1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * SimpleMI.java |
---|
19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.classifiers.mi; |
---|
23 | |
---|
24 | import weka.classifiers.SingleClassifierEnhancer; |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.DenseInstance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
31 | import weka.core.Option; |
---|
32 | import weka.core.OptionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.SelectedTag; |
---|
35 | import weka.core.Tag; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.Capabilities.Capability; |
---|
38 | |
---|
39 | import java.util.Enumeration; |
---|
40 | import java.util.Vector; |
---|
41 | |
---|
42 | /** |
---|
43 | <!-- globalinfo-start --> |
---|
44 | * Reduces MI data into mono-instance data. |
---|
45 | * <p/> |
---|
46 | <!-- globalinfo-end --> |
---|
47 | * |
---|
48 | <!-- options-start --> |
---|
49 | * Valid options are: <p/> |
---|
50 | * |
---|
51 | * <pre> -M [1|2|3] |
---|
52 | * The method used in transformation: |
---|
53 | * 1.arithmatic average; 2.geometric centor; |
---|
54 | * 3.using minimax combined features of a bag (default: 1) |
---|
55 | * |
---|
56 | * Method 3: |
---|
57 | * Define s to be the vector of the coordinate-wise maxima |
---|
58 | * and minima of X, ie., |
---|
59 | * s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform |
---|
60 | * the exemplars into mono-instance which contains attributes |
---|
61 | * s(X)</pre> |
---|
62 | * |
---|
63 | * <pre> -D |
---|
64 | * If set, classifier is run in debug mode and |
---|
65 | * may output additional info to the console</pre> |
---|
66 | * |
---|
67 | * <pre> -W |
---|
68 | * Full name of base classifier. |
---|
69 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
70 | * |
---|
71 | * <pre> |
---|
72 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
73 | * </pre> |
---|
74 | * |
---|
75 | * <pre> -D |
---|
76 | * If set, classifier is run in debug mode and |
---|
77 | * may output additional info to the console</pre> |
---|
78 | * |
---|
79 | <!-- options-end --> |
---|
80 | * |
---|
81 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
82 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
83 | * @author Lin Dong (ld21@cs.waikato.ac.nz) |
---|
84 | * @version $Revision: 5987 $ |
---|
85 | */ |
---|
86 | public class SimpleMI |
---|
87 | extends SingleClassifierEnhancer |
---|
88 | implements OptionHandler, MultiInstanceCapabilitiesHandler { |
---|
89 | |
---|
90 | /** for serialization */ |
---|
91 | static final long serialVersionUID = 9137795893666592662L; |
---|
92 | |
---|
93 | /** arithmetic average */ |
---|
94 | public static final int TRANSFORMMETHOD_ARITHMETIC = 1; |
---|
95 | /** geometric average */ |
---|
96 | public static final int TRANSFORMMETHOD_GEOMETRIC = 2; |
---|
97 | /** using minimax combined features of a bag */ |
---|
98 | public static final int TRANSFORMMETHOD_MINIMAX = 3; |
---|
99 | /** the transformation methods */ |
---|
100 | public static final Tag[] TAGS_TRANSFORMMETHOD = { |
---|
101 | new Tag(TRANSFORMMETHOD_ARITHMETIC, "arithmetic average"), |
---|
102 | new Tag(TRANSFORMMETHOD_GEOMETRIC, "geometric average"), |
---|
103 | new Tag(TRANSFORMMETHOD_MINIMAX, "using minimax combined features of a bag") |
---|
104 | }; |
---|
105 | |
---|
106 | /** the method used in transformation */ |
---|
107 | protected int m_TransformMethod = TRANSFORMMETHOD_ARITHMETIC; |
---|
108 | |
---|
109 | /** |
---|
110 | * Returns a string describing this filter |
---|
111 | * |
---|
112 | * @return a description of the filter suitable for |
---|
113 | * displaying in the explorer/experimenter gui |
---|
114 | */ |
---|
115 | public String globalInfo() { |
---|
116 | return "Reduces MI data into mono-instance data."; |
---|
117 | } |
