| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * CumulativeDiscreteDistribution.java |
|---|
| 19 | * Copyright (C) 2004 Stijn Lievens |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.misc.monotone; |
|---|
| 24 | |
|---|
| 25 | import weka.core.RevisionHandler; |
|---|
| 26 | import weka.core.RevisionUtils; |
|---|
| 27 | import weka.core.Utils; |
|---|
| 28 | import weka.estimators.DiscreteEstimator; |
|---|
| 29 | |
|---|
| 30 | import java.io.Serializable; |
|---|
| 31 | |
|---|
| 32 | /** |
|---|
| 33 | * Represents a discrete cumulative probability distribution |
|---|
| 34 | * over a totally ordered discrete set. The elements of this set |
|---|
| 35 | * are numbered consecutively starting from 0. |
|---|
| 36 | *<p> |
|---|
| 37 | * In this implementation object of type |
|---|
| 38 | * <code> CumulativeDiscreteDistribution </code> are immutable. |
|---|
| 39 | * </p> |
|---|
| 40 | * <p> |
|---|
| 41 | * This implementation is part of the master's thesis: "Studie |
|---|
| 42 | * en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd |
|---|
| 43 | * rangschikken", Stijn Lievens, Ghent University, 2004. |
|---|
| 44 | * </p> |
|---|
| 45 | * |
|---|
| 46 | * @author Stijn Lievens (stijn.lievens@ugent.be) |
|---|
| 47 | * @version $Revision: 5922 $ |
|---|
| 48 | */ |
|---|
| 49 | public class CumulativeDiscreteDistribution |
|---|
| 50 | implements Serializable, RevisionHandler { |
|---|
| 51 | |
|---|
| 52 | /** for serialization */ |
|---|
| 53 | private static final long serialVersionUID = -2959806903004453176L; |
|---|
| 54 | |
|---|
| 55 | /** |
|---|
| 56 | * small tolerance to account for rounding errors when working |
|---|
| 57 | * with doubles |
|---|
| 58 | */ |
|---|
| 59 | private static final double TOLERANCE = Utils.SMALL; |
|---|
| 60 | |
|---|
| 61 | /** The cumulative probabilities */ |
|---|
| 62 | private double[] m_cdf; |
|---|
| 63 | |
|---|
| 64 | /** |
|---|
| 65 | * Create a discrete cumulative probability distribution based on a |
|---|
| 66 | * <code> DiscreteEstimator. </code> |
|---|
| 67 | * |
|---|
| 68 | * @param e the <code> DiscreteEstimator </code> on which the |
|---|
| 69 | * cumulative probability distribution will be based |
|---|
| 70 | */ |
|---|
| 71 | public CumulativeDiscreteDistribution(DiscreteEstimator e) { |
|---|
| 72 | m_cdf = new double[e.getNumSymbols()]; |
|---|
| 73 | |
|---|
| 74 | if (m_cdf.length != 0) { |
|---|
| 75 | m_cdf[0] = e.getProbability(0); |
|---|
| 76 | } |
|---|
| 77 | for (int i = 1; i < m_cdf.length; i++) { |
|---|
| 78 | m_cdf[i] = m_cdf[i - 1] + e.getProbability(i); |
|---|
| 79 | } |
|---|
| 80 | } |
|---|
| 81 | |
|---|
| 82 | /** |
|---|
| 83 | * Create a <code> CumulativeDiscreteDistribution </code> based on a |
|---|
| 84 | * <code> DiscreteDistribution. </code> |
|---|
| 85 | * |
|---|
| 86 | * @param d the <code> DiscreteDistribution </code> on which the |
|---|
| 87 | * cumulative probability distribution will be based |
|---|
| 88 | */ |
|---|
| 89 | public CumulativeDiscreteDistribution(DiscreteDistribution d) { |
|---|
| 90 | m_cdf = new double[d.getNumSymbols()]; |
|---|
| 91 | |
|---|
| 92 | if (m_cdf.length != 0) { |
|---|
| 93 | m_cdf[0] = d.getProbability(0); |
|---|
| 94 | } |
|---|
| 95 | for (int i = 1; i < m_cdf.length; i++) { |
|---|
| 96 | m_cdf[i] = m_cdf[i - 1] + d.getProbability(i); |
|---|
| 97 | } |
|---|
| 98 | } |
|---|
| 99 | |
|---|
| 100 | /** |
|---|
