[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * FLR.java |
---|
| 19 | * Copyright (C) 2002 Ioannis N. Athanasiadis |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.misc; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.core.AdditionalMeasureProducer; |
---|
| 28 | import weka.core.AttributeStats; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.Instance; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.core.Option; |
---|
| 33 | import weka.core.RevisionHandler; |
---|
| 34 | import weka.core.RevisionUtils; |
---|
| 35 | import weka.core.Summarizable; |
---|
| 36 | import weka.core.TechnicalInformation; |
---|
| 37 | import weka.core.TechnicalInformationHandler; |
---|
| 38 | import weka.core.Utils; |
---|
| 39 | import weka.core.Capabilities.Capability; |
---|
| 40 | import weka.core.TechnicalInformation.Field; |
---|
| 41 | import weka.core.TechnicalInformation.Type; |
---|
| 42 | |
---|
| 43 | import java.io.BufferedReader; |
---|
| 44 | import java.io.File; |
---|
| 45 | import java.io.FileReader; |
---|
| 46 | import java.io.Serializable; |
---|
| 47 | import java.util.Enumeration; |
---|
| 48 | import java.util.Vector; |
---|
| 49 | |
---|
| 50 | /** |
---|
| 51 | <!-- globalinfo-start --> |
---|
| 52 | * Fuzzy Lattice Reasoning Classifier (FLR) v5.0<br/> |
---|
| 53 | * <br/> |
---|
| 54 | * The Fuzzy Lattice Reasoning Classifier uses the notion of Fuzzy Lattices for creating a Reasoning Environment.<br/> |
---|
| 55 | * The current version can be used for classification using numeric predictors.<br/> |
---|
| 56 | * <br/> |
---|
| 57 | * For more information see:<br/> |
---|
| 58 | * <br/> |
---|
| 59 | * I. N. Athanasiadis, V. G. Kaburlasos, P. A. Mitkas, V. Petridis: Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support. In: 1st Intl. NAISO Symposium on Information Technologies in Environmental Engineering (ITEE-2003), Gdansk, Poland, 2003.<br/> |
---|
| 60 | * <br/> |
---|
| 61 | * V. G. Kaburlasos, I. N. Athanasiadis, P. A. Mitkas, V. Petridis (2003). Fuzzy Lattice Reasoning (FLR) Classifier and its Application on Improved Estimation of Ambient Ozone Concentration. |
---|
| 62 | * <p/> |
---|
| 63 | <!-- globalinfo-end --> |
---|
| 64 | * |
---|
| 65 | <!-- technical-bibtex-start --> |
---|
| 66 | * BibTeX: |
---|
| 67 | * <pre> |
---|
| 68 | * @inproceedings{Athanasiadis2003, |
---|
| 69 | * address = {Gdansk, Poland}, |
---|
| 70 | * author = {I. N. Athanasiadis and V. G. Kaburlasos and P. A. Mitkas and V. Petridis}, |
---|
| 71 | * booktitle = {1st Intl. NAISO Symposium on Information Technologies in Environmental Engineering (ITEE-2003)}, |
---|
| 72 | * note = {Abstract in ICSC-NAISO Academic Press, Canada (ISBN:3906454339), pg.51}, |
---|
| 73 | * publisher = {ICSC-NAISO Academic Press}, |
---|
| 74 | * title = {Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support}, |
---|
| 75 | * year = {2003} |
---|
| 76 | * } |
---|
| 77 | * |
---|
| 78 | * @unpublished{Kaburlasos2003, |
---|
| 79 | * author = {V. G. Kaburlasos and I. N. Athanasiadis and P. A. Mitkas and V. Petridis}, |
---|
| 80 | * title = {Fuzzy Lattice Reasoning (FLR) Classifier and its Application on Improved Estimation of Ambient Ozone Concentration}, |
---|
| 81 | * year = {2003} |
---|
| 82 | * } |
---|
| 83 | * </pre> |
---|
| 84 | * <p/> |
---|
| 85 | <!-- technical-bibtex-end --> |
---|
| 86 | * |
---|
| 87 | <!-- options-start --> |
---|
| 88 | * Valid options are: <p/> |
---|
| 89 | * |
---|
| 90 | * <pre> -R |
---|
| 91 | * Set vigilance parameter rhoa. |
---|
| 92 | * (a float in range [0,1])</pre> |
---|
| 93 | * |
---|
| 94 | * <pre> -B |
---|
| 95 | * Set boundaries File |
---|
| 96 | * Note: The boundaries file is a simple text file containing |
---|
| 97 | * a row with a Fuzzy Lattice defining the metric space. |
---|
| 98 | * For example, the boundaries file could contain the following |
---|
| 99 | * the metric space for the iris dataset: |
---|
| 100 | * [ 4.3 7.9 ] [ 2.0 4.4 ] [ 1.0 6.9 ] [ 0.1 2.5 ] in Class: -1 |
---|
| 101 | * This lattice just contains the min and max value in each |
---|
| 102 | * dimension. |
---|
| 103 | * In other kind of problems this may not be just a min-max |
---|
| 104 | * operation, but it could contain limits defined by the problem |
---|
| 105 | * itself. |
---|
| 106 | * Thus, this option should be set by the user. |
---|
| 107 | * If ommited, the metric space used contains the mins and maxs |
---|
| 108 | * of the training split.</pre> |
---|
| 109 | * |
---|
| 110 | * <pre> -Y |
---|
| 111 | * Show Rules</pre> |
---|
| 112 | * |
---|
| 113 | <!-- options-end --> |
---|
| 114 | * |
---|
| 115 | * For further information contact I.N.Athanasiadis (ionathan@iti.gr) |
---|
| 116 | * |
---|
| 117 | * @author Ioannis N. Athanasiadis (email: ionathan@iti.gr, alias: ionathan@ieee.org) |
---|
| 118 | * @version 5.0 |