---|
118 | |
---|
119 | /** |
---|
120 | * Returns an enumeration describing the available options. |
---|
121 | * |
---|
122 | * @return an enumeration of all the available options. |
---|
123 | */ |
---|
124 | public Enumeration listOptions() { |
---|
125 | Vector result = new Vector(); |
---|
126 | |
---|
127 | result.addElement(new Option( |
---|
128 | "\tThe method used in transformation:\n" |
---|
129 | + "\t1.arithmatic average; 2.geometric centor;\n" |
---|
130 | + "\t3.using minimax combined features of a bag (default: 1)\n\n" |
---|
131 | + "\tMethod 3:\n" |
---|
132 | + "\tDefine s to be the vector of the coordinate-wise maxima\n" |
---|
133 | + "\tand minima of X, ie., \n" |
---|
134 | + "\ts(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform\n" |
---|
135 | + "\tthe exemplars into mono-instance which contains attributes\n" |
---|
136 | + "\ts(X)", |
---|
137 | "M", 1, "-M [1|2|3]")); |
---|
138 | |
---|
139 | Enumeration enu = super.listOptions(); |
---|
140 | while (enu.hasMoreElements()) { |
---|
141 | result.addElement(enu.nextElement()); |
---|
142 | } |
---|
143 | |
---|
144 | return result.elements(); |
---|
145 | } |
---|
146 | |
---|
147 | |
---|
148 | /** |
---|
149 | * Parses a given list of options. <p/> |
---|
150 | * |
---|
151 | <!-- options-start --> |
---|
152 | * Valid options are: <p/> |
---|
153 | * |
---|
154 | * <pre> -M [1|2|3] |
---|
155 | * The method used in transformation: |
---|
156 | * 1.arithmatic average; 2.geometric centor; |
---|
157 | * 3.using minimax combined features of a bag (default: 1) |
---|
158 | * |
---|
159 | * Method 3: |
---|
160 | * Define s to be the vector of the coordinate-wise maxima |
---|
161 | * and minima of X, ie., |
---|
162 | * s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform |
---|
163 | * the exemplars into mono-instance which contains attributes |
---|
164 | * s(X)</pre> |
---|
165 | * |
---|
166 | * <pre> -D |
---|
167 | * If set, classifier is run in debug mode and |
---|
168 | * may output additional info to the console</pre> |
---|
169 | * |
---|
170 | * <pre> -W |
---|
171 | * Full name of base classifier. |
---|
172 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
173 | * |
---|
174 | * <pre> |
---|
175 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
176 | * </pre> |
---|
177 | * |
---|
178 | * <pre> -D |
---|
179 | * If set, classifier is run in debug mode and |
---|
180 | * may output additional info to the console</pre> |
---|
181 | * |
---|
182 | <!-- options-end --> |
---|
183 | * |
---|
184 | * @param options the list of options as an array of strings |
---|
185 | * @throws Exception if an option is not supported |
---|
186 | */ |
---|
187 | public void setOptions(String[] options) throws Exception { |
---|
188 | |
---|
189 | setDebug(Utils.getFlag('D', options)); |
---|
190 | |
---|
191 | String methodString = Utils.getOption('M', options); |
---|
192 | if (methodString.length() != 0) { |
---|
193 | setTransformMethod( |
---|
194 | new SelectedTag( |
---|
195 | Integer.parseInt(methodString), TAGS_TRANSFORMMETHOD)); |
---|
196 | } else { |
---|
197 | setTransformMethod( |
---|
198 | new SelectedTag( |
---|
199 | TRANSFORMMETHOD_ARITHMETIC, TAGS_TRANSFORMMETHOD)); |
---|
200 | } |
---|
201 | |
---|
202 | super.setOptions(options); |
---|
203 | } |
---|
204 | |
---|
205 | /** |
---|
206 | * Gets the current settings of the Classifier. |
---|
207 | * |
---|
208 | * @return an array of strings suitable for passing to setOptions |
---|
209 | */ |
---|
210 | public String[] getOptions() { |
---|
211 | Vector result; |
---|
212 | String[] options; |
---|
213 | int i; |
---|
214 | |
---|
215 | result = new Vector(); |
---|
216 | |
---|
217 | result.add("-M"); |
---|
218 | result.add("" + m_TransformMethod); |
---|
219 | |
---|
