1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * TLDSimple.java |
---|
19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.mi; |
---|
24 | |
---|
25 | import weka.classifiers.RandomizableClassifier; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
30 | import weka.core.Optimization; |
---|
31 | import weka.core.Option; |
---|
32 | import weka.core.OptionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.TechnicalInformation; |
---|
35 | import weka.core.TechnicalInformationHandler; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.Capabilities.Capability; |
---|
38 | import weka.core.TechnicalInformation.Field; |
---|
39 | import weka.core.TechnicalInformation.Type; |
---|
40 | |
---|
41 | import java.util.Enumeration; |
---|
42 | import java.util.Random; |
---|
43 | import java.util.Vector; |
---|
44 | |
---|
45 | /** |
---|
46 | <!-- globalinfo-start --> |
---|
47 | * A simpler version of TLD, mu random but sigma^2 fixed and estimated via data.<br/> |
---|
48 | * <br/> |
---|
49 | * For more information see:<br/> |
---|
50 | * <br/> |
---|
51 | * Xin Xu (2003). Statistical learning in multiple instance problem. Hamilton, NZ. |
---|
52 | * <p/> |
---|
53 | <!-- globalinfo-end --> |
---|
54 | * |
---|
55 | <!-- technical-bibtex-start --> |
---|
56 | * BibTeX: |
---|
57 | * <pre> |
---|
58 | * @mastersthesis{Xu2003, |
---|
59 | * address = {Hamilton, NZ}, |
---|
60 | * author = {Xin Xu}, |
---|
61 | * note = {0657.594}, |
---|
62 | * school = {University of Waikato}, |
---|
63 | * title = {Statistical learning in multiple instance problem}, |
---|
64 | * year = {2003} |
---|
65 | * } |
---|
66 | * </pre> |
---|
67 | * <p/> |
---|
68 | <!-- technical-bibtex-end --> |
---|
69 | * |
---|
70 | <!-- options-start --> |
---|
71 | * Valid options are: <p/> |
---|
72 | * |
---|
73 | * <pre> -C |
---|
74 | * Set whether or not use empirical |
---|
75 | * log-odds cut-off instead of 0</pre> |
---|
76 | * |
---|
77 | * <pre> -R <numOfRuns> |
---|
78 | * Set the number of multiple runs |
---|
79 | * needed for searching the MLE.</pre> |
---|
80 | * |
---|
81 | * <pre> -S <num> |
---|
82 | * Random number seed. |
---|
83 | * (default 1)</pre> |
---|
84 | * |
---|
85 | * <pre> -D |
---|
86 | * If set, classifier is run in debug mode and |
---|
87 | * may output additional info to the console</pre> |
---|
88 | * |
---|
89 | <!-- options-end --> |
---|
90 | * |
---|
91 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
92 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
93 | * @version $Revision: 5481 $ |
---|
94 | */ |
---|
95 | public class TLDSimple |
---|
96 | extends RandomizableClassifier |
---|
97 | implements OptionHandler, MultiInstanceCapabilitiesHandler, |
---|
98 | TechnicalInformationHandler { |
---|
99 | |
---|
100 | /** for serialization */ |
---|
101 | static final long serialVersionUID = 9040995947243286591L; |
---|
102 | |
---|
103 | /** The mean for each attribute of each positive exemplar */ |
---|
104 | protected double[][] m_MeanP = null; |
---|
105 | |
---|
106 | /** The mean for each attribute of each negative exemplar */ |
---|
107 | protected double[][] m_MeanN = null; |
---|
108 | |
---|
109 | /** The effective sum of weights of each positive exemplar in each dimension*/ |
---|
110 | protected double[][] m_SumP = null; |
---|
111 | |
---|
112 | /** The effective sum of weights of each negative exemplar in each dimension*/ |
---|
113 | protected double[][] m_SumN = null; |
---|
114 | |
---|
115 | /** Estimated sigma^2 in positive bags*/ |
---|
116 | protected double[] m_SgmSqP; |
---|
117 | |
---|
118 | /** Estimated sigma^2 in negative bags*/ |
---|
119 | protected double[] m_SgmSqN; |
---|
120 | |
---|
121 | /** The parameters to be estimated for each positive exemplar*/ |
---|
122 | protected double[] m_ParamsP = null; |
---|
123 | |
---|
124 | /** The parameters to be estimated for each negative exemplar*/ |
---|
125 | protected double[] m_ParamsN = null; |
---|
126 | |
---|
127 | /** The dimension of each exemplar, i.e. (numAttributes-2) */ |
---|
128 | protected int m_Dimension = 0; |
---|
129 | |
---|
130 | /** The class label of each exemplar */ |
---|
131 | protected double[] m_Class = null; |
---|
132 | |
---|
133 | /** The number of class labels in the data */ |
---|
134 | protected int m_NumClasses = 2; |
---|
135 | |
---|
136 | /** The very small number representing zero */ |
---|
137 | static public double ZERO = 1.0e-12; |
---|
138 | |
---|
139 | protected int m_Run = 1; |
---|
140 | |
---|
141 | protected double m_Cutoff; |
---|
142 | |
---|
143 | protected boolean m_UseEmpiricalCutOff = false; |
---|
144 | |
---|
145 | private double[] m_LkRatio; |
---|
146 | |
---|
147 | private Instances m_Attribute = null; |