---|
| 119 | * @version $Revision: 5928 $ |
---|
| 120 | */ |
---|
| 121 | public class FLR |
---|
| 122 | extends AbstractClassifier |
---|
| 123 | implements Serializable, Summarizable, AdditionalMeasureProducer, |
---|
| 124 | TechnicalInformationHandler { |
---|
| 125 | |
---|
| 126 | /** for serialization */ |
---|
| 127 | static final long serialVersionUID = 3337906540579569626L; |
---|
| 128 | |
---|
| 129 | public static final float EPSILON = 0.000001f; |
---|
| 130 | |
---|
| 131 | /** the RuleSet: a vector keeping the learned Fuzzy Lattices */ |
---|
| 132 | private Vector learnedCode; |
---|
| 133 | /** a double keeping the vignilance parameter rhoa */ |
---|
| 134 | private double m_Rhoa = 0.5; |
---|
| 135 | /** a Fuzzy Lattice keeping the metric space */ |
---|
| 136 | private FuzzyLattice bounds; |
---|
| 137 | /** a File pointing to the boundaries file (bounds.txt) */ |
---|
| 138 | private File m_BoundsFile = new File(""); |
---|
| 139 | /** a flag indicating whether the RuleSet will be displayed */ |
---|
| 140 | private boolean m_showRules = true; |
---|
| 141 | /** an index of the RuleSet (keeps how many rules are needed for each class) */ |
---|
| 142 | private int index[]; |
---|
| 143 | /** an array of the names of the classes */ |
---|
| 144 | private String classNames[]; |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | /** |
---|
| 148 | * Returns default capabilities of the classifier. |
---|
| 149 | * |
---|
| 150 | * @return the capabilities of this classifier |
---|
| 151 | */ |
---|
| 152 | public Capabilities getCapabilities() { |
---|
| 153 | Capabilities result = super.getCapabilities(); |
---|
| 154 | result.disableAll(); |
---|
| 155 | |
---|
| 156 | // attributes |
---|
| 157 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 158 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 159 | result.enable(Capability.MISSING_VALUES); |
---|
| 160 | |
---|
| 161 | // class |
---|
| 162 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 163 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 164 | |
---|
| 165 | return result; |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | /** |
---|
| 169 | * Builds the FLR Classifier |
---|
| 170 | * |
---|
| 171 | * @param data the training dataset (Instances) |
---|
| 172 | * @throws Exception if the training dataset is not supported or is erroneous |
---|
| 173 | */ |
---|
| 174 | public void buildClassifier(Instances data) throws Exception { |
---|
| 175 | // can classifier handle the data? |
---|
| 176 | getCapabilities().testWithFail(data); |
---|
| 177 | |
---|
| 178 | // remove instances with missing class |
---|
| 179 | data = new Instances(data); |
---|
| 180 | data.deleteWithMissingClass(); |
---|
| 181 | |
---|
| 182 | // Exceptions statements |
---|
| 183 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 184 | if (i != data.classIndex()) { |
---|
| 185 | AttributeStats stats = data.attributeStats(i); |
---|
| 186 | if(data.numInstances()==stats.missingCount || |
---|
| 187 | Double.isNaN(stats.numericStats.min) || |
---|
| 188 | Double.isInfinite(stats.numericStats.min)) |
---|
| 189 | throw new Exception("All values are missing!" + |
---|
| 190 | data.attribute(i).toString()); |
---|
| 191 | } //fi |
---|
| 192 | } //for |
---|
| 193 | |
---|
| 194 | if (!m_BoundsFile.canRead()) { |
---|
| 195 | setBounds(data); |
---|
| 196 | } |
---|
| 197 | else |
---|
| 198 | try { |
---|
| 199 | BufferedReader in = new BufferedReader(new FileReader(m_BoundsFile)); |
---|
| 200 | String line = in.readLine(); |
---|
| 201 | bounds = new FuzzyLattice(line); |
---|
| 202 | } |
---|
| 203 | catch (Exception e) { |
---|
| 204 | throw new Exception("Boundaries File structure error"); |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | if (bounds.length() != data.numAttributes() - 1) { |
---|
| 208 | throw new Exception("Incompatible bounds file!"); |
---|
| 209 | } |
---|
| 210 | checkBounds(); |
---|
| 211 | |
---|
| 212 | // Variable Declerations and Initialization |
---|
| 213 | index = new int[data.numClasses()]; |
---|
| 214 | classNames = new String[data.numClasses()]; |
---|
| 215 | for (int i = 0; i < data.numClasses(); i++) { |
---|
| 216 | index[i] = 0; |
---|
| 217 | classNames[i] = "missing Class Name"; |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | double rhoa = m_Rhoa; |
---|
| 221 | learnedCode = new Vector(); |
---|
| 222 | int searching; |
---|
| 223 | FuzzyLattice inputBuffer; |
---|
| 224 | |
---|
| 225 | // Build Classifier (Training phase) |
---|
| 226 | if (data.firstInstance().classIsMissing()) |
---|
| 227 | throw new Exception("In first instance, class is missing!"); |
---|
| 228 | |
---|
| 229 | // set the first instance to be the first Rule in the model |
---|
| 230 | FuzzyLattice Code = new FuzzyLattice(data.firstInstance(), bounds); |
---|