220 | options = super.getOptions(); |
---|
221 | for (i = 0; i < options.length; i++) |
---|
222 | result.add(options[i]); |
---|
223 | |
---|
224 | return (String[]) result.toArray(new String[result.size()]); |
---|
225 | } |
---|
226 | |
---|
227 | /** |
---|
228 | * Returns the tip text for this property |
---|
229 | * |
---|
230 | * @return tip text for this property suitable for |
---|
231 | * displaying in the explorer/experimenter gui |
---|
232 | */ |
---|
233 | public String transformMethodTipText() { |
---|
234 | return "The method used in transformation."; |
---|
235 | } |
---|
236 | |
---|
237 | /** |
---|
238 | * Set the method used in transformation. |
---|
239 | * |
---|
240 | * @param newMethod the index of method to use. |
---|
241 | */ |
---|
242 | public void setTransformMethod(SelectedTag newMethod) { |
---|
243 | if (newMethod.getTags() == TAGS_TRANSFORMMETHOD) |
---|
244 | m_TransformMethod = newMethod.getSelectedTag().getID(); |
---|
245 | } |
---|
246 | |
---|
247 | /** |
---|
248 | * Get the method used in transformation. |
---|
249 | * |
---|
250 | * @return the index of method used. |
---|
251 | */ |
---|
252 | public SelectedTag getTransformMethod() { |
---|
253 | return new SelectedTag(m_TransformMethod, TAGS_TRANSFORMMETHOD); |
---|
254 | } |
---|
255 | |
---|
256 | /** |
---|
257 | * Implements MITransform (3 type of transformation) 1.arithmatic average; |
---|
258 | * 2.geometric centor; 3.merge minima and maxima attribute value together |
---|
259 | * |
---|
260 | * @param train the multi-instance dataset (with relational attribute) |
---|
261 | * @return the transformed dataset with each bag contain mono-instance |
---|
262 | * (without relational attribute) so that any classifier not for MI dataset |
---|
263 | * can be applied on it. |
---|
264 | * @throws Exception if the transformation fails |
---|
265 | */ |
---|
266 | public Instances transform(Instances train) throws Exception{ |
---|
267 | |
---|
268 | Attribute classAttribute = (Attribute) train.classAttribute().copy(); |
---|
269 | Attribute bagLabel = (Attribute) train.attribute(0); |
---|
270 | double labelValue; |
---|
271 | |
---|
272 | Instances newData = train.attribute(1).relation().stringFreeStructure(); |
---|
273 | |
---|
274 | //insert a bag label attribute at the begining |
---|
275 | newData.insertAttributeAt(bagLabel, 0); |
---|
276 | |
---|
277 | //insert a class attribute at the end |
---|
278 | newData.insertAttributeAt(classAttribute, newData.numAttributes()); |
---|
279 | newData.setClassIndex(newData.numAttributes()-1); |
---|
280 | |
---|
281 | Instances mini_data = newData.stringFreeStructure(); |
---|
282 | Instances max_data = newData.stringFreeStructure(); |
---|
283 | |
---|
284 | Instance newInst = new DenseInstance(newData.numAttributes()); |
---|
285 | Instance mini_Inst = new DenseInstance(mini_data.numAttributes()); |
---|
286 | Instance max_Inst = new DenseInstance(max_data.numAttributes()); |
---|
287 | newInst.setDataset(newData); |
---|
288 | mini_Inst.setDataset(mini_data); |
---|
289 | max_Inst.setDataset(max_data); |
---|
290 | |
---|
291 | double N= train.numInstances( );//number of bags |
---|
292 | for(int i=0; i<N; i++){ |
---|
293 | int attIdx =1; |
---|
294 | Instance bag = train.instance(i); //retrieve the bag instance |
---|
295 | labelValue= bag.value(0); |
---|
296 | if (m_TransformMethod != TRANSFORMMETHOD_MINIMAX) |
---|
297 | newInst.setValue(0, labelValue); |
---|
298 | else { |
---|
299 | mini_Inst.setValue(0, labelValue); |
---|
300 | max_Inst.setValue(0, labelValue); |
---|
301 | } |
---|
302 | |
---|
303 | Instances data = bag.relationalValue(1); // retrieve relational value for each bag |
---|
304 | for(int j=0; j<data.numAttributes( ); j++){ |
---|
305 | double value; |
---|