---|
148 | |
---|
149 | /** |
---|
150 | * Returns a string describing this filter |
---|
151 | * |
---|
152 | * @return a description of the filter suitable for |
---|
153 | * displaying in the explorer/experimenter gui |
---|
154 | */ |
---|
155 | public String globalInfo() { |
---|
156 | return |
---|
157 | "A simpler version of TLD, mu random but sigma^2 fixed and estimated " |
---|
158 | + "via data.\n\n" |
---|
159 | + "For more information see:\n\n" |
---|
160 | + getTechnicalInformation().toString(); |
---|
161 | } |
---|
162 | |
---|
163 | /** |
---|
164 | * Returns an instance of a TechnicalInformation object, containing |
---|
165 | * detailed information about the technical background of this class, |
---|
166 | * e.g., paper reference or book this class is based on. |
---|
167 | * |
---|
168 | * @return the technical information about this class |
---|
169 | */ |
---|
170 | public TechnicalInformation getTechnicalInformation() { |
---|
171 | TechnicalInformation result; |
---|
172 | |
---|
173 | result = new TechnicalInformation(Type.MASTERSTHESIS); |
---|
174 | result.setValue(Field.AUTHOR, "Xin Xu"); |
---|
175 | result.setValue(Field.YEAR, "2003"); |
---|
176 | result.setValue(Field.TITLE, "Statistical learning in multiple instance problem"); |
---|
177 | result.setValue(Field.SCHOOL, "University of Waikato"); |
---|
178 | result.setValue(Field.ADDRESS, "Hamilton, NZ"); |
---|
179 | result.setValue(Field.NOTE, "0657.594"); |
---|
180 | |
---|
181 | return result; |
---|
182 | } |
---|
183 | |
---|
184 | /** |
---|
185 | * Returns default capabilities of the classifier. |
---|
186 | * |
---|
187 | * @return the capabilities of this classifier |
---|
188 | */ |
---|
189 | public Capabilities getCapabilities() { |
---|
190 | Capabilities result = super.getCapabilities(); |
---|
191 | result.disableAll(); |
---|
192 | |
---|
193 | // attributes |
---|
194 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
195 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
196 | result.enable(Capability.MISSING_VALUES); |
---|
197 | |
---|
198 | // class |
---|
199 | result.enable(Capability.BINARY_CLASS); |
---|
200 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
201 | |
---|
202 | // other |
---|
203 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
204 | |
---|
205 | return result; |
---|
206 | } |
---|
207 | |
---|
208 | /** |
---|
209 | * Returns the capabilities of this multi-instance classifier for the |
---|
210 | * relational data. |
---|
211 | * |
---|
212 | * @return the capabilities of this object |
---|
213 | * @see Capabilities |
---|
214 | */ |
---|
215 | public Capabilities getMultiInstanceCapabilities() { |
---|
216 | Capabilities result = super.getCapabilities(); |
---|
217 | result.disableAll(); |
---|
218 | |
---|
219 | // attributes |
---|
220 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
221 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
222 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
223 | result.enable(Capability.MISSING_VALUES); |
---|
224 | |
---|
225 | // class |
---|
226 | result.disableAllClasses(); |
---|
227 | result.enable(Capability.NO_CLASS); |
---|
228 | |
---|
229 | return result; |
---|
230 | } |
---|
231 | |
---|
232 | /** |
---|
233 | * |
---|
234 | * @param exs the training exemplars |
---|
235 | * @throws Exception if the model cannot be built properly |
---|
236 | */ |
---|
237 | public void buildClassifier(Instances exs)throws Exception{ |
---|
238 | // can classifier handle the data? |
---|
239 | getCapabilities().testWithFail(exs); |
---|
240 | |
---|
241 | // remove instances with missing class |
---|
242 | exs = new Instances(exs); |
---|
243 | exs.deleteWithMissingClass(); |
---|
244 | |
---|
245 | int numegs = exs.numInstances(); |
---|
246 | m_Dimension = exs.attribute(1).relation().numAttributes(); |
---|
247 | m_Attribute = exs.attribute(1).relation().stringFreeStructure(); |
---|
248 | Instances pos = new Instances(exs, 0), neg = new Instances(exs, 0); |
---|
249 | |
---|
250 | // Divide into two groups |
---|
251 | for(int u=0; u<numegs; u++){ |
---|
252 | Instance example = exs.instance(u); |
---|
253 | if(example.classValue() == 1) |
---|
254 | pos.add(example); |
---|
255 | else |
---|
256 | neg.add(example); |
---|
257 | } |
---|
258 | int pnum = pos.numInstances(), nnum = neg.numInstances(); |
---|
259 | |
---|
260 | // xBar, n |
---|
261 | m_MeanP = new double[pnum][m_Dimension]; |
---|
262 | m_SumP = new double[pnum][m_Dimension]; |
---|
263 | m_MeanN = new double[nnum][m_Dimension]; |
---|
264 | m_SumN = new double[nnum][m_Dimension]; |
---|
265 | // w, m |
---|
266 | m_ParamsP = new double[2*m_Dimension]; |
---|
267 | m_ParamsN = new double[2*m_Dimension]; |
---|