| 231 | learnedCode.addElement(Code); |
---|
| 232 | index[Code.getCateg()]++; |
---|
| 233 | classNames[Code.getCateg()] = data.firstInstance().stringValue(data. |
---|
| 234 | firstInstance().classIndex()); |
---|
| 235 | // training iteration |
---|
| 236 | for (int i = 1; i < data.numInstances(); i++) { //for all instances |
---|
| 237 | Instance inst = data.instance(i); |
---|
| 238 | int flag =0; |
---|
| 239 | for(int w=0;w<inst.numAttributes()-1;w++){ |
---|
| 240 | if(w!=inst.classIndex() && inst.isMissing(w)) |
---|
| 241 | flag=flag+1; |
---|
| 242 | } |
---|
| 243 | if (!inst.classIsMissing()&&flag!=inst.numAttributes()-1) { |
---|
| 244 | inputBuffer = new FuzzyLattice( (Instance) data.instance(i), bounds); |
---|
| 245 | double[] sigma = new double[ (learnedCode.size())]; |
---|
| 246 | |
---|
| 247 | for (int j = 0; j < learnedCode.size(); j++) { |
---|
| 248 | FuzzyLattice num = (FuzzyLattice) learnedCode.get(j); |
---|
| 249 | FuzzyLattice den = inputBuffer.join(num); |
---|
| 250 | double numden = num.valuation(bounds) / den.valuation(bounds); |
---|
| 251 | sigma[j] = numden; |
---|
| 252 | } //for int j |
---|
| 253 | |
---|
| 254 | do { |
---|
| 255 | int winner = 0; |
---|
| 256 | double winnerf = sigma[0]; |
---|
| 257 | |
---|
| 258 | for (int j = 1; j < learnedCode.size(); j++) { |
---|
| 259 | if (winnerf < sigma[j]) { |
---|
| 260 | winner = j; |
---|
| 261 | winnerf = sigma[j]; |
---|
| 262 | } //if |
---|
| 263 | } //for |
---|
| 264 | |
---|
| 265 | FuzzyLattice num = inputBuffer; |
---|
| 266 | FuzzyLattice winnerBox = (FuzzyLattice) learnedCode.get(winner); |
---|
| 267 | FuzzyLattice den = winnerBox.join(num); |
---|
| 268 | double numden = num.valuation(bounds) / den.valuation(bounds); |
---|
| 269 | |
---|
| 270 | if ( (inputBuffer.getCateg() == winnerBox.getCateg()) && |
---|
| 271 | (rhoa < (numden))) { |
---|
| 272 | learnedCode.setElementAt(winnerBox.join(inputBuffer), winner); |
---|
| 273 | searching = 0; |
---|
| 274 | } |
---|
| 275 | else { |
---|
| 276 | sigma[winner] = 0; |
---|
| 277 | rhoa += EPSILON; |
---|
| 278 | searching = 0; |
---|
| 279 | for (int j = 0; j < learnedCode.size(); j++) { |
---|
| 280 | if (sigma[j] != 0.0) { |
---|
| 281 | searching = 1; |
---|
| 282 | } //fi |
---|
| 283 | } //for |
---|
| 284 | |
---|
| 285 | if (searching == 0) { |
---|
| 286 | learnedCode.addElement(inputBuffer); |
---|
| 287 | index[inputBuffer.getCateg()]++; |
---|
| 288 | classNames[inputBuffer.getCateg()] = data.instance(i).stringValue( |
---|
| 289 | data.instance(i).classIndex()); |
---|
| 290 | } //fi |
---|
| 291 | } //else |
---|
| 292 | } |
---|
| 293 | while (searching == 1); |
---|
| 294 | } //if Class is missing |
---|
| 295 | |
---|
| 296 | } //for all instances |
---|
| 297 | } //buildClassifier |
---|
| 298 | |
---|
| 299 | /** |
---|
| 300 | * Classifies a given instance using the FLR Classifier model |
---|
| 301 | * |
---|
| 302 | * @param instance the instance to be classified |
---|
| 303 | * @return the class index into which the instance is classfied |
---|
| 304 | */ |
---|
| 305 | |
---|
| 306 | public double classifyInstance(Instance instance) { |
---|
| 307 | |
---|
| 308 | FuzzyLattice num, den, inputBuffer; |
---|
| 309 | inputBuffer = new FuzzyLattice(instance, bounds); // transform instance to fuzzy lattice |
---|
| 310 | |
---|
| 311 | // calculate excitations and winner |
---|
| 312 | double[] sigma = new double[ (learnedCode.size())]; |
---|
| 313 | for (int j = 0; j < learnedCode.size(); j++) { |
---|
| 314 | num = (FuzzyLattice) learnedCode.get(j); |
---|
| 315 | den = inputBuffer.join(num); |
---|
| 316 | sigma[j] = (num.valuation(bounds) / den.valuation(bounds)); |
---|
| 317 | } //for j |
---|
| 318 | |
---|
| 319 | //find the winner Code (hyperbox) |
---|
| 320 | int winner = 0; |
---|
| 321 | double winnerf = sigma[0]; |
---|
| 322 | for (int j = 1; j < learnedCode.size(); j++) { |
---|
| 323 | if (winnerf < sigma[j]) { |
---|
| 324 | winner = j; |
---|
| 325 | winnerf = sigma[j]; |
---|
| 326 | } //fi |
---|
| 327 | } //for j |
---|
| 328 | |
---|
| 329 | FuzzyLattice currentBox = (FuzzyLattice) learnedCode.get(winner); |
---|
| 330 | return (double) currentBox.getCateg(); |
---|
| 331 | } //classifyInstance |
---|
| 332 | |
---|
| 333 | /** |
---|
| 334 | * Returns a description of the classifier. |
---|
| 335 | * |
---|
| 336 | * @return String describing the FLR model |
---|
| 337 | */ |
---|
| 338 | public String toString() { |
---|
| 339 | if (learnedCode != null) { |
---|
| 340 | String output = ""; |
---|
| 341 | output = "FLR classifier\n=======================\n Rhoa = " + m_Rhoa; |
---|
| 342 | if (m_showRules) { |
---|
| 343 | output = output + "\n Extracted Rules (Fuzzy Lattices):\n\n"; |
---|
| 344 | output = output + showRules(); |
---|
| 345 | output = output + "\n\n Metric Space:\n" + bounds.toString(); |