306 | if(m_TransformMethod == TRANSFORMMETHOD_ARITHMETIC){ |
---|
307 | value = data.meanOrMode(j); |
---|
308 | newInst.setValue(attIdx++, value); |
---|
309 | } |
---|
310 | else if (m_TransformMethod == TRANSFORMMETHOD_GEOMETRIC){ |
---|
311 | double[] minimax = minimax(data, j); |
---|
312 | value = (minimax[0]+minimax[1])/2.0; |
---|
313 | newInst.setValue(attIdx++, value); |
---|
314 | } |
---|
315 | else { //m_TransformMethod == TRANSFORMMETHOD_MINIMAX |
---|
316 | double[] minimax = minimax(data, j); |
---|
317 | mini_Inst.setValue(attIdx, minimax[0]);//minima value |
---|
318 | max_Inst.setValue(attIdx, minimax[1]);//maxima value |
---|
319 | attIdx++; |
---|
320 | } |
---|
321 | } |
---|
322 | |
---|
323 | if (m_TransformMethod == TRANSFORMMETHOD_MINIMAX) { |
---|
324 | if (!bag.classIsMissing()) |
---|
325 | max_Inst.setClassValue(bag.classValue()); //set class value |
---|
326 | mini_data.add(mini_Inst); |
---|
327 | max_data.add(max_Inst); |
---|
328 | } |
---|
329 | else{ |
---|
330 | if (!bag.classIsMissing()) |
---|
331 | newInst.setClassValue(bag.classValue()); //set class value |
---|
332 | newData.add(newInst); |
---|
333 | } |
---|
334 | } |
---|
335 | |
---|
336 | if (m_TransformMethod == TRANSFORMMETHOD_MINIMAX) { |
---|
337 | mini_data.setClassIndex(-1); |
---|
338 | mini_data.deleteAttributeAt(mini_data.numAttributes()-1); //delete class attribute for the minima data |
---|
339 | max_data.deleteAttributeAt(0); // delete the bag label attribute for the maxima data |
---|
340 | |
---|
341 | newData = Instances.mergeInstances(mini_data, max_data); //merge minima and maxima data |
---|
342 | newData.setClassIndex(newData.numAttributes()-1); |
---|
343 | |
---|
344 | } |
---|
345 | |
---|
346 | return newData; |
---|
347 | } |
---|
348 | |
---|
349 | /** |
---|
350 | * Get the minimal and maximal value of a certain attribute in a certain data |
---|
351 | * |
---|
352 | * @param data the data |
---|
353 | * @param attIndex the index of the attribute |
---|
354 | * @return the double array containing in entry 0 for min and 1 for max. |
---|
355 | */ |
---|
356 | public static double[] minimax(Instances data, int attIndex){ |
---|
357 | double[] rt = {Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY}; |
---|
358 | for(int i=0; i<data.numInstances(); i++){ |
---|
359 | double val = data.instance(i).value(attIndex); |
---|
360 | if(val > rt[1]) |
---|
361 | rt[1] = val; |
---|
362 | if(val < rt[0]) |
---|
363 | rt[0] = val; |
---|
364 | } |
---|
365 | |
---|
366 | for(int j=0; j<2; j++) |
---|
367 | if(Double.isInfinite(rt[j])) |
---|
368 | rt[j] = Double.NaN; |
---|
369 | |
---|
370 | return rt; |
---|
371 | } |
---|
372 | |
---|
373 | /** |
---|
374 | * Returns default capabilities of the classifier. |
---|
375 | * |
---|
376 | * @return the capabilities of this classifier |
---|
377 | */ |
---|
378 | public Capabilities getCapabilities() { |
---|
379 | Capabilities result = super.getCapabilities(); |
---|
380 | |
---|
381 | // attributes |
---|
382 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
383 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
384 | result.enable(Capability.MISSING_VALUES); |
---|
385 | |
---|
386 | // class |
---|
387 | result.disableAllClasses(); |
---|
388 | result.disableAllClassDependencies(); |
---|
389 | if (super.getCapabilities().handles(Capability.NOMINAL_CLASS)) |
---|
390 | result.enable(Capability.NOMINAL_CLASS); |
---|
391 | if (super.getCapabilities().handles(Capability.BINARY_CLASS)) |
---|
392 | result.enable(Capability.BINARY_CLASS); |
---|
393 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
394 | |
---|
395 | // other |
---|
396 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
397 | |
---|
398 | return result; |
---|
399 | } |
---|
400 | |
---|
401 | /** |
