1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * OSDL.java |
---|
19 | * Copyright (C) 2004 Stijn Lievens |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.misc; |
---|
24 | |
---|
25 | import weka.classifiers.misc.monotone.OSDLCore; |
---|
26 | import weka.core.Attribute; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.RevisionUtils; |
---|
29 | import weka.core.Utils; |
---|
30 | |
---|
31 | /** |
---|
32 | <!-- globalinfo-start --> |
---|
33 | * This class is an implementation of the Ordinal Stochastic Dominance Learner.<br/> |
---|
34 | * Further information regarding the OSDL-algorithm can be found in:<br/> |
---|
35 | * <br/> |
---|
36 | * S. Lievens, B. De Baets, K. Cao-Van (2006). A Probabilistic Framework for the Design of Instance-Based Supervised Ranking Algorithms in an Ordinal Setting. Annals of Operations Research..<br/> |
---|
37 | * <br/> |
---|
38 | * Kim Cao-Van (2003). Supervised ranking: from semantics to algorithms.<br/> |
---|
39 | * <br/> |
---|
40 | * Stijn Lievens (2004). Studie en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd rangschikken.<br/> |
---|
41 | * <br/> |
---|
42 | * For more information about supervised ranking, see<br/> |
---|
43 | * <br/> |
---|
44 | * http://users.ugent.be/~slievens/supervised_ranking.php |
---|
45 | * <p/> |
---|
46 | <!-- globalinfo-end --> |
---|
47 | * |
---|
48 | <!-- technical-bibtex-start --> |
---|
49 | * BibTeX: |
---|
50 | * <pre> |
---|
51 | * @article{Lievens2006, |
---|
52 | * author = {S. Lievens and B. De Baets and K. Cao-Van}, |
---|
53 | * journal = {Annals of Operations Research}, |
---|
54 | * title = {A Probabilistic Framework for the Design of Instance-Based Supervised Ranking Algorithms in an Ordinal Setting}, |
---|
55 | * year = {2006} |
---|
56 | * } |
---|
57 | * |
---|
58 | * @phdthesis{Cao-Van2003, |
---|
59 | * author = {Kim Cao-Van}, |
---|
60 | * school = {Ghent University}, |
---|
61 | * title = {Supervised ranking: from semantics to algorithms}, |
---|
62 | * year = {2003} |
---|
63 | * } |
---|
64 | * |
---|
65 | * @mastersthesis{Lievens2004, |
---|
66 | * author = {Stijn Lievens}, |
---|
67 | * school = {Ghent University}, |
---|
68 | * title = {Studie en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd rangschikken}, |
---|
69 | * year = {2004} |
---|
70 | * } |
---|
71 | * </pre> |
---|
72 | * <p/> |
---|
73 | <!-- technical-bibtex-end --> |
---|
74 | * |
---|
75 | <!-- options-start --> |
---|
76 | * Valid options are: <p/> |
---|
77 | * |
---|
78 | * <pre> -D |
---|
79 | * If set, classifier is run in debug mode and |
---|
80 | * may output additional info to the console</pre> |
---|
81 | * |
---|
82 | * <pre> -C <REG|WSUM|MAX|MED|RMED> |
---|
83 | * Sets the classification type to be used. |
---|
84 | * (Default: MED)</pre> |
---|
85 | * |
---|
86 | * <pre> -B |
---|
87 | * Use the balanced version of the Ordinal Stochastic Dominance Learner</pre> |
---|
88 | * |
---|
89 | * <pre> -W |
---|
90 | * Use the weighted version of the Ordinal Stochastic Dominance Learner</pre> |
---|
91 | * |
---|
92 | * <pre> -S <value of interpolation parameter> |
---|
93 | * Sets the value of the interpolation parameter (not with -W/T/P/L/U) |
---|
94 | * (default: 0.5).</pre> |
---|
95 | * |
---|
96 | * <pre> -T |
---|
97 | * Tune the interpolation parameter (not with -W/S) |
---|
98 | * (default: off)</pre> |
---|
99 | * |
---|
100 | * <pre> -L <Lower bound for interpolation parameter> |
---|
101 | * Lower bound for the interpolation parameter (not with -W/S) |
---|
102 | * (default: 0)</pre> |
---|
103 | * |
---|
104 | * <pre> -U <Upper bound for interpolation parameter> |
---|
105 | * Upper bound for the interpolation parameter (not with -W/S) |
---|
106 | * (default: 1)</pre> |
---|
107 | * |
---|
108 | * <pre> -P <Number of parts> |
---|
109 | * Determines the step size for tuning the interpolation |
---|
110 | * parameter, nl. (U-L)/P (not with -W/S) |
---|
111 | * (default: 10)</pre> |
---|
112 | * |
---|
113 | <!-- options-end --> |
---|
114 | * |
---|
