[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * SimpleMI.java |
---|
| 19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.mi; |
---|
| 23 | |
---|
| 24 | import weka.classifiers.SingleClassifierEnhancer; |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.DenseInstance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
| 31 | import weka.core.Option; |
---|
| 32 | import weka.core.OptionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.SelectedTag; |
---|
| 35 | import weka.core.Tag; |
---|
| 36 | import weka.core.Utils; |
---|
| 37 | import weka.core.Capabilities.Capability; |
---|
| 38 | |
---|
| 39 | import java.util.Enumeration; |
---|
| 40 | import java.util.Vector; |
---|
| 41 | |
---|
| 42 | /** |
---|
| 43 | <!-- globalinfo-start --> |
---|
| 44 | * Reduces MI data into mono-instance data. |
---|
| 45 | * <p/> |
---|
| 46 | <!-- globalinfo-end --> |
---|
| 47 | * |
---|
| 48 | <!-- options-start --> |
---|
| 49 | * Valid options are: <p/> |
---|
| 50 | * |
---|
| 51 | * <pre> -M [1|2|3] |
---|
| 52 | * The method used in transformation: |
---|
| 53 | * 1.arithmatic average; 2.geometric centor; |
---|
| 54 | * 3.using minimax combined features of a bag (default: 1) |
---|
| 55 | * |
---|
| 56 | * Method 3: |
---|
| 57 | * Define s to be the vector of the coordinate-wise maxima |
---|
| 58 | * and minima of X, ie., |
---|
| 59 | * s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform |
---|
| 60 | * the exemplars into mono-instance which contains attributes |
---|
| 61 | * s(X)</pre> |
---|
| 62 | * |
---|
| 63 | * <pre> -D |
---|
| 64 | * If set, classifier is run in debug mode and |
---|
| 65 | * may output additional info to the console</pre> |
---|
| 66 | * |
---|
| 67 | * <pre> -W |
---|
| 68 | * Full name of base classifier. |
---|
| 69 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
| 70 | * |
---|
| 71 | * <pre> |
---|
| 72 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 73 | * </pre> |
---|
| 74 | * |
---|
| 75 | * <pre> -D |
---|
| 76 | * If set, classifier is run in debug mode and |
---|
| 77 | * may output additional info to the console</pre> |
---|
| 78 | * |
---|
| 79 | <!-- options-end --> |
---|
| 80 | * |
---|
| 81 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 82 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
| 83 | * @author Lin Dong (ld21@cs.waikato.ac.nz) |
---|
| 84 | * @version $Revision: 5987 $ |
---|
| 85 | */ |
---|
| 86 | public class SimpleMI |
---|
| 87 | extends SingleClassifierEnhancer |
---|
| 88 | implements OptionHandler, MultiInstanceCapabilitiesHandler { |
---|
| 89 | |
---|
| 90 | /** for serialization */ |
---|
| 91 | static final long serialVersionUID = 9137795893666592662L; |
---|
| 92 | |
---|
| 93 | /** arithmetic average */ |
---|
| 94 | public static final int TRANSFORMMETHOD_ARITHMETIC = 1; |
---|
| 95 | /** geometric average */ |
---|
| 96 | public static final int TRANSFORMMETHOD_GEOMETRIC = 2; |
---|
| 97 | /** using minimax combined features of a bag */ |
---|
| 98 | public static final int TRANSFORMMETHOD_MINIMAX = 3; |
---|
| 99 | /** the transformation methods */ |
---|
| 100 | public static final Tag[] TAGS_TRANSFORMMETHOD = { |
---|
| 101 | new Tag(TRANSFORMMETHOD_ARITHMETIC, "arithmetic average"), |
---|
| 102 | new Tag(TRANSFORMMETHOD_GEOMETRIC, "geometric average"), |
---|
| 103 | new Tag(TRANSFORMMETHOD_MINIMAX, "using minimax combined features of a bag") |
---|
| 104 | }; |
---|
| 105 | |
---|
| 106 | /** the method used in transformation */ |
---|
| 107 | protected int m_TransformMethod = TRANSFORMMETHOD_ARITHMETIC; |
---|
| 108 | |
---|
| 109 | /** |
---|
| 110 | * Returns a string describing this filter |
---|
| 111 | * |
---|
| 112 | * @return a description of the filter suitable for |
---|
| 113 | * displaying in the explorer/experimenter gui |
---|
| 114 | */ |
---|
| 115 | public String globalInfo() { |
---|
| 116 | return "Reduces MI data into mono-instance data."; |
---|
| 117 | } |
---|
| 118 | |
