[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * MIWrapper.java |
---|
| 19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.mi; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.SingleClassifierEnhancer; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.OptionHandler; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.SelectedTag; |
---|
| 34 | import weka.core.Tag; |
---|
| 35 | import weka.core.TechnicalInformation; |
---|
| 36 | import weka.core.TechnicalInformationHandler; |
---|
| 37 | import weka.core.Utils; |
---|
| 38 | import weka.core.Capabilities.Capability; |
---|
| 39 | import weka.core.TechnicalInformation.Field; |
---|
| 40 | import weka.core.TechnicalInformation.Type; |
---|
| 41 | import weka.filters.Filter; |
---|
| 42 | import weka.filters.unsupervised.attribute.MultiInstanceToPropositional; |
---|
| 43 | |
---|
| 44 | import java.util.Enumeration; |
---|
| 45 | import java.util.Vector; |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | <!-- globalinfo-start --> |
---|
| 49 | * A simple Wrapper method for applying standard propositional learners to multi-instance data.<br/> |
---|
| 50 | * <br/> |
---|
| 51 | * For more information see:<br/> |
---|
| 52 | * <br/> |
---|
| 53 | * E. T. Frank, X. Xu (2003). Applying propositional learning algorithms to multi-instance data. Department of Computer Science, University of Waikato, Hamilton, NZ. |
---|
| 54 | * <p/> |
---|
| 55 | <!-- globalinfo-end --> |
---|
| 56 | * |
---|
| 57 | <!-- technical-bibtex-start --> |
---|
| 58 | * BibTeX: |
---|
| 59 | * <pre> |
---|
| 60 | * @techreport{Frank2003, |
---|
| 61 | * address = {Department of Computer Science, University of Waikato, Hamilton, NZ}, |
---|
| 62 | * author = {E. T. Frank and X. Xu}, |
---|
| 63 | * institution = {University of Waikato}, |
---|
| 64 | * month = {06}, |
---|
| 65 | * title = {Applying propositional learning algorithms to multi-instance data}, |
---|
| 66 | * year = {2003} |
---|
| 67 | * } |
---|
| 68 | * </pre> |
---|
| 69 | * <p/> |
---|
| 70 | <!-- technical-bibtex-end --> |
---|
| 71 | * |
---|
| 72 | <!-- options-start --> |
---|
| 73 | * Valid options are: <p/> |
---|
| 74 | * |
---|
| 75 | * <pre> -P [1|2|3] |
---|
| 76 | * The method used in testing: |
---|
| 77 | * 1.arithmetic average |
---|
| 78 | * 2.geometric average |
---|
| 79 | * 3.max probability of positive bag. |
---|
| 80 | * (default: 1)</pre> |
---|
| 81 | * |
---|
| 82 | * <pre> -A [0|1|2|3] |
---|
| 83 | * The type of weight setting for each single-instance: |
---|
| 84 | * 0.keep the weight to be the same as the original value; |
---|
| 85 | * 1.weight = 1.0 |
---|
| 86 | * 2.weight = 1.0/Total number of single-instance in the |
---|
| 87 | * corresponding bag |
---|
| 88 | * 3. weight = Total number of single-instance / (Total |
---|
| 89 | * number of bags * Total number of single-instance |
---|
| 90 | * in the corresponding bag). |
---|
| 91 | * (default: 3)</pre> |
---|
| 92 | * |
---|
| 93 | * <pre> -D |
---|
| 94 | * If set, classifier is run in debug mode and |
---|
| 95 | * may output additional info to the console</pre> |
---|
| 96 | * |
---|
| 97 | * <pre> -W |
---|
| 98 | * Full name of base classifier. |
---|
| 99 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
| 100 | * |
---|
| 101 | * <pre> |
---|
| 102 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 103 | * </pre> |
---|
| 104 | * |
---|
| 105 | * <pre> -D |
---|
| 106 | * If set, classifier is run in debug mode and |
---|
| 107 | * may output additional info to the console</pre> |
---|
| 108 | * |
---|
| 109 | <!-- options-end --> |
---|
| 110 | * |
---|
| 111 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 112 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
| 113 | * @version $Revision: 1.5 $ |
---|
| 114 | */ |
---|
| 115 | public class MIWrapper |
---|
| 116 | extends SingleClassifierEnhancer |
---|
| 117 | implements MultiInstanceCapabilitiesHandler, OptionHandler, |
---|
| 118 | TechnicalInformationHandler { |
---|
| 119 | |
---|
| 120 | /** for serialization */ |
---|