268 | // \sigma^2 |
---|
269 | m_SgmSqP = new double[m_Dimension]; |
---|
270 | m_SgmSqN = new double[m_Dimension]; |
---|
271 | // S^2 |
---|
272 | double[][] varP=new double[pnum][m_Dimension], |
---|
273 | varN=new double[nnum][m_Dimension]; |
---|
274 | // numOfEx 'e' without all missing |
---|
275 | double[] effNumExP=new double[m_Dimension], |
---|
276 | effNumExN=new double[m_Dimension]; |
---|
277 | // For the starting values |
---|
278 | double[] pMM=new double[m_Dimension], |
---|
279 | nMM=new double[m_Dimension], |
---|
280 | pVM=new double[m_Dimension], |
---|
281 | nVM=new double[m_Dimension]; |
---|
282 | // # of exemplars with only one instance |
---|
283 | double[] numOneInsExsP=new double[m_Dimension], |
---|
284 | numOneInsExsN=new double[m_Dimension]; |
---|
285 | // sum_i(1/n_i) |
---|
286 | double[] pInvN = new double[m_Dimension], nInvN = new double[m_Dimension]; |
---|
287 | |
---|
288 | // Extract metadata from both positive and negative bags |
---|
289 | for(int v=0; v < pnum; v++){ |
---|
290 | //Instance px = pos.instance(v); |
---|
291 | Instances pxi = pos.instance(v).relationalValue(1); |
---|
292 | for (int k=0; k<pxi.numAttributes(); k++) { |
---|
293 | m_MeanP[v][k] = pxi.meanOrMode(k); |
---|
294 | varP[v][k] = pxi.variance(k); |
---|
295 | } |
---|
296 | |
---|
297 | for (int w=0,t=0; w < m_Dimension; w++,t++){ |
---|
298 | //if((t==m_ClassIndex) || (t==m_IdIndex)) |
---|
299 | // t++; |
---|
300 | if(varP[v][w] <= 0.0) |
---|
301 | varP[v][w] = 0.0; |
---|
302 | if(!Double.isNaN(m_MeanP[v][w])){ |
---|
303 | |
---|
304 | for(int u=0;u<pxi.numInstances();u++) |
---|
305 | if(!pxi.instance(u).isMissing(t)) |
---|
306 | m_SumP[v][w] += pxi.instance(u).weight(); |
---|
307 | |
---|
308 | pMM[w] += m_MeanP[v][w]; |
---|
309 | pVM[w] += m_MeanP[v][w]*m_MeanP[v][w]; |
---|
310 | if((m_SumP[v][w]>1) && (varP[v][w]>ZERO)){ |
---|
311 | |
---|
312 | m_SgmSqP[w] += varP[v][w]*(m_SumP[v][w]-1.0)/m_SumP[v][w]; |
---|
313 | |
---|
314 | //m_SgmSqP[w] += varP[v][w]*(m_SumP[v][w]-1.0); |
---|
315 | effNumExP[w]++; // Not count exemplars with 1 instance |
---|
316 | pInvN[w] += 1.0/m_SumP[v][w]; |
---|
317 | //pInvN[w] += m_SumP[v][w]; |
---|
318 | } |
---|
319 | else |
---|
320 | numOneInsExsP[w]++; |
---|
321 | } |
---|
322 | |
---|
323 | } |
---|
324 | } |
---|
325 | |
---|
326 | |
---|
327 | for(int v=0; v < nnum; v++){ |
---|
328 | //Instance nx = neg.instance(v); |
---|
329 | Instances nxi = neg.instance(v).relationalValue(1); |
---|
330 | for (int k=0; k<nxi.numAttributes(); k++) { |
---|
331 | m_MeanN[v][k] = nxi.meanOrMode(k); |
---|
332 | varN[v][k] = nxi.variance(k); |
---|
333 | } |
---|
334 | //Instances nxi = nx.getInstances(); |
---|
335 | |
---|
336 | for (int w=0,t=0; w < m_Dimension; w++,t++){ |
---|
337 | |
---|
338 | //if((t==m_ClassIndex) || (t==m_IdIndex)) |
---|
339 | // t++; |
---|
340 | if(varN[v][w] <= 0.0) |
---|
341 | varN[v][w] = 0.0; |
---|
342 | if(!Double.isNaN(m_MeanN[v][w])){ |
---|
343 | for(int u=0;u<nxi.numInstances();u++) |
---|
344 | if(!nxi.instance(u).isMissing(t)) |
---|
345 | m_SumN[v][w] += nxi.instance(u).weight(); |
---|
346 | |
---|
347 | nMM[w] += m_MeanN[v][w]; |
---|
348 | nVM[w] += m_MeanN[v][w]*m_MeanN[v][w]; |
---|
349 | if((m_SumN[v][w]>1) && (varN[v][w]>ZERO)){ |
---|
350 | m_SgmSqN[w] += varN[v][w]*(m_SumN[v][w]-1.0)/m_SumN[v][w]; |
---|
351 | //m_SgmSqN[w] += varN[v][w]*(m_SumN[v][w]-1.0); |
---|
352 | effNumExN[w]++; // Not count exemplars with 1 instance |
---|
353 | nInvN[w] += 1.0/m_SumN[v][w]; |
---|
354 | //nInvN[w] += m_SumN[v][w]; |
---|
355 | } |
---|
356 | else |
---|
357 | numOneInsExsN[w]++; |
---|
358 | } |
---|
359 | } |
---|
360 | } |
---|
361 | |
---|
362 | // Expected \sigma^2 |
---|
363 | /* if m_SgmSqP[u] or m_SgmSqN[u] is 0, assign 0 to sigma^2. |
---|
364 | * Otherwise, may cause k m_SgmSqP / m_SgmSqN to be NaN. |
---|
365 | * Modified by Lin Dong (Sep. 2005) |
---|
366 | */ |
---|
367 | for (int u=0; u < m_Dimension; u++){ |
---|
368 | // For exemplars with only one instance, use avg(\sigma^2) of other exemplars |
---|
369 | if (m_SgmSqP[u]!=0) |
---|
370 | m_SgmSqP[u] /= (effNumExP[u]-pInvN[u]); |
---|
371 | else |
---|
372 | m_SgmSqP[u] = 0; |
---|
373 | if (m_SgmSqN[u]!=0) |
---|
374 | m_SgmSqN[u] /= (effNumExN[u]-nInvN[u]); |
---|
375 | else |
---|
376 | m_SgmSqN[u] = 0; |
---|
377 | |
---|
378 | //m_SgmSqP[u] /= (pInvN[u]-effNumExP[u]); |
---|
379 | //m_SgmSqN[u] /= (nInvN[u]-effNumExN[u]); |
---|
380 | effNumExP[u] += numOneInsExsP[u]; |
---|
381 | effNumExN[u] += numOneInsExsN[u]; |
---|
382 | pMM[u] /= effNumExP[u]; |
---|
383 | nMM[u] /= effNumExN[u]; |
---|
384 | pVM[u] = pVM[u]/(effNumExP[u]-1.0) - pMM[u]*pMM[u]*effNumExP[u]/(effNumExP[u]-1.0); |
---|