---|
| 119 | /** |
---|
| 120 | * Returns an enumeration describing the available options. |
---|
| 121 | * |
---|
| 122 | * @return an enumeration of all the available options. |
---|
| 123 | */ |
---|
| 124 | public Enumeration listOptions() { |
---|
| 125 | Vector result = new Vector(); |
---|
| 126 | |
---|
| 127 | result.addElement(new Option( |
---|
| 128 | "\tThe method used in transformation:\n" |
---|
| 129 | + "\t1.arithmatic average; 2.geometric centor;\n" |
---|
| 130 | + "\t3.using minimax combined features of a bag (default: 1)\n\n" |
---|
| 131 | + "\tMethod 3:\n" |
---|
| 132 | + "\tDefine s to be the vector of the coordinate-wise maxima\n" |
---|
| 133 | + "\tand minima of X, ie., \n" |
---|
| 134 | + "\ts(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform\n" |
---|
| 135 | + "\tthe exemplars into mono-instance which contains attributes\n" |
---|
| 136 | + "\ts(X)", |
---|
| 137 | "M", 1, "-M [1|2|3]")); |
---|
| 138 | |
---|
| 139 | Enumeration enu = super.listOptions(); |
---|
| 140 | while (enu.hasMoreElements()) { |
---|
| 141 | result.addElement(enu.nextElement()); |
---|
| 142 | } |
---|
| 143 | |
---|
| 144 | return result.elements(); |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | |
---|
| 148 | /** |
---|
| 149 | * Parses a given list of options. <p/> |
---|
| 150 | * |
---|
| 151 | <!-- options-start --> |
---|
| 152 | * Valid options are: <p/> |
---|
| 153 | * |
---|
| 154 | * <pre> -M [1|2|3] |
---|
| 155 | * The method used in transformation: |
---|
| 156 | * 1.arithmatic average; 2.geometric centor; |
---|
| 157 | * 3.using minimax combined features of a bag (default: 1) |
---|
| 158 | * |
---|
| 159 | * Method 3: |
---|
| 160 | * Define s to be the vector of the coordinate-wise maxima |
---|
| 161 | * and minima of X, ie., |
---|
| 162 | * s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform |
---|
| 163 | * the exemplars into mono-instance which contains attributes |
---|
| 164 | * s(X)</pre> |
---|
| 165 | * |
---|
| 166 | * <pre> -D |
---|
| 167 | * If set, classifier is run in debug mode and |
---|
| 168 | * may output additional info to the console</pre> |
---|
| 169 | * |
---|
| 170 | * <pre> -W |
---|
| 171 | * Full name of base classifier. |
---|
| 172 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
| 173 | * |
---|
| 174 | * <pre> |
---|
| 175 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 176 | * </pre> |
---|
| 177 | * |
---|
| 178 | * <pre> -D |
---|
| 179 | * If set, classifier is run in debug mode and |
---|
| 180 | * may output additional info to the console</pre> |
---|
| 181 | * |
---|
| 182 | <!-- options-end --> |
---|
| 183 | * |
---|
| 184 | * @param options the list of options as an array of strings |
---|
| 185 | * @throws Exception if an option is not supported |
---|
| 186 | */ |
---|
| 187 | public void setOptions(String[] options) throws Exception { |
---|
| 188 | |
---|
| 189 | setDebug(Utils.getFlag('D', options)); |
---|
| 190 | |
---|
| 191 | String methodString = Utils.getOption('M', options); |
---|
| 192 | if (methodString.length() != 0) { |
---|
| 193 | setTransformMethod( |
---|
| 194 | new SelectedTag( |
---|
| 195 | Integer.parseInt(methodString), TAGS_TRANSFORMMETHOD)); |
---|
| 196 | } else { |
---|
| 197 | setTransformMethod( |
---|
| 198 | new SelectedTag( |
---|
| 199 | TRANSFORMMETHOD_ARITHMETIC, TAGS_TRANSFORMMETHOD)); |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | super.setOptions(options); |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | /** |
---|
| 206 | * Gets the current settings of the Classifier. |
---|
| 207 | * |
---|
| 208 | * @return an array of strings suitable for passing to setOptions |
---|
| 209 | */ |
---|
| 210 | public String[] getOptions() { |
---|
| 211 | Vector result; |
---|
| 212 | String[] options; |
---|
| 213 | int i; |
---|
| 214 | |
---|
| 215 | result = new Vector(); |
---|
| 216 | |
---|
| 217 | result.add("-M"); |
---|
| 218 | result.add("" + m_TransformMethod); |