| 121 | static final long serialVersionUID = -7707766152904315910L; |
---|
| 122 | |
---|
| 123 | /** The number of the class labels */ |
---|
| 124 | protected int m_NumClasses; |
---|
| 125 | |
---|
| 126 | /** arithmetic average */ |
---|
| 127 | public static final int TESTMETHOD_ARITHMETIC = 1; |
---|
| 128 | /** geometric average */ |
---|
| 129 | public static final int TESTMETHOD_GEOMETRIC = 2; |
---|
| 130 | /** max probability of positive bag */ |
---|
| 131 | public static final int TESTMETHOD_MAXPROB = 3; |
---|
| 132 | /** the test methods */ |
---|
| 133 | public static final Tag[] TAGS_TESTMETHOD = { |
---|
| 134 | new Tag(TESTMETHOD_ARITHMETIC, "arithmetic average"), |
---|
| 135 | new Tag(TESTMETHOD_GEOMETRIC, "geometric average"), |
---|
| 136 | new Tag(TESTMETHOD_MAXPROB, "max probability of positive bag") |
---|
| 137 | }; |
---|
| 138 | |
---|
| 139 | /** the test method */ |
---|
| 140 | protected int m_Method = TESTMETHOD_GEOMETRIC; |
---|
| 141 | |
---|
| 142 | /** Filter used to convert MI dataset into single-instance dataset */ |
---|
| 143 | protected MultiInstanceToPropositional m_ConvertToProp = new MultiInstanceToPropositional(); |
---|
| 144 | |
---|
| 145 | /** the single-instance weight setting method */ |
---|
| 146 | protected int m_WeightMethod = MultiInstanceToPropositional.WEIGHTMETHOD_INVERSE2; |
---|
| 147 | |
---|
| 148 | /** |
---|
| 149 | * Returns a string describing this filter |
---|
| 150 | * |
---|
| 151 | * @return a description of the filter suitable for |
---|
| 152 | * displaying in the explorer/experimenter gui |
---|
| 153 | */ |
---|
| 154 | public String globalInfo() { |
---|
| 155 | return |
---|
| 156 | "A simple Wrapper method for applying standard propositional learners " |
---|
| 157 | + "to multi-instance data.\n\n" |
---|
| 158 | + "For more information see:\n\n" |
---|
| 159 | + getTechnicalInformation().toString(); |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | /** |
---|
| 163 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 164 | * detailed information about the technical background of this class, |
---|
| 165 | * e.g., paper reference or book this class is based on. |
---|
| 166 | * |
---|
| 167 | * @return the technical information about this class |
---|
| 168 | */ |
---|
| 169 | public TechnicalInformation getTechnicalInformation() { |
---|
| 170 | TechnicalInformation result; |
---|
| 171 | |
---|
| 172 | result = new TechnicalInformation(Type.TECHREPORT); |
---|
| 173 | result.setValue(Field.AUTHOR, "E. T. Frank and X. Xu"); |
---|
| 174 | result.setValue(Field.TITLE, "Applying propositional learning algorithms to multi-instance data"); |
---|
| 175 | result.setValue(Field.YEAR, "2003"); |
---|
| 176 | result.setValue(Field.MONTH, "06"); |
---|
| 177 | result.setValue(Field.INSTITUTION, "University of Waikato"); |
---|
| 178 | result.setValue(Field.ADDRESS, "Department of Computer Science, University of Waikato, Hamilton, NZ"); |
---|
| 179 | |
---|
| 180 | return result; |
---|
| 181 | } |
---|
| 182 | |
---|
| 183 | /** |
---|
| 184 | * Returns an enumeration describing the available options. |
---|
| 185 | * |
---|
| 186 | * @return an enumeration of all the available options. |
---|
| 187 | */ |
---|
| 188 | public Enumeration listOptions() { |
---|
| 189 | Vector result = new Vector(); |
---|
| 190 | |
---|
| 191 | result.addElement(new Option( |
---|
| 192 | "\tThe method used in testing:\n" |
---|
| 193 | + "\t1.arithmetic average\n" |
---|
| 194 | + "\t2.geometric average\n" |
---|
| 195 | + "\t3.max probability of positive bag.\n" |
---|
| 196 | + "\t(default: 1)", |
---|
| 197 | "P", 1, "-P [1|2|3]")); |
---|
| 198 | |
---|
| 199 | result.addElement(new Option( |
---|
| 200 | "\tThe type of weight setting for each single-instance:\n" |
---|
| 201 | + "\t0.keep the weight to be the same as the original value;\n" |
---|
| 202 | + "\t1.weight = 1.0\n" |
---|
| 203 | + "\t2.weight = 1.0/Total number of single-instance in the\n" |
---|
| 204 | + "\t\tcorresponding bag\n" |
---|
| 205 | + "\t3. weight = Total number of single-instance / (Total\n" |
