1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AbsoluteLossFunction.java |
---|
19 | * Copyright (C) 2004 Stijn Lievens |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.misc.monotone; |
---|
24 | |
---|
25 | import weka.core.RevisionHandler; |
---|
26 | import weka.core.RevisionUtils; |
---|
27 | |
---|
28 | /** |
---|
29 | * Class implementing the absolute loss function, this means |
---|
30 | * the returned loss is the abolute value of the difference |
---|
31 | * between the predicted and actual value. |
---|
32 | * |
---|
33 | * <p> |
---|
34 | * This implementation is done as part of the master's thesis: "Studie |
---|
35 | * en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd |
---|
36 | * rangschikken", Stijn Lievens, Ghent University, 2004. |
---|
37 | * </p> |
---|
38 | * |
---|
39 | * @author Stijn Lievens (stijn.lievens@ugent.be) |
---|
40 | * @version $Revision: 5922 $ |
---|
41 | */ |
---|
42 | public class AbsoluteLossFunction |
---|
43 | implements NominalLossFunction, RevisionHandler { |
---|
44 | |
---|
45 | /** |
---|
46 | * Returns the absolute loss function between two class values. |
---|
47 | * |
---|
48 | * @param actual the actual class value |
---|
49 | * @param predicted the predicted class value |
---|
50 | * @return the absolute value of the difference between the actual |
---|
51 | * and predicted value |
---|
52 | */ |
---|
53 | public final double loss(double actual, double predicted) { |
---|
54 | return Math.abs(actual - predicted); |
---|
55 | } |
---|
56 | |
---|
57 | /** |
---|
58 | * Returns a string with the name of the loss function. |
---|
59 | * |
---|
60 | * @return a string with the name of the loss function |
---|
61 | */ |
---|
62 | public String toString() { |
---|
63 | return "AbsoluteLossFunction"; |
---|
64 | } |
---|
65 | |
---|
66 | /** |
---|
67 | * Returns the revision string. |
---|
68 | * |
---|
69 | * @return the revision |
---|
70 | */ |
---|
71 | public String getRevision() { |
---|
72 | return RevisionUtils.extract("$Revision: 5922 $"); |
---|
73 | } |
---|
74 | } |
---|