---|
| 346 | } |
---|
| 347 | output = output + "\n Total Number of Rules: " + learnedCode.size() + |
---|
| 348 | "\n"; |
---|
| 349 | for (int i = 0; i < index.length; i++) { |
---|
| 350 | output = output + " Rules pointing in Class " + classNames[i] + " :" + |
---|
| 351 | index[i] + "\n"; |
---|
| 352 | } |
---|
| 353 | return output; |
---|
| 354 | } |
---|
| 355 | else { |
---|
| 356 | String output = "FLR classifier\n=======================\n Rhoa = " + |
---|
| 357 | m_Rhoa; |
---|
| 358 | output = output + "No model built"; |
---|
| 359 | return output; |
---|
| 360 | } |
---|
| 361 | } //toString |
---|
| 362 | |
---|
| 363 | /** |
---|
| 364 | * Returns a superconcise version of the model |
---|
| 365 | * |
---|
| 366 | * @return String descibing the FLR model very shortly |
---|
| 367 | */ |
---|
| 368 | public String toSummaryString() { |
---|
| 369 | String output = ""; |
---|
| 370 | if (learnedCode == null) { |
---|
| 371 | output += "No model built"; |
---|
| 372 | } |
---|
| 373 | else { |
---|
| 374 | output = output + "Total Number of Rules: " + learnedCode.size(); |
---|
| 375 | } |
---|
| 376 | return output; |
---|
| 377 | } //toSummaryString |
---|
| 378 | |
---|
| 379 | /** |
---|
| 380 | * Returns the induced set of Fuzzy Lattice Rules |
---|
| 381 | * |
---|
| 382 | * @return String containing the ruleset |
---|
| 383 | * |
---|
| 384 | */ |
---|
| 385 | public String showRules() { |
---|
| 386 | String output = ""; |
---|
| 387 | for (int i = 0; i < learnedCode.size(); i++) { |
---|
| 388 | FuzzyLattice Code = (FuzzyLattice) learnedCode.get(i); |
---|
| 389 | output = output + "Rule: " + i + " " + Code.toString(); |
---|
| 390 | } |
---|
| 391 | return output; |
---|
| 392 | } //showRules |
---|
| 393 | |
---|
| 394 | /** |
---|
| 395 | * Returns an enumeration describing the available options. <p/> |
---|
| 396 | * |
---|
| 397 | <!-- options-start --> |
---|
| 398 | * Valid options are: <p/> |
---|
| 399 | * |
---|
| 400 | * <pre> -R |
---|
| 401 | * Set vigilance parameter rhoa. |
---|
| 402 | * (a float in range [0,1])</pre> |
---|
| 403 | * |
---|
| 404 | * <pre> -B |
---|
| 405 | * Set boundaries File |
---|
| 406 | * Note: The boundaries file is a simple text file containing |
---|
| 407 | * a row with a Fuzzy Lattice defining the metric space. |
---|
| 408 | * For example, the boundaries file could contain the following |
---|
| 409 | * the metric space for the iris dataset: |
---|
| 410 | * [ 4.3 7.9 ] [ 2.0 4.4 ] [ 1.0 6.9 ] [ 0.1 2.5 ] in Class: -1 |
---|
| 411 | * This lattice just contains the min and max value in each |
---|
| 412 | * dimension. |
---|
| 413 | * In other kind of problems this may not be just a min-max |
---|
| 414 | * operation, but it could contain limits defined by the problem |
---|
| 415 | * itself. |
---|
| 416 | * Thus, this option should be set by the user. |
---|
| 417 | * If ommited, the metric space used contains the mins and maxs |
---|
| 418 | * of the training split.</pre> |
---|
| 419 | * |
---|
| 420 | * <pre> -Y |
---|
| 421 | * Show Rules</pre> |
---|
| 422 | * |
---|
| 423 | <!-- options-end --> |
---|
| 424 | * |
---|
| 425 | * @return enumeration an enumeration of valid options |
---|
| 426 | */ |
---|
| 427 | public Enumeration listOptions() { |
---|
| 428 | Vector newVector = new Vector(3); |
---|
| 429 | |
---|
| 430 | newVector.addElement(new Option( |
---|
| 431 | "\tSet vigilance parameter rhoa.\n" |
---|
| 432 | + "\t(a float in range [0,1])", |
---|
| 433 | "R", 1, "-R")); |
---|
| 434 | |
---|
| 435 | newVector.addElement(new Option( |
---|
| 436 | "\tSet boundaries File\n" |
---|
| 437 | + "\tNote: The boundaries file is a simple text file containing \n" |
---|
| 438 | + "\ta row with a Fuzzy Lattice defining the metric space.\n" |
---|
| 439 | + "\tFor example, the boundaries file could contain the following \n" |
---|
| 440 | + "\tthe metric space for the iris dataset:\n" |
---|
| 441 | + "\t[ 4.3 7.9 ] [ 2.0 4.4 ] [ 1.0 6.9 ] [ 0.1 2.5 ] in Class: -1\n" |
---|
| 442 | + "\tThis lattice just contains the min and max value in each \n" |
---|
| 443 | + "\tdimension.\n" |
---|
| 444 | + "\tIn other kind of problems this may not be just a min-max \n" |
---|
| 445 | + "\toperation, but it could contain limits defined by the problem \n" |
---|
| 446 | + "\titself.\n" |
---|
| 447 | + "\tThus, this option should be set by the user.\n" |
---|
| 448 | + "\tIf ommited, the metric space used contains the mins and maxs \n" |
---|
| 449 | + "\tof the training split.", |
---|
| 450 | "B", 1, "-B")); |
---|
| 451 | |
---|
| 452 | newVector.addElement(new Option( |
---|
| 453 | "\tShow Rules", |
---|
| 454 | "Y", 0, "-Y")); |
---|
| 455 | |
---|
| 456 | return newVector.elements(); |
---|
| 457 | } //listOptions |
---|
| 458 | |
---|
| 459 | /** |
---|