| 101 | * Create a <code> CumulativeDiscreteDistribution </code> based on an |
|---|
| 102 | * array of doubles. The array <code> cdf </code> is copied, so |
|---|
| 103 | * the caller can reuse the same array. |
|---|
| 104 | * |
|---|
| 105 | * @param cdf an array that represents a valid discrete cumulative |
|---|
| 106 | * probability distribution |
|---|
| 107 | * @throws IllegalArgumentException if the array doesn't |
|---|
| 108 | * represent a valid cumulative discrete distribution function |
|---|
| 109 | */ |
|---|
| 110 | public CumulativeDiscreteDistribution(double[] cdf) throws IllegalArgumentException { |
|---|
| 111 | if (!validCumulativeDistribution(cdf)) { |
|---|
| 112 | throw new IllegalArgumentException |
|---|
| 113 | ("Not a cumulative probability distribution"); |
|---|
| 114 | } |
|---|
| 115 | m_cdf = new double[cdf.length]; |
|---|
| 116 | System.arraycopy(cdf, 0, m_cdf, 0, cdf.length); |
|---|
| 117 | } |
|---|
| 118 | |
|---|
| 119 | /** |
|---|
| 120 | * Get the number of elements over which the cumulative |
|---|
| 121 | * probability distribution is defined. |
|---|
| 122 | * |
|---|
| 123 | * @return the number of elements over which the cumulative |
|---|
| 124 | * probability distribution is defined. |
|---|
| 125 | */ |
|---|
| 126 | public int getNumSymbols() { |
|---|
| 127 | return (m_cdf != null) ? m_cdf.length : 0; |
|---|
| 128 | } |
|---|
| 129 | |
|---|
| 130 | /** |
|---|
| 131 | * Get the probability of finding an element |
|---|
| 132 | * smaller or equal than <code> index. </code> |
|---|
| 133 | * |
|---|
| 134 | * @param index the required index |
|---|
| 135 | * @return the probability of finding an element <= index |
|---|
| 136 | */ |
|---|
| 137 | public double getCumulativeProbability(int index) { |
|---|
| 138 | return m_cdf[index]; |
|---|
| 139 | } |
|---|
| 140 | |
|---|
| 141 | /** |
|---|
| 142 | * Get an array representation of the cumulative probability |
|---|
| 143 | * distribution. |
|---|
| 144 | * |
|---|
| 145 | * @return an array of doubles representing the cumulative |
|---|
| 146 | * probability distribution |
|---|
| 147 | */ |
|---|
| 148 | public double[] toArray() { |
|---|
| 149 | double cdf[] = new double[m_cdf.length]; |
|---|
| 150 | System.arraycopy(m_cdf, 0, cdf, 0, cdf.length); |
|---|
| 151 | return cdf; |
|---|
| 152 | } |
|---|
| 153 | |
|---|
| 154 | /** |
|---|
| 155 | * Returns if <code> this </code> is dominated by <code> cdf. </code> |
|---|
| 156 | * This means that we check if, for all indices <code> i </code>, it |
|---|
| 157 | * holds that <code> this.getProbability(i) >= cdf.getProbability(i). |
|---|
| 158 | * </code> |
|---|
| 159 | * |
|---|
| 160 | * @param cdf the <code> CumulativeDiscreteDistribution </code> |
|---|
| 161 | * <code> this </code> is compared to |
|---|
| 162 | * @return <code> true </code> if <code> this </code> is dominated by |
|---|
| 163 | * <code> cdf </code>, <code> false </code> otherwise |
|---|
| 164 | * @throws IllegalArgumentException if the two distributions don't |
|---|
| 165 | * have the same length |
|---|
| 166 | */ |
|---|
| 167 | public boolean stochasticDominatedBy(CumulativeDiscreteDistribution cdf) throws IllegalArgumentException { |
|---|
| 168 | if (getNumSymbols() != cdf.getNumSymbols()) { |
|---|
| 169 | throw new IllegalArgumentException |
|---|
| 170 | ("Cumulative distributions are not defined over" |
|---|
| 171 | + " the same number of symbols"); |