385 | nVM[u] = nVM[u]/(effNumExN[u]-1.0) - nMM[u]*nMM[u]*effNumExN[u]/(effNumExN[u]-1.0); |
---|
386 | } |
---|
387 | |
---|
388 | //Bounds and parameter values for each run |
---|
389 | double[][] bounds = new double[2][2]; |
---|
390 | double[] pThisParam = new double[2], |
---|
391 | nThisParam = new double[2]; |
---|
392 | |
---|
393 | // Initial values for parameters |
---|
394 | double w, m; |
---|
395 | Random whichEx = new Random(m_Seed); |
---|
396 | |
---|
397 | // Optimize for one dimension |
---|
398 | for (int x=0; x < m_Dimension; x++){ |
---|
399 | // System.out.println("\n\n!!!!!!!!!!!!!!!!!!!!!!???Dimension #"+x); |
---|
400 | |
---|
401 | // Positive examplars: first run |
---|
402 | pThisParam[0] = pVM[x]; // w |
---|
403 | if( pThisParam[0] <= ZERO) |
---|
404 | pThisParam[0] = 1.0; |
---|
405 | pThisParam[1] = pMM[x]; // m |
---|
406 | |
---|
407 | // Negative examplars: first run |
---|
408 | nThisParam[0] = nVM[x]; // w |
---|
409 | if(nThisParam[0] <= ZERO) |
---|
410 | nThisParam[0] = 1.0; |
---|
411 | nThisParam[1] = nMM[x]; // m |
---|
412 | |
---|
413 | // Bound constraints |
---|
414 | bounds[0][0] = ZERO; // w > 0 |
---|
415 | bounds[0][1] = Double.NaN; |
---|
416 | bounds[1][0] = Double.NaN; |
---|
417 | bounds[1][1] = Double.NaN; |
---|
418 | |
---|
419 | double pminVal=Double.MAX_VALUE, nminVal=Double.MAX_VALUE; |
---|
420 | TLDSimple_Optm pOp=null, nOp=null; |
---|
421 | boolean isRunValid = true; |
---|
422 | double[] sumP=new double[pnum], meanP=new double[pnum]; |
---|
423 | double[] sumN=new double[nnum], meanN=new double[nnum]; |
---|
424 | |
---|
425 | // One dimension |
---|
426 | for(int p=0; p<pnum; p++){ |
---|
427 | sumP[p] = m_SumP[p][x]; |
---|
428 | meanP[p] = m_MeanP[p][x]; |
---|
429 | } |
---|
430 | for(int q=0; q<nnum; q++){ |
---|
431 | sumN[q] = m_SumN[q][x]; |
---|
432 | meanN[q] = m_MeanN[q][x]; |
---|
433 | } |
---|
434 | |
---|
435 | for(int y=0; y<m_Run; y++){ |
---|
436 | //System.out.println("\n\n!!!!!!!!!Positive exemplars: Run #"+y); |
---|
437 | double thisMin; |
---|
438 | pOp = new TLDSimple_Optm(); |
---|
439 | pOp.setNum(sumP); |
---|
440 | pOp.setSgmSq(m_SgmSqP[x]); |
---|
441 | if (getDebug()) |
---|
442 | System.out.println("m_SgmSqP["+x+"]= " +m_SgmSqP[x]); |
---|
443 | pOp.setXBar(meanP); |
---|
444 | //pOp.setDebug(true); |
---|
445 | pThisParam = pOp.findArgmin(pThisParam, bounds); |
---|
446 | while(pThisParam==null){ |
---|
447 | pThisParam = pOp.getVarbValues(); |
---|
448 | if (getDebug()) |
---|
449 | System.out.println("!!! 200 iterations finished, not enough!"); |
---|
450 | pThisParam = pOp.findArgmin(pThisParam, bounds); |
---|
451 | } |
---|
452 | |
---|
453 | thisMin = pOp.getMinFunction(); |
---|
454 | if(!Double.isNaN(thisMin) && (thisMin<pminVal)){ |
---|
455 | pminVal = thisMin; |
---|
456 | for(int z=0; z<2; z++) |
---|
457 | m_ParamsP[2*x+z] = pThisParam[z]; |
---|
458 | } |
---|
459 | |
---|
460 | if(Double.isNaN(thisMin)){ |
---|
461 | pThisParam = new double[2]; |
---|
462 | isRunValid =false; |
---|
463 | } |
---|
464 | if(!isRunValid){ y--; isRunValid=true; } |
---|
465 | |
---|
466 | // Change the initial parameters and restart |
---|
467 | int pone = whichEx.nextInt(pnum); |
---|
468 | |
---|
469 | // Positive exemplars: next run |
---|
470 | while(Double.isNaN(m_MeanP[pone][x])) |
---|
471 | pone = whichEx.nextInt(pnum); |
---|
472 | |
---|
473 | m = m_MeanP[pone][x]; |
---|
474 | w = (m-pThisParam[1])*(m-pThisParam[1]); |
---|
475 | pThisParam[0] = w; // w |
---|
476 | pThisParam[1] = m; // m |
---|
477 | } |
---|
478 | |
---|
479 | for(int y=0; y<m_Run; y++){ |
---|
480 | //System.out.println("\n\n!!!!!!!!!Negative exemplars: Run #"+y); |
---|
481 | double thisMin; |
---|
482 | nOp = new TLDSimple_Optm(); |
---|
483 | nOp.setNum(sumN); |
---|
484 | nOp.setSgmSq(m_SgmSqN[x]); |
---|
485 | if (getDebug()) |
---|
486 | System.out.println(m_SgmSqN[x]); |
---|
487 | nOp.setXBar(meanN); |
---|
488 | //nOp.setDebug(true); |
---|
489 | nThisParam = nOp.findArgmin(nThisParam, bounds); |
---|
490 | |
---|
491 | while(nThisParam==null){ |
---|
492 | nThisParam = nOp.getVarbValues(); |
---|
493 | if (getDebug()) |
---|
494 | System.out.println("!!! 200 iterations finished, not enough!"); |
---|
495 | nThisParam = nOp.findArgmin(nThisParam, bounds); |
---|
496 | } |
---|
497 | |
---|
498 | thisMin = nOp.getMinFunction(); |
---|
499 | if(!Double.isNaN(thisMin) && (thisMin<nminVal)){ |
---|
500 | nminVal = thisMin; |
---|
501 | for(int z=0; z<2; z++) |
---|
502 | m_ParamsN[2*x+z] = nThisParam[z]; |
---|
503 | } |
---|
504 | |
---|
505 | if(Double.isNaN(thisMin)){ |
---|
506 | nThisParam = new double[2]; |
---|
507 | isRunValid =false; |
---|
508 | } |
---|
509 | |
---|