| 460 | * Parses a given list of options. <p/> |
---|
| 461 | * |
---|
| 462 | <!-- options-start --> |
---|
| 463 | * Valid options are: <p/> |
---|
| 464 | * |
---|
| 465 | * <pre> -R |
---|
| 466 | * Set vigilance parameter rhoa. |
---|
| 467 | * (a float in range [0,1])</pre> |
---|
| 468 | * |
---|
| 469 | * <pre> -B |
---|
| 470 | * Set boundaries File |
---|
| 471 | * Note: The boundaries file is a simple text file containing |
---|
| 472 | * a row with a Fuzzy Lattice defining the metric space. |
---|
| 473 | * For example, the boundaries file could contain the following |
---|
| 474 | * the metric space for the iris dataset: |
---|
| 475 | * [ 4.3 7.9 ] [ 2.0 4.4 ] [ 1.0 6.9 ] [ 0.1 2.5 ] in Class: -1 |
---|
| 476 | * This lattice just contains the min and max value in each |
---|
| 477 | * dimension. |
---|
| 478 | * In other kind of problems this may not be just a min-max |
---|
| 479 | * operation, but it could contain limits defined by the problem |
---|
| 480 | * itself. |
---|
| 481 | * Thus, this option should be set by the user. |
---|
| 482 | * If ommited, the metric space used contains the mins and maxs |
---|
| 483 | * of the training split.</pre> |
---|
| 484 | * |
---|
| 485 | * <pre> -Y |
---|
| 486 | * Show Rules</pre> |
---|
| 487 | * |
---|
| 488 | <!-- options-end --> |
---|
| 489 | * |
---|
| 490 | * @param options the list of options as an array of strings |
---|
| 491 | * @throws Exception if an option is not supported ( |
---|
| 492 | */ |
---|
| 493 | public void setOptions(String[] options) throws Exception { |
---|
| 494 | // Option -Y |
---|
| 495 | m_showRules = Utils.getFlag('Y', options); |
---|
| 496 | // Option -R |
---|
| 497 | String rhoaString = Utils.getOption('R', options); |
---|
| 498 | if (rhoaString.length() != 0) { |
---|
| 499 | m_Rhoa = Double.parseDouble(rhoaString); |
---|
| 500 | if (m_Rhoa < 0 || m_Rhoa > 1) { |
---|
| 501 | throw new Exception( |
---|
| 502 | "Vigilance parameter (rhoa) should be a real number in range [0,1]"); |
---|
| 503 | } |
---|
| 504 | } |
---|
| 505 | else |
---|
| 506 | m_Rhoa = 0.5; |
---|
| 507 | |
---|
| 508 | // Option -B |
---|
| 509 | String boundsString = Utils.getOption('B', options); |
---|
| 510 | if (boundsString.length() != 0) { |
---|
| 511 | m_BoundsFile = new File(boundsString); |
---|
| 512 | } //fi |
---|
| 513 | Utils.checkForRemainingOptions(options); |
---|
| 514 | } //setOptions |
---|
| 515 | |
---|
| 516 | /** |
---|
| 517 | * Gets the current settings of the Classifier. |
---|
| 518 | * |
---|
| 519 | * @return an array of strings suitable for passing to setOptions |
---|
| 520 | */ |
---|
| 521 | public String[] getOptions() { |
---|
| 522 | String[] options = new String[5]; |
---|
| 523 | int current = 0; |
---|
| 524 | options[current++] = "-R"; |
---|
| 525 | options[current++] = "" + getRhoa(); |
---|
| 526 | if (m_showRules) { |
---|
| 527 | options[current++] = "-Y"; |
---|
| 528 | } |
---|
| 529 | if (m_BoundsFile.toString() != "") { |
---|
| 530 | options[current++] = "-B"; |
---|
| 531 | options[current++] = "" + getBoundsFile(); |
---|
| 532 | } |
---|
| 533 | while (current < options.length) { |
---|
| 534 | options[current++] = ""; |
---|
| 535 | } |
---|
| 536 | return options; |
---|
| 537 | } // getOptions |
---|
| 538 | |
---|
| 539 | /** |
---|
| 540 | * Get rhoa |
---|
| 541 | * @return the value of this parameter |
---|
| 542 | */ |
---|
| 543 | public double getRhoa() { |
---|
| 544 | return m_Rhoa; |
---|
| 545 | } |
---|
| 546 | |
---|
| 547 | /** |
---|
| 548 | * Get boundaries File |
---|
| 549 | * @return the value of this parameter |
---|
| 550 | */ |
---|
| 551 | public String getBoundsFile() { |
---|
| 552 | return m_BoundsFile.toString(); |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | /** |
---|
| 556 | * Get ShowRules parameter |
---|
| 557 | * @return the value of this parameter |
---|
| 558 | */ |
---|
| 559 | public boolean getShowRules() { |
---|
| 560 | return m_showRules; |
---|
| 561 | } |
---|
| 562 | |
---|
| 563 | /** |
---|
| 564 | * Set rhoa |
---|
| 565 | * @param newRhoa sets the rhoa value |
---|
| 566 | * @throws Exception if rhoa is not in range [0,1] |
---|
| 567 | */ |
---|
| 568 | public void setRhoa(double newRhoa) throws Exception { |
---|
| 569 | if (newRhoa < 0 || newRhoa > 1) { |
---|
| 570 | throw new Exception( |
---|
| 571 | "Vigilance parameter (rhoa) should be a real number in range [0,1]!!!"); |
---|
| 572 | } |
---|
| 573 | m_Rhoa = newRhoa; |
---|
| 574 | } |
---|
| 575 | |
---|
| 576 | /** |
---|
| 577 | * Set Boundaries File |
---|
| 578 | * @param newBoundsFile a new file containing the boundaries |
---|
| 579 | */ |
---|
| 580 | public void setBoundsFile(String newBoundsFile) { |
---|
| 581 | m_BoundsFile = new File(newBoundsFile); |
---|
| 582 | } |
---|
| 583 | |
---|
| 584 | /** |
---|
| 585 | * Set ShowRules flag |
