source: src/main/java/weka/classifiers/misc/OSDL.java @ 28

Last change on this file since 28 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 6.8 KB
RevLine 
[4]1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    OSDL.java
19 *    Copyright (C) 2004 Stijn Lievens
20 *
21 */
22
23package weka.classifiers.misc;
24
25import weka.classifiers.misc.monotone.OSDLCore;
26import weka.core.Attribute;
27import weka.core.Instance;
28import weka.core.RevisionUtils;
29import weka.core.Utils;
30
31/**
32 <!-- globalinfo-start -->
33 * This class is an implementation of the Ordinal Stochastic Dominance Learner.<br/>
34 * Further information regarding the OSDL-algorithm can be found in:<br/>
35 * <br/>
36 * S. Lievens, B. De Baets, K. Cao-Van (2006). A Probabilistic Framework for the Design of Instance-Based Supervised Ranking Algorithms in an Ordinal Setting. Annals of Operations Research..<br/>
37 * <br/>
38 * Kim Cao-Van (2003). Supervised ranking: from semantics to algorithms.<br/>
39 * <br/>
40 * Stijn Lievens (2004). Studie en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd rangschikken.<br/>
41 * <br/>
42 * For more information about supervised ranking, see<br/>
43 * <br/>
44 * http://users.ugent.be/~slievens/supervised_ranking.php
45 * <p/>
46 <!-- globalinfo-end -->
47 *
48 <!-- technical-bibtex-start -->
49 * BibTeX:
50 * <pre>
51 * &#64;article{Lievens2006,
52 *    author = {S. Lievens and B. De Baets and K. Cao-Van},
53 *    journal = {Annals of Operations Research},
54 *    title = {A Probabilistic Framework for the Design of Instance-Based Supervised Ranking Algorithms in an Ordinal Setting},
55 *    year = {2006}
56 * }
57 *
58 * &#64;phdthesis{Cao-Van2003,
59 *    author = {Kim Cao-Van},
60 *    school = {Ghent University},
61 *    title = {Supervised ranking: from semantics to algorithms},
62 *    year = {2003}
63 * }
64 *
65 * &#64;mastersthesis{Lievens2004,
66 *    author = {Stijn Lievens},
67 *    school = {Ghent University},
68 *    title = {Studie en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd rangschikken},
69 *    year = {2004}
70 * }
71 * </pre>
72 * <p/>
73 <!-- technical-bibtex-end -->
74 *
75 <!-- options-start -->
76 * Valid options are: <p/>
77 *
78 * <pre> -D
79 *  If set, classifier is run in debug mode and
80 *  may output additional info to the console</pre>
81 *
82 * <pre> -C &lt;REG|WSUM|MAX|MED|RMED&gt;
83 *  Sets the classification type to be used.
84 *  (Default: MED)</pre>
85 *
86 * <pre> -B
87 *  Use the balanced version of the Ordinal Stochastic Dominance Learner</pre>
88 *
89 * <pre> -W
90 *  Use the weighted version of the Ordinal Stochastic Dominance Learner</pre>
91 *
92 * <pre> -S &lt;value of interpolation parameter&gt;
93 *  Sets the value of the interpolation parameter (not with -W/T/P/L/U)
94 *  (default: 0.5).</pre>
95 *
96 * <pre> -T
97 *  Tune the interpolation parameter (not with -W/S)
98 *  (default: off)</pre>
99 *
100 * <pre> -L &lt;Lower bound for interpolation parameter&gt;
101 *  Lower bound for the interpolation parameter (not with -W/S)
102 *  (default: 0)</pre>
103 *
104 * <pre> -U &lt;Upper bound for interpolation parameter&gt;
105 *  Upper bound for the interpolation parameter (not with -W/S)
106 *  (default: 1)</pre>
107 *
108 * <pre> -P &lt;Number of parts&gt;
109 *  Determines the step size for tuning the interpolation
110 *  parameter, nl. (U-L)/P (not with -W/S)
111 *  (default: 10)</pre>
112 *
113 <!-- options-end -->
114 *
115 * More precisely, this is a simple extension of the OSDLCore class,
116 * so that the OSDLCore class can be used within the WEKA environment.
117 * The problem with OSDLCore is that it implements both
118 * <code> classifyInstance </code> and <code> distributionForInstance </code>
119 * in a non trivial way.
120 * <p>
121 * One can evaluate a model easily with the method <code> evaluateModel </code>
122 * from the <code> Evaluation </code> class.  However, for nominal classes
123 * they do the following: they use <code> distributionForInstance </code>
124 * and then pick the class with maximal probability.  This procedure
125 * is <b> not </b> valid for a ranking algorithm, since this destroys
126 * the required monotonicity property.
127 * </p>
128 * <p>
129 * This class reimplements <code> distributionForInstance </code> in the
130 * following way:  first <code> classifyInstance </code> of
131 * <code> OSDLCore </code>  is used and the chosen label then gets
132 * assigned probability one.  This ensures that the classification
133 * accuracy is calculated correctly, but possibly some other statistics
134 * are no longer meaningful.
135 * </p>
136 *
137 * @author Stijn Lievens (stijn.lievens@ugent.be)
138 * @version $Revision: 5987 $
139 */
140public class OSDL
141  extends OSDLCore {
142
143  /** for serialization */
144  private static final long serialVersionUID = -4534219825732505381L;
145
146  /**
147   * Use <code> classifyInstance </code> from <code> OSDLCore </code> and
148   * assign probability one to the chosen label.
149   * The implementation is heavily based on the same method in
150   * the <code> Classifier </code> class.
151   *
152   * @param instance the instance to be classified
153   * @return an array containing a single '1' on the index
154   * that <code> classifyInstance </code> returns.
155   */
156  public double[] distributionForInstance(Instance instance) {
157
158    // based on the code from the Classifier class
159    double[] dist = new double[instance.numClasses()];
160    int classification = 0;
161    switch (instance.classAttribute().type()) {
162      case Attribute.NOMINAL:
163        try {
164          classification = 
165            (int) Math.round(classifyInstance(instance));
166        } catch (Exception e) {
167          System.out.println("There was a problem with classifyIntance");
168          System.out.println(e.getMessage());
169          e.printStackTrace();
170        }
171        if (Utils.isMissingValue(classification)) {
172          return dist;
173        } 
174        dist[classification] = 1.0;
175        return dist;
176       
177      case Attribute.NUMERIC:
178        try {
179          dist[0] = classifyInstance(instance);
180        } catch (Exception e) {
181          System.out.println("There was a problem with classifyIntance");
182          System.out.println(e.getMessage());
183          e.printStackTrace();
184        }
185        return dist;
186       
187      default:
188        return dist;
189    }
190  }   
191 
192  /**
193   * Returns the revision string.
194   *
195   * @return            the revision
196   */
197  public String getRevision() {
198    return RevisionUtils.extract("$Revision: 5987 $");
199  }
200
201  /**
202   * Main method for testing this class and for using it from the
203   * command line.
204   *
205   * @param args array of options for both the classifier <code>
206   * OSDL </code> and for <code> evaluateModel </code>
207   */
208  public static void main(String[] args) {
209    runClassifier(new OSDL(), args);
210  }
211}
Note: See TracBrowser for help on using the repository browser.