510 | if(!isRunValid){ y--; isRunValid=true; } |
---|
511 | |
---|
512 | // Change the initial parameters and restart |
---|
513 | int none = whichEx.nextInt(nnum);// Randomly pick one pos. exmpl. |
---|
514 | |
---|
515 | // Negative exemplars: next run |
---|
516 | while(Double.isNaN(m_MeanN[none][x])) |
---|
517 | none = whichEx.nextInt(nnum); |
---|
518 | |
---|
519 | m = m_MeanN[none][x]; |
---|
520 | w = (m-nThisParam[1])*(m-nThisParam[1]); |
---|
521 | nThisParam[0] = w; // w |
---|
522 | nThisParam[1] = m; // m |
---|
523 | } |
---|
524 | } |
---|
525 | |
---|
526 | m_LkRatio = new double[m_Dimension]; |
---|
527 | |
---|
528 | if(m_UseEmpiricalCutOff){ |
---|
529 | // Find the empirical cut-off |
---|
530 | double[] pLogOdds=new double[pnum], nLogOdds=new double[nnum]; |
---|
531 | for(int p=0; p<pnum; p++) |
---|
532 | pLogOdds[p] = |
---|
533 | likelihoodRatio(m_SumP[p], m_MeanP[p]); |
---|
534 | |
---|
535 | for(int q=0; q<nnum; q++) |
---|
536 | nLogOdds[q] = |
---|
537 | likelihoodRatio(m_SumN[q], m_MeanN[q]); |
---|
538 | |
---|
539 | // Update m_Cutoff |
---|
540 | findCutOff(pLogOdds, nLogOdds); |
---|
541 | } |
---|
542 | else |
---|
543 | m_Cutoff = -Math.log((double)pnum/(double)nnum); |
---|
544 | |
---|
545 | /* |
---|
546 | for(int x=0, y=0; x<m_Dimension; x++, y++){ |
---|
547 | if((x==exs.classIndex()) || (x==exs.idIndex())) |
---|
548 | y++; |
---|
549 | |
---|
550 | w=m_ParamsP[2*x]; m=m_ParamsP[2*x+1]; |
---|
551 | System.err.println("\n\n???Positive: ( "+exs.attribute(y)+ |
---|
552 | "): w="+w+", m="+m+", sgmSq="+m_SgmSqP[x]); |
---|
553 | |
---|
554 | w=m_ParamsN[2*x]; m=m_ParamsN[2*x+1]; |
---|
555 | System.err.println("???Negative: ("+exs.attribute(y)+ |
---|
556 | "): w="+w+", m="+m+", sgmSq="+m_SgmSqN[x]+ |
---|
557 | "\nAvg. log-likelihood ratio in training data=" |
---|
558 | +(m_LkRatio[x]/(pnum+nnum))); |
---|
559 | } |
---|
560 | */ |
---|
561 | if (getDebug()) |
---|
562 | System.err.println("\n\n???Cut-off="+m_Cutoff); |
---|
563 | } |
---|
564 | |
---|
565 | /** |
---|
566 | * |
---|
567 | * @param ex the given test exemplar |
---|
568 | * @return the classification |
---|
569 | * @throws Exception if the exemplar could not be classified |
---|
570 | * successfully |
---|
571 | */ |
---|
572 | public double classifyInstance(Instance ex)throws Exception{ |
---|
573 | //Instance ex = new Exemplar(e); |
---|
574 | Instances exi = ex.relationalValue(1); |
---|
575 | double[] n = new double[m_Dimension]; |
---|
576 | double [] xBar = new double[m_Dimension]; |
---|
577 | for (int i=0; i<exi.numAttributes() ; i++) |
---|
578 | xBar[i] = exi.meanOrMode(i); |
---|
579 | |
---|
580 | for (int w=0, t=0; w < m_Dimension; w++, t++){ |
---|
581 | // if((t==m_ClassIndex) || (t==m_IdIndex)) |
---|
582 | //t++; |
---|
583 | for(int u=0;u<exi.numInstances();u++) |
---|
584 | if(!exi.instance(u).isMissing(t)) |
---|
585 | n[w] += exi.instance(u).weight(); |
---|
586 | } |
---|
587 | |
---|
588 | double logOdds = likelihoodRatio(n, xBar); |
---|
589 | return (logOdds > m_Cutoff) ? 1 : 0 ; |
---|
590 | } |
---|
591 | |
---|
592 | /** |
---|
593 | * Computes the distribution for a given exemplar |
---|
594 | * |
---|
595 | * @param ex the exemplar for which distribution is computed |
---|
596 | * @return the distribution |
---|
597 | * @throws Exception if the distribution can't be computed successfully |
---|
598 | */ |
---|
599 | public double[] distributionForInstance(Instance ex) throws Exception { |
---|
600 | |
---|
601 | double[] distribution = new double[2]; |
---|
602 | Instances exi = ex.relationalValue(1); |
---|
603 | double[] n = new double[m_Dimension]; |
---|
604 | double[] xBar = new double[m_Dimension]; |
---|
605 | for (int i = 0; i < exi.numAttributes() ; i++) |
---|
606 | xBar[i] = exi.meanOrMode(i); |
---|
607 | |
---|
608 | for (int w = 0, t = 0; w < m_Dimension; w++, t++){ |
---|
609 | for (int u = 0; u < exi.numInstances(); u++) |
---|
610 | if (!exi.instance(u).isMissing(t)) |
---|
611 | n[w] += exi.instance(u).weight(); |
---|
612 | } |
---|
613 | |
---|
614 | double logOdds = likelihoodRatio(n, xBar); |
---|
615 | |
---|
616 | // returned logOdds value has been divided by m_Dimension to avoid |
---|
617 | // Math.exp(logOdds) getting too large or too small, |
---|
618 | // that may result in two fixed distribution value (1 or 0). |
---|
619 | distribution[0] = 1 / (1 + Math.exp(logOdds)); // Prob. for class 0 (negative) |
---|
620 | distribution[1] = 1 - distribution[0]; |
---|
621 | |
---|
622 | return distribution; |
---|
623 | } |
---|
624 | |
---|
625 | /** |
---|
626 | * Compute the log-likelihood ratio |
---|
627 | */ |
---|
628 | private double likelihoodRatio(double[] n, double[] xBar){ |
---|
629 | double LLP = 0.0, LLN = 0.0; |