115 | * More precisely, this is a simple extension of the OSDLCore class, |
---|
116 | * so that the OSDLCore class can be used within the WEKA environment. |
---|
117 | * The problem with OSDLCore is that it implements both |
---|
118 | * <code> classifyInstance </code> and <code> distributionForInstance </code> |
---|
119 | * in a non trivial way. |
---|
120 | * <p> |
---|
121 | * One can evaluate a model easily with the method <code> evaluateModel </code> |
---|
122 | * from the <code> Evaluation </code> class. However, for nominal classes |
---|
123 | * they do the following: they use <code> distributionForInstance </code> |
---|
124 | * and then pick the class with maximal probability. This procedure |
---|
125 | * is <b> not </b> valid for a ranking algorithm, since this destroys |
---|
126 | * the required monotonicity property. |
---|
127 | * </p> |
---|
128 | * <p> |
---|
129 | * This class reimplements <code> distributionForInstance </code> in the |
---|
130 | * following way: first <code> classifyInstance </code> of |
---|
131 | * <code> OSDLCore </code> is used and the chosen label then gets |
---|
132 | * assigned probability one. This ensures that the classification |
---|
133 | * accuracy is calculated correctly, but possibly some other statistics |
---|
134 | * are no longer meaningful. |
---|
135 | * </p> |
---|
136 | * |
---|
137 | * @author Stijn Lievens (stijn.lievens@ugent.be) |
---|
138 | * @version $Revision: 5987 $ |
---|
139 | */ |
---|
140 | public class OSDL |
---|
141 | extends OSDLCore { |
---|
142 | |
---|
143 | /** for serialization */ |
---|
144 | private static final long serialVersionUID = -4534219825732505381L; |
---|
145 | |
---|
146 | /** |
---|
147 | * Use <code> classifyInstance </code> from <code> OSDLCore </code> and |
---|
148 | * assign probability one to the chosen label. |
---|
149 | * The implementation is heavily based on the same method in |
---|
150 | * the <code> Classifier </code> class. |
---|
151 | * |
---|
152 | * @param instance the instance to be classified |
---|
153 | * @return an array containing a single '1' on the index |
---|
154 | * that <code> classifyInstance </code> returns. |
---|
155 | */ |
---|
156 | public double[] distributionForInstance(Instance instance) { |
---|
157 | |
---|
158 | // based on the code from the Classifier class |
---|
159 | double[] dist = new double[instance.numClasses()]; |
---|
160 | int classification = 0; |
---|
161 | switch (instance.classAttribute().type()) { |
---|
162 | case Attribute.NOMINAL: |
---|
163 | try { |
---|
164 | classification = |
---|
165 | (int) Math.round(classifyInstance(instance)); |
---|
166 | } catch (Exception e) { |
---|
167 | System.out.println("There was a problem with classifyIntance"); |
---|
168 | System.out.println(e.getMessage()); |
---|
169 | e.printStackTrace(); |
---|
170 | } |
---|
171 | if (Utils.isMissingValue(classification)) { |
---|
172 | return dist; |
---|
173 | } |
---|
174 | dist[classification] = 1.0; |
---|
175 | return dist; |
---|
176 | |
---|
177 | case Attribute.NUMERIC: |
---|
178 | try { |
---|
179 | dist[0] = classifyInstance(instance); |
---|
180 | } catch (Exception e) { |
---|
181 | System.out.println("There was a problem with classifyIntance"); |
---|
182 | System.out.println(e.getMessage()); |
---|
183 | e.printStackTrace(); |
---|
184 | } |
---|
185 | return dist; |
---|
186 | |
---|
187 | default: |
---|
188 | return dist; |
---|
189 | } |
---|
190 | } |
---|
191 | |
---|
192 | /** |
---|
193 | * Returns the revision string. |
---|
194 | * |
---|
195 | * @return the revision |
---|
196 | */ |
---|
197 | public String getRevision() { |
---|
198 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Main method for testing this class and for using it from the |
---|
203 | * command line. |
---|
204 | * |
---|
205 | * @param args array of options for both the classifier <code> |
---|
206 | * OSDL </code> and for <code> evaluateModel </code> |
---|
207 | */ |
---|
208 | public static void main(String[] args) { |
---|
209 | runClassifier(new OSDL(), args); |
---|
210 | } |
---|
211 | } |
---|