---|
402 | * Returns the capabilities of this multi-instance classifier for the |
---|
403 | * relational data. |
---|
404 | * |
---|
405 | * @return the capabilities of this object |
---|
406 | * @see Capabilities |
---|
407 | */ |
---|
408 | public Capabilities getMultiInstanceCapabilities() { |
---|
409 | Capabilities result = super.getCapabilities(); |
---|
410 | |
---|
411 | // attributes |
---|
412 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
413 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
414 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
415 | result.enable(Capability.MISSING_VALUES); |
---|
416 | |
---|
417 | // class |
---|
418 | result.disableAllClasses(); |
---|
419 | result.enable(Capability.NO_CLASS); |
---|
420 | |
---|
421 | return result; |
---|
422 | } |
---|
423 | |
---|
424 | /** |
---|
425 | * Builds the classifier |
---|
426 | * |
---|
427 | * @param train the training data to be used for generating the |
---|
428 | * boosted classifier. |
---|
429 | * @throws Exception if the classifier could not be built successfully |
---|
430 | */ |
---|
431 | public void buildClassifier(Instances train) throws Exception { |
---|
432 | |
---|
433 | // can classifier handle the data? |
---|
434 | getCapabilities().testWithFail(train); |
---|
435 | |
---|
436 | // remove instances with missing class |
---|
437 | train = new Instances(train); |
---|
438 | train.deleteWithMissingClass(); |
---|
439 | |
---|
440 | if (m_Classifier == null) { |
---|
441 | throw new Exception("A base classifier has not been specified!"); |
---|
442 | } |
---|
443 | |
---|
444 | if (getDebug()) |
---|
445 | System.out.println("Start training ..."); |
---|
446 | Instances data = transform(train); |
---|
447 | |
---|
448 | data.deleteAttributeAt(0); // delete the bagID attribute |
---|
449 | m_Classifier.buildClassifier(data); |
---|
450 | |
---|
451 | if (getDebug()) |
---|
452 | System.out.println("Finish building model"); |
---|
453 | } |
---|
454 | |
---|
455 | /** |
---|
456 | * Computes the distribution for a given exemplar |
---|
457 | * |
---|
458 | * @param newBag the exemplar for which distribution is computed |
---|
459 | * @return the distribution |
---|
460 | * @throws Exception if the distribution can't be computed successfully |
---|
461 | */ |
---|
462 | public double[] distributionForInstance(Instance newBag) |
---|
463 | throws Exception { |
---|
464 | |
---|
465 | double [] distribution = new double[2]; |
---|
466 | Instances test = new Instances (newBag.dataset(), 0); |
---|
467 | test.add(newBag); |
---|
468 | |
---|
469 | test = transform(test); |
---|
470 | test.deleteAttributeAt(0); |
---|
471 | Instance newInst=test.firstInstance(); |
---|
472 | |
---|
473 | distribution = m_Classifier.distributionForInstance(newInst); |
---|
474 | |
---|
475 | return distribution; |
---|
476 | } |
---|
477 | |
---|
478 | /** |
---|
479 | * Gets a string describing the classifier. |
---|
480 | * |
---|
481 | * @return a string describing the classifer built. |
---|
482 | */ |
---|
483 | public String toString() { |
---|
484 | return "SimpleMI with base classifier: \n"+m_Classifier.toString(); |
---|
485 | } |
---|
486 | |
---|
487 | /** |
---|
488 | * Returns the revision string. |
---|
489 | * |
---|
490 | * @return the revision |
---|
491 | */ |
---|
492 | public String getRevision() { |
---|
493 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
494 | } |
---|
495 | |
---|
496 | /** |
---|
497 | * Main method for testing this class. |
---|
498 | * |
---|
499 | * @param argv should contain the command line arguments to the |
---|
500 | * scheme (see Evaluation) |
---|
501 | */ |
---|
502 | public static void main(String[] argv) { |
---|
503 | runClassifier(new SimpleMI(), argv); |
---|
504 | } |
---|
505 | } |
---|