---|
| 219 | |
---|
| 220 | options = super.getOptions(); |
---|
| 221 | for (i = 0; i < options.length; i++) |
---|
| 222 | result.add(options[i]); |
---|
| 223 | |
---|
| 224 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | /** |
---|
| 228 | * Returns the tip text for this property |
---|
| 229 | * |
---|
| 230 | * @return tip text for this property suitable for |
---|
| 231 | * displaying in the explorer/experimenter gui |
---|
| 232 | */ |
---|
| 233 | public String transformMethodTipText() { |
---|
| 234 | return "The method used in transformation."; |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | /** |
---|
| 238 | * Set the method used in transformation. |
---|
| 239 | * |
---|
| 240 | * @param newMethod the index of method to use. |
---|
| 241 | */ |
---|
| 242 | public void setTransformMethod(SelectedTag newMethod) { |
---|
| 243 | if (newMethod.getTags() == TAGS_TRANSFORMMETHOD) |
---|
| 244 | m_TransformMethod = newMethod.getSelectedTag().getID(); |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | /** |
---|
| 248 | * Get the method used in transformation. |
---|
| 249 | * |
---|
| 250 | * @return the index of method used. |
---|
| 251 | */ |
---|
| 252 | public SelectedTag getTransformMethod() { |
---|
| 253 | return new SelectedTag(m_TransformMethod, TAGS_TRANSFORMMETHOD); |
---|
| 254 | } |
---|
| 255 | |
---|
| 256 | /** |
---|
| 257 | * Implements MITransform (3 type of transformation) 1.arithmatic average; |
---|
| 258 | * 2.geometric centor; 3.merge minima and maxima attribute value together |
---|
| 259 | * |
---|
| 260 | * @param train the multi-instance dataset (with relational attribute) |
---|
| 261 | * @return the transformed dataset with each bag contain mono-instance |
---|
| 262 | * (without relational attribute) so that any classifier not for MI dataset |
---|
| 263 | * can be applied on it. |
---|
| 264 | * @throws Exception if the transformation fails |
---|
| 265 | */ |
---|
| 266 | public Instances transform(Instances train) throws Exception{ |
---|
| 267 | |
---|
| 268 | Attribute classAttribute = (Attribute) train.classAttribute().copy(); |
---|
| 269 | Attribute bagLabel = (Attribute) train.attribute(0); |
---|
| 270 | double labelValue; |
---|
| 271 | |
---|
| 272 | Instances newData = train.attribute(1).relation().stringFreeStructure(); |
---|
| 273 | |
---|
| 274 | //insert a bag label attribute at the begining |
---|
| 275 | newData.insertAttributeAt(bagLabel, 0); |
---|
| 276 | |
---|
| 277 | //insert a class attribute at the end |
---|
| 278 | newData.insertAttributeAt(classAttribute, newData.numAttributes()); |
---|
| 279 | newData.setClassIndex(newData.numAttributes()-1); |
---|
| 280 | |
---|
| 281 | Instances mini_data = newData.stringFreeStructure(); |
---|
| 282 | Instances max_data = newData.stringFreeStructure(); |
---|
| 283 | |
---|
| 284 | Instance newInst = new DenseInstance(newData.numAttributes()); |
---|
| 285 | Instance mini_Inst = new DenseInstance(mini_data.numAttributes()); |
---|
| 286 | Instance max_Inst = new DenseInstance(max_data.numAttributes()); |
---|
| 287 | newInst.setDataset(newData); |
---|
| 288 | mini_Inst.setDataset(mini_data); |
---|
| 289 | max_Inst.setDataset(max_data); |
---|
| 290 | |
---|
| 291 | double N= train.numInstances( );//number of bags |
---|
| 292 | for(int i=0; i<N; i++){ |
---|
| 293 | int attIdx =1; |
---|
| 294 | Instance bag = train.instance(i); //retrieve the bag instance |
---|
| 295 | labelValue= bag.value(0); |
---|
| 296 | if (m_TransformMethod != TRANSFORMMETHOD_MINIMAX) |
---|
| 297 | newInst.setValue(0, labelValue); |
---|
| 298 | else { |
---|
| 299 | mini_Inst.setValue(0, labelValue); |
---|
| 300 | max_Inst.setValue(0, labelValue); |
---|
| 301 | } |
---|
| 302 | |
---|
| 303 | Instances data = bag.relationalValue(1); // retrieve relational value for each bag |
---|
| 304 | for(int j=0; j<data.numAttributes( ); j++){ |
---|
| 305 | double value; |
---|
| 306 | if(m_TransformMethod == TRANSFORMMETHOD_ARITHMETIC){ |