|---|
| 172 | } |
|---|
| 173 | for (int i = 0; i < m_cdf.length; i++) { |
|---|
| 174 | if (m_cdf[i] < cdf.m_cdf[i]) { |
|---|
| 175 | return false; |
|---|
| 176 | } |
|---|
| 177 | } |
|---|
| 178 | return true; |
|---|
| 179 | } |
|---|
| 180 | |
|---|
| 181 | /** |
|---|
| 182 | * Indicates if the object <code> o </code> equals <code> this. </code> |
|---|
| 183 | * Note: for practical reasons I was forced to use a small tolerance |
|---|
| 184 | * whilst comparing the distributions, meaning that the transitivity |
|---|
| 185 | * property of <code> equals </code> is not guaranteed. |
|---|
| 186 | * |
|---|
| 187 | * @param o the reference object with which to compare |
|---|
| 188 | * @return <code> true </code> if <code> o </code> equals <code> |
|---|
| 189 | * this, </code> <code> false </code> otherwise |
|---|
| 190 | */ |
|---|
| 191 | public boolean equals(Object o) { |
|---|
| 192 | if (!(o instanceof CumulativeDiscreteDistribution)) { |
|---|
| 193 | return false; |
|---|
| 194 | } |
|---|
| 195 | CumulativeDiscreteDistribution cdf = |
|---|
| 196 | (CumulativeDiscreteDistribution) o; |
|---|
| 197 | if (m_cdf.length != cdf.getNumSymbols()) { |
|---|
| 198 | return false; |
|---|
| 199 | } |
|---|
| 200 | for (int i = 0; i < m_cdf.length; i++) { |
|---|
| 201 | if (Math.abs(m_cdf[i] - cdf.m_cdf[i]) > TOLERANCE) { |
|---|
| 202 | return false; |
|---|
| 203 | } |
|---|
| 204 | } |
|---|
| 205 | return true; |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | /** |
|---|
| 209 | * Get a string representation of the cumulative probability |
|---|
| 210 | * distribution. |
|---|
| 211 | * |
|---|
| 212 | * @return a string representation of the distribution. |
|---|
| 213 | */ |
|---|
| 214 | public String toString() { |
|---|
| 215 | // XXX MAYBE WE SHOULD USE STRINGBUFFER AND USE A FIXED |
|---|
| 216 | // NUMBER OF DECIMALS BEHIND THE COMMA |
|---|
| 217 | String s = "[" + getNumSymbols() + "]:"; |
|---|
| 218 | for (int i = 0; i < getNumSymbols(); i++) |
|---|
| 219 | s += " " + getCumulativeProbability(i); |
|---|
| 220 | return s; |
|---|
| 221 | } |
|---|
| 222 | |
|---|
| 223 | /** |
|---|
| 224 | * Checks if the given array represents a valid cumulative |
|---|
| 225 | * distribution. |
|---|
| 226 | * |
|---|
| 227 | * @param cdf an array holding the presumed cumulative distribution |
|---|
| 228 | * @return <code> true </code> if <code> cdf </code> represents |
|---|
| 229 | * a valid cumulative discrete distribution function, <code> false |
|---|
| 230 | * </code> otherwise |
|---|
| 231 | */ |
|---|
| 232 | private static boolean validCumulativeDistribution(double[] cdf) { |
|---|
| 233 | if (cdf == null || cdf.length == 0 || |
|---|
| 234 | Math.abs(cdf[cdf.length - 1] - 1.) > TOLERANCE || cdf[0] < 0) { |
|---|
| 235 | return false; |
|---|
| 236 | } |
|---|
| 237 | for (int i = 1; i < cdf.length; i++) { |
|---|
| 238 | |
|---|
| 239 | // allow small tolerance for increasing check |
|---|
| 240 | if (cdf[i] < cdf[i - 1] - TOLERANCE) { |
|---|
| 241 | return false; |
|---|
| 242 | } |
|---|
| 243 | } |
|---|
| 244 | return true; |
|---|
| 245 | } |
|---|
| 246 | |
|---|
| 247 | /** |
|---|
| 248 | * Returns the revision string. |
|---|
| 249 | * |
|---|
| 250 | * @return the revision |
|---|
| 251 | */ |
|---|
| 252 | public String getRevision() { |
|---|
| 253 | return RevisionUtils.extract("$Revision: 5922 $"); |
|---|
| 254 | } |
|---|
| 255 | } |
|---|