | * is the maximum of the two corresponding components. |
|---|
| 247 | * Note: despite of its name, the returned cumulative probability |
|---|
| 248 | * distribution is dominated by both the arguments of this method. |
|---|
| 249 | * |
|---|
| 250 | * @param cdf1 first <code> CumulativeDiscreteDistribution </code> |
|---|
| 251 | * @param cdf2 second <code> CumulativeDiscreteDistribution </code> |
|---|
| 252 | * @return the maximum of the two distributions |
|---|
| 253 | * @throws IllegalArgumentException if the two distributions |
|---|
| 254 | * dont't have the same length |
|---|
| 255 | */ |
|---|
| 256 | public static CumulativeDiscreteDistribution takeMax( |
|---|
| 257 | CumulativeDiscreteDistribution cdf1, |
|---|
| 258 | CumulativeDiscreteDistribution cdf2) throws IllegalArgumentException { |
|---|
| 259 | |
|---|
| 260 | if (cdf1.getNumSymbols() != cdf2.getNumSymbols() ) |
|---|
| 261 | throw new IllegalArgumentException |
|---|
| 262 | ("Cumulative distributions don't have the same length"); |
|---|
| 263 | |
|---|
| 264 | double[] cdf = new double[cdf1.getNumSymbols()]; |
|---|
| 265 | int n = cdf.length; |
|---|
| 266 | for (int i = 0; i < n; i++) { |
|---|
| 267 | cdf[i] = Math.max(cdf1.getCumulativeProbability(i), |
|---|
| 268 | cdf2.getCumulativeProbability(i)); |
|---|
| 269 | } |
|---|
| 270 | return new CumulativeDiscreteDistribution(cdf); |
|---|
| 271 | } |
|---|
| 272 | |
|---|
| 273 | /** |
|---|
| 274 | * Converts a <code> DiscreteEstimator </code> to an array of |
|---|
| 275 | * doubles. |
|---|
| 276 | * |
|---|
| 277 | * @param df the <code> DiscreteEstimator </code> to be converted |
|---|
| 278 | * @return an array of doubles representing the |
|---|
| 279 | * <code> DiscreteEstimator </code> |
|---|
| 280 | */ |
|---|
| 281 | public static double[] getDistributionArray(DiscreteEstimator df) { |
|---|
| 282 | double[] dfa = new double[df.getNumSymbols()]; |
|---|
| 283 | for (int i = 0; i < dfa.length; i++) { |
|---|
| 284 | dfa[i] = df.getProbability(i); |
|---|
| 285 | } |
|---|
| 286 | return dfa; |
|---|
| 287 | } |
|---|
| 288 | |
|---|
| 289 | /** |
|---|
| 290 | * Get the minimal <code> CumulativeDiscreteDistribution </code> |
|---|
| 291 | * over <code> numClasses </code> elements. This means that |
|---|
| 292 | * a probability of one is assigned to the first element. |
|---|
| 293 | * |
|---|
| 294 | * @param numClasses the number of elements |
|---|
| 295 | * @return the minimal <code> CumulativeDiscreteDistribution </code> |
|---|
| 296 | * over the requested number of elements |
|---|
| 297 | * @throws IllegalArgumentException if <code> numClasses </code> |
|---|
| 298 | * is smaller or equal than 0 |
|---|
| 299 | */ |
|---|
| 300 | public static CumulativeDiscreteDistribution getMinimalCumulativeDiscreteDistribution( |
|---|
| 301 | int numClasses) throws IllegalArgumentException { |
|---|
| 302 | |
|---|
| 303 | if (numClasses <= 0) { |
|---|
| 304 | throw new IllegalArgumentException |
|---|
| 305 | ("Number of elements must be positive"); |
|---|
| 306 | } |
|---|
| 307 | if (numClasses <= MAX_CLASSES) { |
|---|
| 308 | return m_minimalDistributions[numClasses]; |
|---|
| 309 | } |
|---|
| 310 | |
|---|
| 311 | double[] dd = new double[numClasses]; |
|---|
| 312 | Arrays.fill(dd,1); |
|---|
| 313 | return new CumulativeDiscreteDistribution(dd); |
|---|
| 314 | } |
|---|
| 315 | |
|---|
| 316 | /** |
|---|
| 317 | * Get the maximal <code> CumulativeDiscreteDistribution </code> |
|---|
| 318 | * over <code> numClasses </code> elements. This means that |
|---|
| 319 | * a probability of one is assigned to the last class. |
|---|
| 320 | * |
|---|
| 321 | * @param numClasses the number of elements |
|---|
| 322 | * @return the maximal <code> CumulativeDiscreteDistribution </code> |
|---|
| 323 | * over the requested number of elements |
|---|
| 324 | * @throws IllegalArgumentException if <code> numClasses </code> |
|---|
| 325 | * is smaller or equal than 0 |
|---|
| 326 | */ |
|---|
| 327 | public static CumulativeDiscreteDistribution getMaximalCumulativeDiscreteDistribution( |
|---|
| 328 | int numClasses) throws IllegalArgumentException { |
|---|
| 329 | |
|---|
| 330 | if (numClasses <= 0) { |
|---|
| 331 | throw new IllegalArgumentException |
|---|
| 332 | ("Number of elements must be positive"); |
|---|
| 333 | } |
|---|
| 334 | if (numClasses <= MAX_CLASSES) { |
|---|
| 335 | return m_maximalDistributions[numClasses]; |
|---|
| 336 | } |
|---|
| 337 | |
|---|
| 338 | double[] dd = new double[numClasses]; |
|---|
| 339 | dd[dd.length - 1] = 1; |
|---|
| 340 | return new CumulativeDiscreteDistribution(dd); |
|---|
| 341 | } |
|---|
| 342 | |
|---|
| 343 | /** |
|---|
| 344 | * Returns the revision string. |
|---|
| 345 | * |
|---|
| 346 | * @return the revision |
|---|
| 347 | */ |
|---|
| 348 | public String getRevision() { |
|---|
| 349 | return RevisionUtils.extract("$Revision: 5922 $"); |
|---|
| 350 | } |
|---|
| 351 | } |
|---|