---|
| 586 | * @param flag the new value of this parameter |
---|
| 587 | */ |
---|
| 588 | public void setShowRules(boolean flag) { |
---|
| 589 | m_showRules = flag; |
---|
| 590 | } |
---|
| 591 | |
---|
| 592 | /** |
---|
| 593 | * Sets the metric space from the training set using the min-max stats, in case -B option is not used. |
---|
| 594 | * @param data is the training set |
---|
| 595 | */ |
---|
| 596 | public void setBounds(Instances data) { |
---|
| 597 | // Initialize minmax stats |
---|
| 598 | bounds = new FuzzyLattice(data.numAttributes() - 1); |
---|
| 599 | int k = 0; |
---|
| 600 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 601 | if (i != data.classIndex()) { |
---|
| 602 | AttributeStats stats = data.attributeStats(i); |
---|
| 603 | bounds.setMin(k, stats.numericStats.min); |
---|
| 604 | bounds.setMax(k, stats.numericStats.max); |
---|
| 605 | k = k + 1; |
---|
| 606 | } //if |
---|
| 607 | } //for |
---|
| 608 | } //setBounds |
---|
| 609 | |
---|
| 610 | /** |
---|
| 611 | * Checks the metric space |
---|
| 612 | */ |
---|
| 613 | public void checkBounds() { |
---|
| 614 | for (int i = 0; i < bounds.length(); i++) { |
---|
| 615 | if (bounds.getMin(i) == bounds.getMax(i)) |
---|
| 616 | bounds.setMax(i, bounds.getMax(i) + EPSILON); |
---|
| 617 | } |
---|
| 618 | } |
---|
| 619 | |
---|
| 620 | /** |
---|
| 621 | * Returns the tip text for this property |
---|
| 622 | * @return tip text for this property suitable for |
---|
| 623 | * displaying in the explorer/experimenter gui |
---|
| 624 | */ |
---|
| 625 | public String rhoaTipText() { |
---|
| 626 | return " The vigilance parameter value" + " (default = 0.75)"; |
---|
| 627 | } |
---|
| 628 | |
---|
| 629 | /** |
---|
| 630 | * Returns the tip text for this property |
---|
| 631 | * @return tip text for this property suitable for |
---|
| 632 | * displaying in the explorer/experimenter gui |
---|
| 633 | */ |
---|
| 634 | public String boundsFileTipText() { |
---|
| 635 | return " Point the filename containing the metric space"; |
---|
| 636 | } |
---|
| 637 | |
---|
| 638 | /** |
---|
| 639 | * Returns the tip text for this property |
---|
| 640 | * @return tip text for this property suitable for |
---|
| 641 | * displaying in the explorer/experimenter gui |
---|
| 642 | */ |
---|
| 643 | public String showRulesTipText() { |
---|
| 644 | return " If true, displays the ruleset."; |
---|
| 645 | } |
---|
| 646 | |
---|
| 647 | /** |
---|
| 648 | * Returns the value of the named measure |
---|
| 649 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 650 | * @return the value of the named measure |
---|
| 651 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 652 | */ |
---|
| 653 | public double getMeasure(String additionalMeasureName) { |
---|
| 654 | if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { |
---|
| 655 | return measureNumRules(); |
---|
| 656 | } |
---|
| 657 | else { |
---|
| 658 | throw new IllegalArgumentException(additionalMeasureName + |
---|
| 659 | " not supported (FLR)"); |
---|
| 660 | } |
---|
| 661 | } |
---|
| 662 | |
---|
| 663 | /** |
---|
| 664 | * Returns an enumeration of the additional measure names |
---|
| 665 | * @return an enumeration of the measure names |
---|
| 666 | */ |
---|
| 667 | public Enumeration enumerateMeasures() { |
---|
| 668 | Vector newVector = new Vector(1); |
---|
| 669 | newVector.addElement("measureNumRules"); |
---|
| 670 | return newVector.elements(); |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | /** |
---|
| 674 | * Additional measure Number of Rules |
---|
| 675 | * @return the number of rules induced |
---|
| 676 | */ |
---|
| 677 | public double measureNumRules() { |
---|
| 678 | if (learnedCode == null) |
---|
| 679 | return 0.0; |
---|
| 680 | else |
---|
| 681 | return (double) learnedCode.size(); |
---|
| 682 | } |
---|
| 683 | |
---|
| 684 | /** |
---|
| 685 | * Returns a description of the classifier suitable for |
---|
| 686 | * displaying in the explorer/experimenter gui |
---|
| 687 | * @return the description |
---|
| 688 | */ |
---|
| 689 | public String globalInfo() { |
---|
| 690 | return |
---|
| 691 | "Fuzzy Lattice Reasoning Classifier (FLR) v5.0\n\n" |
---|
| 692 | + "The Fuzzy Lattice Reasoning Classifier uses the notion of Fuzzy " |
---|
| 693 | + "Lattices for creating a Reasoning Environment.\n" |
---|
| 694 | + "The current version can be used for classification using numeric predictors.\n\n" |
---|
| 695 | + "For more information see:\n\n" |
---|
| 696 | + getTechnicalInformation().toString(); |
---|
| 697 | } |
---|
| 698 | |
---|
| 699 | /** |
---|
| 700 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 701 | * detailed information about the technical background of this class, |
---|
| 702 | * e.g., paper reference or book this class is based on. |
---|
| 703 | * |
---|