---|
630 | |
---|
631 | for (int x=0; x<m_Dimension; x++){ |
---|
632 | if(Double.isNaN(xBar[x])) continue; // All missing values |
---|
633 | //if(Double.isNaN(xBar[x]) || (m_ParamsP[2*x] <= ZERO) |
---|
634 | // || (m_ParamsN[2*x]<=ZERO)) |
---|
635 | // continue; // All missing values |
---|
636 | |
---|
637 | //Log-likelihood for positive |
---|
638 | double w=m_ParamsP[2*x], m=m_ParamsP[2*x+1]; |
---|
639 | double llp = Math.log(w*n[x]+m_SgmSqP[x]) |
---|
640 | + n[x]*(m-xBar[x])*(m-xBar[x])/(w*n[x]+m_SgmSqP[x]); |
---|
641 | LLP -= llp; |
---|
642 | |
---|
643 | //Log-likelihood for negative |
---|
644 | w=m_ParamsN[2*x]; m=m_ParamsN[2*x+1]; |
---|
645 | double lln = Math.log(w*n[x]+m_SgmSqN[x]) |
---|
646 | + n[x]*(m-xBar[x])*(m-xBar[x])/(w*n[x]+m_SgmSqN[x]); |
---|
647 | LLN -= lln; |
---|
648 | |
---|
649 | m_LkRatio[x] += llp - lln; |
---|
650 | } |
---|
651 | |
---|
652 | return LLP - LLN / m_Dimension; |
---|
653 | } |
---|
654 | |
---|
655 | private void findCutOff(double[] pos, double[] neg){ |
---|
656 | int[] pOrder = Utils.sort(pos), |
---|
657 | nOrder = Utils.sort(neg); |
---|
658 | /* |
---|
659 | System.err.println("\n\n???Positive: "); |
---|
660 | for(int t=0; t<pOrder.length; t++) |
---|
661 | System.err.print(t+":"+Utils.doubleToString(pos[pOrder[t]],0,2)+" "); |
---|
662 | System.err.println("\n\n???Negative: "); |
---|
663 | for(int t=0; t<nOrder.length; t++) |
---|
664 | System.err.print(t+":"+Utils.doubleToString(neg[nOrder[t]],0,2)+" "); |
---|
665 | */ |
---|
666 | int pNum = pos.length, nNum = neg.length, count, p=0, n=0; |
---|
667 | double fstAccu=0.0, sndAccu=(double)pNum, split; |
---|
668 | double maxAccu = 0, minDistTo0 = Double.MAX_VALUE; |
---|
669 | |
---|
670 | // Skip continuous negatives |
---|
671 | for(;(n<nNum)&&(pos[pOrder[0]]>=neg[nOrder[n]]); n++, fstAccu++); |
---|
672 | |
---|
673 | if(n>=nNum){ // totally seperate |
---|
674 | m_Cutoff = (neg[nOrder[nNum-1]]+pos[pOrder[0]])/2.0; |
---|
675 | //m_Cutoff = neg[nOrder[nNum-1]]; |
---|
676 | return; |
---|
677 | } |
---|
678 | |
---|
679 | count=n; |
---|
680 | while((p<pNum)&&(n<nNum)){ |
---|
681 | // Compare the next in the two lists |
---|
682 | if(pos[pOrder[p]]>=neg[nOrder[n]]){ // Neg has less log-odds |
---|
683 | fstAccu += 1.0; |
---|
684 | split=neg[nOrder[n]]; |
---|
685 | n++; |
---|
686 | } |
---|
687 | else{ |
---|
688 | sndAccu -= 1.0; |
---|
689 | split=pos[pOrder[p]]; |
---|
690 | p++; |
---|
691 | } |
---|
692 | count++; |
---|
693 | /* |
---|
694 | double entropy=0.0, cover=(double)count; |
---|
695 | if(fstAccu>0.0) |
---|
696 | entropy -= fstAccu*Math.log(fstAccu/cover); |
---|
697 | if(sndAccu>0.0) |
---|
698 | entropy -= sndAccu*Math.log(sndAccu/(total-cover)); |
---|
699 | |
---|
700 | if(entropy < minEntropy){ |
---|
701 | minEntropy = entropy; |
---|
702 | //find the next smallest |
---|
703 | //double next = neg[nOrder[n]]; |
---|
704 | //if(pos[pOrder[p]]<neg[nOrder[n]]) |
---|
705 | // next = pos[pOrder[p]]; |
---|
706 | //m_Cutoff = (split+next)/2.0; |
---|
707 | m_Cutoff = split; |
---|
708 | } |
---|
709 | */ |
---|
710 | if ((fstAccu+sndAccu > maxAccu) || |
---|
711 | ((fstAccu+sndAccu == maxAccu) && (Math.abs(split)<minDistTo0))){ |
---|
712 | maxAccu = fstAccu+sndAccu; |
---|
713 | m_Cutoff = split; |
---|
714 | minDistTo0 = Math.abs(split); |
---|
715 | } |
---|
716 | } |
---|
717 | } |
---|
718 | |
---|
719 | /** |
---|
720 | * Returns an enumeration describing the available options |
---|
721 | * |
---|
722 | * @return an enumeration of all the available options |
---|
723 | */ |
---|
724 | public Enumeration listOptions() { |
---|
725 | Vector result = new Vector(); |
---|
726 | |
---|
727 | result.addElement(new Option( |
---|
728 | "\tSet whether or not use empirical\n" |
---|
729 | + "\tlog-odds cut-off instead of 0", |
---|
730 | "C", 0, "-C")); |
---|
731 | |
---|
732 | result.addElement(new Option( |
---|
733 | "\tSet the number of multiple runs \n" |
---|
734 | + "\tneeded for searching the MLE.", |
---|
735 | "R", 1, "-R <numOfRuns>")); |
---|
736 | |
---|
737 | Enumeration enu = super.listOptions(); |
---|
738 | while (enu.hasMoreElements()) { |
---|
739 | result.addElement(enu.nextElement()); |
---|
740 | } |
---|
741 | |
---|
742 | return result.elements(); |
---|
743 | } |
---|
744 | |
---|
745 | /** |
---|
746 | * Parses a given list of options. <p/> |
---|
747 | * |
---|
748 | <!-- options-start --> |
---|
749 | * Valid options are: <p/> |
---|
750 | * |
---|
751 | * <pre> -C |
---|
752 | * Set whether or not use empirical |
---|
753 | * log-odds cut-off instead of 0</pre> |
---|
754 | * |
---|
755 | * <pre> -R <numOfRuns> |
---|
756 | * Set the number of multiple runs |
---|
757 | * needed for searching the MLE.</pre> |