---|
| 307 | value = data.meanOrMode(j); |
---|
| 308 | newInst.setValue(attIdx++, value); |
---|
| 309 | } |
---|
| 310 | else if (m_TransformMethod == TRANSFORMMETHOD_GEOMETRIC){ |
---|
| 311 | double[] minimax = minimax(data, j); |
---|
| 312 | value = (minimax[0]+minimax[1])/2.0; |
---|
| 313 | newInst.setValue(attIdx++, value); |
---|
| 314 | } |
---|
| 315 | else { //m_TransformMethod == TRANSFORMMETHOD_MINIMAX |
---|
| 316 | double[] minimax = minimax(data, j); |
---|
| 317 | mini_Inst.setValue(attIdx, minimax[0]);//minima value |
---|
| 318 | max_Inst.setValue(attIdx, minimax[1]);//maxima value |
---|
| 319 | attIdx++; |
---|
| 320 | } |
---|
| 321 | } |
---|
| 322 | |
---|
| 323 | if (m_TransformMethod == TRANSFORMMETHOD_MINIMAX) { |
---|
| 324 | if (!bag.classIsMissing()) |
---|
| 325 | max_Inst.setClassValue(bag.classValue()); //set class value |
---|
| 326 | mini_data.add(mini_Inst); |
---|
| 327 | max_data.add(max_Inst); |
---|
| 328 | } |
---|
| 329 | else{ |
---|
| 330 | if (!bag.classIsMissing()) |
---|
| 331 | newInst.setClassValue(bag.classValue()); //set class value |
---|
| 332 | newData.add(newInst); |
---|
| 333 | } |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | if (m_TransformMethod == TRANSFORMMETHOD_MINIMAX) { |
---|
| 337 | mini_data.setClassIndex(-1); |
---|
| 338 | mini_data.deleteAttributeAt(mini_data.numAttributes()-1); //delete class attribute for the minima data |
---|
| 339 | max_data.deleteAttributeAt(0); // delete the bag label attribute for the maxima data |
---|
| 340 | |
---|
| 341 | newData = Instances.mergeInstances(mini_data, max_data); //merge minima and maxima data |
---|
| 342 | newData.setClassIndex(newData.numAttributes()-1); |
---|
| 343 | |
---|
| 344 | } |
---|
| 345 | |
---|
| 346 | return newData; |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | /** |
---|
| 350 | * Get the minimal and maximal value of a certain attribute in a certain data |
---|
| 351 | * |
---|
| 352 | * @param data the data |
---|
| 353 | * @param attIndex the index of the attribute |
---|
| 354 | * @return the double array containing in entry 0 for min and 1 for max. |
---|
| 355 | */ |
---|
| 356 | public static double[] minimax(Instances data, int attIndex){ |
---|
| 357 | double[] rt = {Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY}; |
---|
| 358 | for(int i=0; i<data.numInstances(); i++){ |
---|
| 359 | double val = data.instance(i).value(attIndex); |
---|
| 360 | if(val > rt[1]) |
---|
| 361 | rt[1] = val; |
---|
| 362 | if(val < rt[0]) |
---|
| 363 | rt[0] = val; |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | for(int j=0; j<2; j++) |
---|
| 367 | if(Double.isInfinite(rt[j])) |
---|
| 368 | rt[j] = Double.NaN; |
---|
| 369 | |
---|
| 370 | return rt; |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | /** |
---|
| 374 | * Returns default capabilities of the classifier. |
---|
| 375 | * |
---|
| 376 | * @return the capabilities of this classifier |
---|
| 377 | */ |
---|
| 378 | public Capabilities getCapabilities() { |
---|
| 379 | Capabilities result = super.getCapabilities(); |
---|
| 380 | |
---|
| 381 | // attributes |
---|
| 382 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 383 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
| 384 | result.enable(Capability.MISSING_VALUES); |
---|
| 385 | |
---|
| 386 | // class |
---|
| 387 | result.disableAllClasses(); |
---|
| 388 | result.disableAllClassDependencies(); |
---|
| 389 | if (super.getCapabilities().handles(Capability.NOMINAL_CLASS)) |
---|
| 390 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 391 | if (super.getCapabilities().handles(Capability.BINARY_CLASS)) |
---|
| 392 | result.enable(Capability.BINARY_CLASS); |
---|
| 393 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 394 | |
---|
| 395 | // other |
---|
| 396 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
| 397 | |
---|
| 398 | return result; |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | /** |