| 704 | * @return the technical information about this class |
---|
| 705 | */ |
---|
| 706 | public TechnicalInformation getTechnicalInformation() { |
---|
| 707 | TechnicalInformation result; |
---|
| 708 | TechnicalInformation additional; |
---|
| 709 | |
---|
| 710 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 711 | result.setValue(Field.AUTHOR, "I. N. Athanasiadis and V. G. Kaburlasos and P. A. Mitkas and V. Petridis"); |
---|
| 712 | result.setValue(Field.TITLE, "Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support"); |
---|
| 713 | result.setValue(Field.BOOKTITLE, "1st Intl. NAISO Symposium on Information Technologies in Environmental Engineering (ITEE-2003)"); |
---|
| 714 | result.setValue(Field.YEAR, "2003"); |
---|
| 715 | result.setValue(Field.ADDRESS, "Gdansk, Poland"); |
---|
| 716 | result.setValue(Field.PUBLISHER, "ICSC-NAISO Academic Press"); |
---|
| 717 | result.setValue(Field.NOTE, "Abstract in ICSC-NAISO Academic Press, Canada (ISBN:3906454339), pg.51"); |
---|
| 718 | |
---|
| 719 | additional = result.add(Type.UNPUBLISHED); |
---|
| 720 | additional.setValue(Field.AUTHOR, "V. G. Kaburlasos and I. N. Athanasiadis and P. A. Mitkas and V. Petridis"); |
---|
| 721 | additional.setValue(Field.TITLE, "Fuzzy Lattice Reasoning (FLR) Classifier and its Application on Improved Estimation of Ambient Ozone Concentration"); |
---|
| 722 | additional.setValue(Field.YEAR, "2003"); |
---|
| 723 | |
---|
| 724 | return result; |
---|
| 725 | } |
---|
| 726 | |
---|
| 727 | /** |
---|
| 728 | * Returns the revision string. |
---|
| 729 | * |
---|
| 730 | * @return the revision |
---|
| 731 | */ |
---|
| 732 | public String getRevision() { |
---|
| 733 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 734 | } |
---|
| 735 | |
---|
| 736 | /** |
---|
| 737 | * Main method for testing this class. |
---|
| 738 | * |
---|
| 739 | * @param args should contain command line arguments for evaluation |
---|
| 740 | * (see Evaluation). |
---|
| 741 | */ |
---|
| 742 | |
---|
| 743 | public static void main(String[] args) { |
---|
| 744 | runClassifier(new FLR(), args); |
---|
| 745 | } |
---|
| 746 | |
---|
| 747 | /** |
---|
| 748 | * <p>Fuzzy Lattice implementation in WEKA </p> |
---|
| 749 | * |
---|
| 750 | * @author Ioannis N. Athanasiadis |
---|
| 751 | * email: ionathan@iti.gr |
---|
| 752 | * alias: ionathan@ieee.org |
---|
| 753 | * @version 5.0 |
---|
| 754 | */ |
---|
| 755 | private class FuzzyLattice |
---|
| 756 | implements Serializable, RevisionHandler { |
---|
| 757 | |
---|
| 758 | /** for serialization */ |
---|
| 759 | static final long serialVersionUID = -3568003680327062404L; |
---|
| 760 | |
---|
| 761 | private double min[]; |
---|
| 762 | private double max[]; |
---|
| 763 | private int categ; |
---|
| 764 | private String className; |
---|
| 765 | |
---|
| 766 | //Constructors |
---|
| 767 | |
---|
| 768 | /** |
---|
| 769 | * Constructs a Fuzzy Lattice from a instance |
---|
| 770 | * @param dR the instance |
---|
| 771 | * @param bounds the boundaries file |
---|
| 772 | */ |
---|
| 773 | public FuzzyLattice(Instance dR, FuzzyLattice bounds) { |
---|
| 774 | min = new double[dR.numAttributes() - 1]; |
---|
| 775 | max = new double[dR.numAttributes() - 1]; |
---|
| 776 | int k = 0; |
---|
| 777 | for (int i = 0; i < dR.numAttributes(); i++) { |
---|
| 778 | if (i != dR.classIndex()) { |
---|
| 779 | if (!dR.isMissing(i)) { |
---|
| 780 | min[k] = (dR.value(i) > bounds.getMin(k)) ? dR.value(i) : |
---|
| 781 | bounds.getMin(k); |
---|
| 782 | max[k] = (dR.value(i) < bounds.getMax(k)) ? dR.value(i) : |
---|
| 783 | bounds.getMax(k); |
---|
| 784 | k = k + 1; |
---|
| 785 | } //if(!dR.isMissing(i)) |
---|
| 786 | else { |
---|
| 787 | min[k] = bounds.getMax(k); |
---|
| 788 | max[k] = bounds.getMin(k); |
---|
| 789 | k = k + 1; |
---|
| 790 | } //else |
---|
| 791 | } //if(i!=dR.classIndex()) |
---|
| 792 | } //for (int i=0; i<dR.numAttributes();i++) |
---|
| 793 | categ = (int) dR.value(dR.classIndex()); |
---|
| 794 | className = dR.stringValue(dR.classIndex()); |
---|
| 795 | } //FuzzyLattice |
---|
| 796 | |
---|
| 797 | /** |
---|
| 798 | * Constructs an empty Fuzzy Lattice of a specific dimension pointing |
---|
| 799 | * in Class "Metric Space" (-1) |
---|
| 800 | * @param length the dimention of the Lattice |
---|
| 801 | */ |
---|
| 802 | public FuzzyLattice(int length) { |
---|
| 803 | min = new double[length]; |
---|
| 804 | max = new double[length]; |
---|
| 805 | |
---|
| 806 | for (int i = 0; i < length; i++) { |
---|
| 807 | min[i] = 0; |
---|
| 808 | max[i] = 0; |
---|
| 809 | } |
---|
| 810 | categ = -1; |
---|
| 811 | className = "Metric Space"; |
---|
| 812 | } |
---|
| 813 | |
---|
| 814 | /** |
---|
| 815 | * Converts a String to a Fuzzy Lattice pointing in Class "Metric Space" (-1) |
---|