---|
758 | * |
---|
759 | * <pre> -S <num> |
---|
760 | * Random number seed. |
---|
761 | * (default 1)</pre> |
---|
762 | * |
---|
763 | * <pre> -D |
---|
764 | * If set, classifier is run in debug mode and |
---|
765 | * may output additional info to the console</pre> |
---|
766 | * |
---|
767 | <!-- options-end --> |
---|
768 | * |
---|
769 | * @param options the list of options as an array of strings |
---|
770 | * @throws Exception if an option is not supported |
---|
771 | */ |
---|
772 | public void setOptions(String[] options) throws Exception{ |
---|
773 | setDebug(Utils.getFlag('D', options)); |
---|
774 | |
---|
775 | setUsingCutOff(Utils.getFlag('C', options)); |
---|
776 | |
---|
777 | String runString = Utils.getOption('R', options); |
---|
778 | if (runString.length() != 0) |
---|
779 | setNumRuns(Integer.parseInt(runString)); |
---|
780 | else |
---|
781 | setNumRuns(1); |
---|
782 | |
---|
783 | super.setOptions(options); |
---|
784 | } |
---|
785 | |
---|
786 | /** |
---|
787 | * Gets the current settings of the Classifier. |
---|
788 | * |
---|
789 | * @return an array of strings suitable for passing to setOptions |
---|
790 | */ |
---|
791 | public String[] getOptions() { |
---|
792 | Vector result; |
---|
793 | String[] options; |
---|
794 | int i; |
---|
795 | |
---|
796 | result = new Vector(); |
---|
797 | options = super.getOptions(); |
---|
798 | for (i = 0; i < options.length; i++) |
---|
799 | result.add(options[i]); |
---|
800 | |
---|
801 | if (getDebug()) |
---|
802 | result.add("-D"); |
---|
803 | |
---|
804 | if (getUsingCutOff()) |
---|
805 | result.add("-C"); |
---|
806 | |
---|
807 | result.add("-R"); |
---|
808 | result.add("" + getNumRuns()); |
---|
809 | |
---|
810 | return (String[]) result.toArray(new String[result.size()]); |
---|
811 | } |
---|
812 | |
---|
813 | /** |
---|
814 | * Returns the tip text for this property |
---|
815 | * |
---|
816 | * @return tip text for this property suitable for |
---|
817 | * displaying in the explorer/experimenter gui |
---|
818 | */ |
---|
819 | public String numRunsTipText() { |
---|
820 | return "The number of runs to perform."; |
---|
821 | } |
---|
822 | |
---|
823 | /** |
---|
824 | * Sets the number of runs to perform. |
---|
825 | * |
---|
826 | * @param numRuns the number of runs to perform |
---|
827 | */ |
---|
828 | public void setNumRuns(int numRuns) { |
---|
829 | m_Run = numRuns; |
---|
830 | } |
---|
831 | |
---|
832 | /** |
---|
833 | * Returns the number of runs to perform. |
---|
834 | * |
---|
835 | * @return the number of runs to perform |
---|
836 | */ |
---|
837 | public int getNumRuns() { |
---|
838 | return m_Run; |
---|
839 | } |
---|
840 | |
---|
841 | /** |
---|
842 | * Returns the tip text for this property |
---|
843 | * |
---|
844 | * @return tip text for this property suitable for |
---|
845 | * displaying in the explorer/experimenter gui |
---|
846 | */ |
---|
847 | public String usingCutOffTipText() { |
---|
848 | return "Whether to use an empirical cutoff."; |
---|
849 | } |
---|
850 | |
---|
851 | /** |
---|
852 | * Sets whether to use an empirical cutoff. |
---|
853 | * |
---|
854 | * @param cutOff whether to use an empirical cutoff |
---|
855 | */ |
---|
856 | public void setUsingCutOff (boolean cutOff) { |
---|
857 | m_UseEmpiricalCutOff =cutOff; |
---|
858 | } |
---|
859 | |
---|
860 | /** |
---|
861 | * Returns whether an empirical cutoff is used |
---|
862 | * |
---|
863 | * @return true if an empirical cutoff is used |
---|
864 | */ |
---|
865 | public boolean getUsingCutOff() { |
---|
866 | return m_UseEmpiricalCutOff ; |
---|
867 | } |
---|
868 | |
---|
869 | /** |
---|
870 | * Gets a string describing the classifier. |
---|
871 | * |
---|
872 | * @return a string describing the classifer built. |
---|
873 | */ |
---|
874 | public String toString(){ |
---|
875 | StringBuffer text = new StringBuffer("\n\nTLDSimple:\n"); |
---|
876 | double sgm, w, m; |
---|
877 | for (int x=0, y=0; x<m_Dimension; x++, y++){ |
---|
878 | // if((x==m_ClassIndex) || (x==m_IdIndex)) |
---|
879 | //y++; |
---|
880 | sgm = m_SgmSqP[x]; |
---|
881 | w=m_ParamsP[2*x]; |
---|
882 | m=m_ParamsP[2*x+1]; |
---|
883 | text.append("\n"+m_Attribute.attribute(y).name()+"\nPositive: "+ |
---|
884 | "sigma^2="+sgm+", w="+w+", m="+m+"\n"); |
---|
885 | sgm = m_SgmSqN[x]; |
---|
886 | w=m_ParamsN[2*x]; |
---|
887 | m=m_ParamsN[2*x+1]; |
---|
888 | text.append("Negative: "+ |
---|
889 | "sigma^2="+sgm+", w="+w+", m="+m+"\n"); |
---|
890 | } |
---|
891 | |
---|
892 | return text.toString(); |
---|
893 | } |
---|
894 | |
---|
895 | /** |
---|
896 | * Returns the revision string. |
---|
897 | * |
---|
898 | * @return the revision |
---|
899 | */ |
---|