---|
| 402 | * Returns the capabilities of this multi-instance classifier for the |
---|
| 403 | * relational data. |
---|
| 404 | * |
---|
| 405 | * @return the capabilities of this object |
---|
| 406 | * @see Capabilities |
---|
| 407 | */ |
---|
| 408 | public Capabilities getMultiInstanceCapabilities() { |
---|
| 409 | Capabilities result = super.getCapabilities(); |
---|
| 410 | |
---|
| 411 | // attributes |
---|
| 412 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 413 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 414 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 415 | result.enable(Capability.MISSING_VALUES); |
---|
| 416 | |
---|
| 417 | // class |
---|
| 418 | result.disableAllClasses(); |
---|
| 419 | result.enable(Capability.NO_CLASS); |
---|
| 420 | |
---|
| 421 | return result; |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | /** |
---|
| 425 | * Builds the classifier |
---|
| 426 | * |
---|
| 427 | * @param train the training data to be used for generating the |
---|
| 428 | * boosted classifier. |
---|
| 429 | * @throws Exception if the classifier could not be built successfully |
---|
| 430 | */ |
---|
| 431 | public void buildClassifier(Instances train) throws Exception { |
---|
| 432 | |
---|
| 433 | // can classifier handle the data? |
---|
| 434 | getCapabilities().testWithFail(train); |
---|
| 435 | |
---|
| 436 | // remove instances with missing class |
---|
| 437 | train = new Instances(train); |
---|
| 438 | train.deleteWithMissingClass(); |
---|
| 439 | |
---|
| 440 | if (m_Classifier == null) { |
---|
| 441 | throw new Exception("A base classifier has not been specified!"); |
---|
| 442 | } |
---|
| 443 | |
---|
| 444 | if (getDebug()) |
---|
| 445 | System.out.println("Start training ..."); |
---|
| 446 | Instances data = transform(train); |
---|
| 447 | |
---|
| 448 | data.deleteAttributeAt(0); // delete the bagID attribute |
---|
| 449 | m_Classifier.buildClassifier(data); |
---|
| 450 | |
---|
| 451 | if (getDebug()) |
---|
| 452 | System.out.println("Finish building model"); |
---|
| 453 | } |
---|
| 454 | |
---|
| 455 | /** |
---|
| 456 | * Computes the distribution for a given exemplar |
---|
| 457 | * |
---|
| 458 | * @param newBag the exemplar for which distribution is computed |
---|
| 459 | * @return the distribution |
---|
| 460 | * @throws Exception if the distribution can't be computed successfully |
---|
| 461 | */ |
---|
| 462 | public double[] distributionForInstance(Instance newBag) |
---|
| 463 | throws Exception { |
---|
| 464 | |
---|
| 465 | double [] distribution = new double[2]; |
---|
| 466 | Instances test = new Instances (newBag.dataset(), 0); |
---|
| 467 | test.add(newBag); |
---|
| 468 | |
---|
| 469 | test = transform(test); |
---|
| 470 | test.deleteAttributeAt(0); |
---|
| 471 | Instance newInst=test.firstInstance(); |
---|
| 472 | |
---|
| 473 | distribution = m_Classifier.distributionForInstance(newInst); |
---|
| 474 | |
---|
| 475 | return distribution; |
---|
| 476 | } |
---|
| 477 | |
---|
| 478 | /** |
---|
| 479 | * Gets a string describing the classifier. |
---|
| 480 | * |
---|
| 481 | * @return a string describing the classifer built. |
---|
| 482 | */ |
---|
| 483 | public String toString() { |
---|
| 484 | return "SimpleMI with base classifier: \n"+m_Classifier.toString(); |
---|
| 485 | } |
---|
| 486 | |
---|
| 487 | /** |
---|
| 488 | * Returns the revision string. |
---|
| 489 | * |
---|
| 490 | * @return the revision |
---|
| 491 | */ |
---|
| 492 | public String getRevision() { |
---|
| 493 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | /** |
---|
| 497 | * Main method for testing this class. |
---|
| 498 | * |
---|
| 499 | * @param argv should contain the command line arguments to the |
---|
| 500 | * scheme (see Evaluation) |
---|
| 501 | */ |
---|
| 502 | public static void main(String[] argv) { |
---|
| 503 | runClassifier(new SimpleMI(), argv); |
---|
| 504 | } |
---|
| 505 | } |
---|