| 816 | * Note that the input String should be compatible with the toString() method. |
---|
| 817 | * @param rule the input String. |
---|
| 818 | */ |
---|
| 819 | public FuzzyLattice(String rule) { |
---|
| 820 | int size = 0; |
---|
| 821 | for (int i = 0; i < rule.length(); i++) { |
---|
| 822 | String s = rule.substring(i, i + 1); |
---|
| 823 | if (s.equalsIgnoreCase("[")) { |
---|
| 824 | size++; |
---|
| 825 | } |
---|
| 826 | } |
---|
| 827 | min = new double[size]; |
---|
| 828 | max = new double[size]; |
---|
| 829 | |
---|
| 830 | int i = 0; |
---|
| 831 | int k = 0; |
---|
| 832 | String temp = ""; |
---|
| 833 | int s = 0; |
---|
| 834 | do { |
---|
| 835 | String character = rule.substring(s, s + 1); |
---|
| 836 | temp = temp + character; |
---|
| 837 | if (character.equalsIgnoreCase(" ")) { |
---|
| 838 | if (!temp.equalsIgnoreCase(" ")) { |
---|
| 839 | k = k + 1; |
---|
| 840 | if (k % 4 == 2) { |
---|
| 841 | min[i] = Double.parseDouble(temp); |
---|
| 842 | } //if |
---|
| 843 | else if (k % 4 == 3) { |
---|
| 844 | max[i] = Double.parseDouble(temp); |
---|
| 845 | i = i + 1; |
---|
| 846 | } //else |
---|
| 847 | } // if (!temp.equalsIgnoreCase(" ") ){ |
---|
| 848 | temp = ""; |
---|
| 849 | } //if (character.equalsIgnoreCase(seperator)){ |
---|
| 850 | s = s + 1; |
---|
| 851 | } |
---|
| 852 | while (i < size); |
---|
| 853 | categ = -1; |
---|
| 854 | className = "Metric Space"; |
---|
| 855 | } |
---|
| 856 | |
---|
| 857 | // Functions |
---|
| 858 | |
---|
| 859 | /** |
---|
| 860 | * Calculates the valuation function of the FuzzyLattice |
---|
| 861 | * @param bounds corresponding boundaries |
---|
| 862 | * @return the value of the valuation function |
---|
| 863 | */ |
---|
| 864 | public double valuation(FuzzyLattice bounds) { |
---|
| 865 | double resp = 0.0; |
---|
| 866 | for (int i = 0; i < min.length; i++) { |
---|
| 867 | resp += 1 - |
---|
| 868 | (min[i] - bounds.getMin(i)) / (bounds.getMax(i) - bounds.getMin(i)); |
---|
| 869 | resp += (max[i] - bounds.getMin(i)) / |
---|
| 870 | (bounds.getMax(i) - bounds.getMin(i)); |
---|
| 871 | } |
---|
| 872 | return resp; |
---|
| 873 | } |
---|
| 874 | |
---|
| 875 | /** |
---|
| 876 | * Calcualtes the length of the FuzzyLattice |
---|
| 877 | * @return the length |
---|
| 878 | */ |
---|
| 879 | public int length() { |
---|
| 880 | return min.length; |
---|
| 881 | } |
---|
| 882 | |
---|
| 883 | /** |
---|
| 884 | * Implements the Join Function |
---|
| 885 | * @param lattice the second fuzzy lattice |
---|
| 886 | * @return the joint lattice |
---|
| 887 | */ |
---|
| 888 | public FuzzyLattice join(FuzzyLattice lattice) { // Lattice Join |
---|
| 889 | FuzzyLattice b = new FuzzyLattice(lattice.length()); |
---|
| 890 | int i; |
---|
| 891 | for (i = 0; i < lattice.min.length; i++) { |
---|
| 892 | b.min[i] = (lattice.min[i] < min[i]) ? lattice.min[i] : |
---|
| 893 | min[i]; |
---|
| 894 | b.max[i] = (lattice.max[i] > max[i]) ? lattice.max[i] : |
---|
| 895 | max[i]; |
---|
| 896 | } |
---|
| 897 | b.categ = categ; |
---|
| 898 | b.className = className; |
---|
| 899 | return b; |
---|
| 900 | } |
---|
| 901 | |
---|
| 902 | // Get-Set Functions |
---|
| 903 | |
---|
| 904 | public int getCateg() { |
---|
| 905 | return categ; |
---|
| 906 | } |
---|
| 907 | |
---|
| 908 | public void setCateg(int i) { |
---|
| 909 | categ = i; |
---|
| 910 | } |
---|
| 911 | |
---|
| 912 | public String getClassName() { |
---|
| 913 | return className; |
---|
| 914 | } |
---|
| 915 | |
---|
| 916 | public void setClassName(String s) { |
---|
| 917 | className = s; |
---|
| 918 | } |
---|
| 919 | |
---|
| 920 | public double getMin(int i) { |
---|
| 921 | return min[i]; |
---|
| 922 | } |
---|
| 923 | |
---|
| 924 | public double getMax(int i) { |
---|
| 925 | return max[i]; |
---|
| 926 | } |
---|
| 927 | |
---|
| 928 | public void setMin(int i, double val) { |
---|
| 929 | min[i] = val; |
---|
| 930 | } |
---|
| 931 | |
---|
| 932 | public void setMax(int i, double val) { |
---|
| 933 | max[i] = val; |
---|
| 934 | } |
---|
| 935 | |
---|
| 936 | /** |
---|
| 937 | * Returns a description of the Fuzzy Lattice |
---|
| 938 | * @return the Fuzzy Lattice and the corresponding Class |
---|
| 939 | */ |
---|
| 940 | public String toString() { |
---|
| 941 | String rule = ""; |
---|
| 942 | for (int i = 0; i < min.length; i++) { |
---|
| 943 | rule = rule + "[ " + min[i] + " " + max[i] + " ] "; |
---|
| 944 | } |
---|
| 945 | rule = rule + "in Class: " + className + " \n"; |
---|
| 946 | return rule; |
---|
| 947 | } |
---|
| 948 | |
---|
| 949 | /** |
---|
| 950 | * Returns the revision string. |
---|
| 951 | * |
---|
| 952 | * @return the revision |
---|
| 953 | */ |
---|
| 954 | public String getRevision() { |
---|
| 955 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 956 | } |
---|
| 957 | } |
---|
| 958 | } |
---|
| 959 | |
---|