900 | public String getRevision() { |
---|
901 | return RevisionUtils.extract("$Revision: 5481 $"); |
---|
902 | } |
---|
903 | |
---|
904 | /** |
---|
905 | * Main method for testing. |
---|
906 | * |
---|
907 | * @param args the options for the classifier |
---|
908 | */ |
---|
909 | public static void main(String[] args) { |
---|
910 | runClassifier(new TLDSimple(), args); |
---|
911 | } |
---|
912 | } |
---|
913 | |
---|
914 | class TLDSimple_Optm extends Optimization { |
---|
915 | |
---|
916 | private double[] num; |
---|
917 | private double sSq; |
---|
918 | private double[] xBar; |
---|
919 | |
---|
920 | public void setNum(double[] n) {num = n;} |
---|
921 | public void setSgmSq(double s){ |
---|
922 | |
---|
923 | sSq = s; |
---|
924 | } |
---|
925 | public void setXBar(double[] x){xBar = x;} |
---|
926 | |
---|
927 | /** |
---|
928 | * Implement this procedure to evaluate objective |
---|
929 | * function to be minimized |
---|
930 | */ |
---|
931 | protected double objectiveFunction(double[] x){ |
---|
932 | int numExs = num.length; |
---|
933 | double NLL=0; // Negative Log-Likelihood |
---|
934 | |
---|
935 | double w=x[0], m=x[1]; |
---|
936 | for(int j=0; j < numExs; j++){ |
---|
937 | |
---|
938 | if(Double.isNaN(xBar[j])) continue; // All missing values |
---|
939 | double bag=0; |
---|
940 | |
---|
941 | bag += Math.log(w*num[j]+sSq); |
---|
942 | |
---|
943 | if(Double.isNaN(bag) && m_Debug){ |
---|
944 | System.out.println("???????????1: "+w+" "+m |
---|
945 | +"|x-: "+xBar[j] + |
---|
946 | "|n: "+num[j] + "|S^2: "+sSq); |
---|
947 | //System.exit(1); |
---|
948 | } |
---|
949 | |
---|
950 | bag += num[j]*(m-xBar[j])*(m-xBar[j])/(w*num[j]+sSq); |
---|
951 | if(Double.isNaN(bag) && m_Debug){ |
---|
952 | System.out.println("???????????2: "+w+" "+m |
---|
953 | +"|x-: "+xBar[j] + |
---|
954 | "|n: "+num[j] + "|S^2: "+sSq); |
---|
955 | //System.exit(1); |
---|
956 | } |
---|
957 | |
---|
958 | //if(bag<0) bag=0; |
---|
959 | NLL += bag; |
---|
960 | } |
---|
961 | |
---|
962 | //System.out.println("???????????NLL:"+NLL); |
---|
963 | return NLL; |
---|
964 | } |
---|
965 | |
---|
966 | /** |
---|
967 | * Subclass should implement this procedure to evaluate gradient |
---|
968 | * of the objective function |
---|
969 | */ |
---|
970 | protected double[] evaluateGradient(double[] x){ |
---|
971 | double[] g = new double[x.length]; |
---|
972 | int numExs = num.length; |
---|
973 | |
---|
974 | double w=x[0],m=x[1]; |
---|
975 | double dw=0.0, dm=0.0; |
---|
976 | |
---|
977 | for(int j=0; j < numExs; j++){ |
---|
978 | |
---|
979 | if(Double.isNaN(xBar[j])) continue; // All missing values |
---|
980 | dw += num[j]/(w*num[j]+sSq) |
---|
981 | - num[j]*num[j]*(m-xBar[j])*(m-xBar[j])/((w*num[j]+sSq)*(w*num[j]+sSq)); |
---|
982 | |
---|
983 | dm += 2.0*num[j]*(m-xBar[j])/(w*num[j]+sSq); |
---|
984 | } |
---|
985 | |
---|
986 | g[0] = dw; |
---|
987 | g[1] = dm; |
---|
988 | return g; |
---|
989 | } |
---|
990 | |
---|
991 | /** |
---|
992 | * Subclass should implement this procedure to evaluate second-order |
---|
993 | * gradient of the objective function |
---|
994 | */ |
---|
995 | protected double[] evaluateHessian(double[] x, int index){ |
---|
996 | double[] h = new double[x.length]; |
---|
997 | |
---|
998 | // # of exemplars, # of dimensions |
---|
999 | // which dimension and which variable for 'index' |
---|
1000 | int numExs = num.length; |
---|
1001 | double w,m; |
---|
1002 | // Take the 2nd-order derivative |
---|
1003 | switch(index){ |
---|
1004 | case 0: // w |
---|
1005 | w=x[0];m=x[1]; |
---|
1006 | |
---|
1007 | for(int j=0; j < numExs; j++){ |
---|
1008 | if(Double.isNaN(xBar[j])) continue; //All missing values |
---|
1009 | |
---|
1010 | h[0] += 2.0*Math.pow(num[j],3)*(m-xBar[j])*(m-xBar[j])/Math.pow(w*num[j]+sSq,3) |
---|
1011 | - num[j]*num[j]/((w*num[j]+sSq)*(w*num[j]+sSq)); |
---|
1012 | |
---|
1013 | h[1] -= 2.0*(m-xBar[j])*num[j]*num[j]/((num[j]*w+sSq)*(num[j]*w+sSq)); |
---|
1014 | } |
---|
1015 | break; |
---|
1016 | |
---|
1017 | case 1: // m |
---|
1018 | w=x[0];m=x[1]; |
---|
1019 | |
---|
1020 | for(int j=0; j < numExs; j++){ |
---|
1021 | if(Double.isNaN(xBar[j])) continue; //All missing values |
---|
1022 | |
---|
1023 | h[0] -= 2.0*(m-xBar[j])*num[j]*num[j]/((num[j]*w+sSq)*(num[j]*w+sSq)); |
---|
1024 | |
---|
1025 | h[1] += 2.0*num[j]/(w*num[j]+sSq); |
---|
1026 | } |
---|
1027 | } |
---|
1028 | |
---|
1029 | return h; |
---|
1030 | } |
---|
1031 | |
---|
1032 | /** |
---|
1033 | * Returns the revision string. |
---|
1034 | * |
---|
1035 | * @return the revision |
---|
1036 | */ |
---|
1037 | public String getRevision() { |
---|
1038 | return RevisionUtils.extract("$Revision: 5481 $"); |
---|
1039 | } |
---|
1040 | } |
---|