---|
| 206 | + "\t\tnumber of bags * Total number of single-instance \n" |
---|
| 207 | + "\t\tin the corresponding bag).\n" |
---|
| 208 | + "\t(default: 3)", |
---|
| 209 | "A", 1, "-A [0|1|2|3]")); |
---|
| 210 | |
---|
| 211 | Enumeration enu = super.listOptions(); |
---|
| 212 | while (enu.hasMoreElements()) { |
---|
| 213 | result.addElement(enu.nextElement()); |
---|
| 214 | } |
---|
| 215 | |
---|
| 216 | return result.elements(); |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | |
---|
| 220 | /** |
---|
| 221 | * Parses a given list of options. <p/> |
---|
| 222 | * |
---|
| 223 | <!-- options-start --> |
---|
| 224 | * Valid options are: <p/> |
---|
| 225 | * |
---|
| 226 | * <pre> -P [1|2|3] |
---|
| 227 | * The method used in testing: |
---|
| 228 | * 1.arithmetic average |
---|
| 229 | * 2.geometric average |
---|
| 230 | * 3.max probability of positive bag. |
---|
| 231 | * (default: 1)</pre> |
---|
| 232 | * |
---|
| 233 | * <pre> -A [0|1|2|3] |
---|
| 234 | * The type of weight setting for each single-instance: |
---|
| 235 | * 0.keep the weight to be the same as the original value; |
---|
| 236 | * 1.weight = 1.0 |
---|
| 237 | * 2.weight = 1.0/Total number of single-instance in the |
---|
| 238 | * corresponding bag |
---|
| 239 | * 3. weight = Total number of single-instance / (Total |
---|
| 240 | * number of bags * Total number of single-instance |
---|
| 241 | * in the corresponding bag). |
---|
| 242 | * (default: 3)</pre> |
---|
| 243 | * |
---|
| 244 | * <pre> -D |
---|
| 245 | * If set, classifier is run in debug mode and |
---|
| 246 | * may output additional info to the console</pre> |
---|
| 247 | * |
---|
| 248 | * <pre> -W |
---|
| 249 | * Full name of base classifier. |
---|
| 250 | * (default: weka.classifiers.rules.ZeroR)</pre> |
---|
| 251 | * |
---|
| 252 | * <pre> |
---|
| 253 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 254 | * </pre> |
---|
| 255 | * |
---|
| 256 | * <pre> -D |
---|
| 257 | * If set, classifier is run in debug mode and |
---|
| 258 | * may output additional info to the console</pre> |
---|
| 259 | * |
---|
| 260 | <!-- options-end --> |
---|
| 261 | * |
---|
| 262 | * @param options the list of options as an array of strings |
---|
| 263 | * @throws Exception if an option is not supported |
---|
| 264 | */ |
---|
| 265 | public void setOptions(String[] options) throws Exception { |
---|
| 266 | |
---|
| 267 | setDebug(Utils.getFlag('D', options)); |
---|
| 268 | |
---|
| 269 | String methodString = Utils.getOption('P', options); |
---|
| 270 | if (methodString.length() != 0) { |
---|
| 271 | setMethod( |
---|
| 272 | new SelectedTag(Integer.parseInt(methodString), TAGS_TESTMETHOD)); |
---|
| 273 | } else { |
---|
| 274 | setMethod( |
---|
| 275 | new SelectedTag(TESTMETHOD_ARITHMETIC, TAGS_TESTMETHOD)); |
---|
| 276 | } |
---|
| 277 | |
---|
| 278 | String weightString = Utils.getOption('A', options); |
---|
| 279 | if (weightString.length() != 0) { |
---|
| 280 | setWeightMethod( |
---|
| 281 | new SelectedTag( |
---|
| 282 | Integer.parseInt(weightString), |
---|
| 283 | MultiInstanceToPropositional.TAGS_WEIGHTMETHOD)); |
---|
| 284 | } else { |
---|
| 285 | setWeightMethod( |
---|
| 286 | new SelectedTag( |
---|
| 287 | MultiInstanceToPropositional.WEIGHTMETHOD_INVERSE2, |
---|
| 288 | MultiInstanceToPropositional.TAGS_WEIGHTMETHOD)); |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | super.setOptions(options); |
---|
| 292 | } |
---|
| 293 | |
---|
| 294 | /** |
---|
| 295 | * Gets the current settings of the Classifier. |
---|
| 296 | * |
---|
| 297 | * @return an array of strings suitable for passing to setOptions |
---|
| 298 | */ |
---|
| 299 | public String[] getOptions() { |
---|
| 300 | Vector result; |
---|
| 301 | String[] options; |
---|
| 302 | int i; |
---|
| 303 | |
---|
| 304 | result = new Vector(); |
---|
| 305 | |
---|
| 306 | result.add("-P"); |
---|
| 307 | result.add("" + m_Method); |
---|
| 308 | |
---|
| 309 | result.add("-A"); |
---|
| 310 | result.add("" + m_WeightMethod); |
---|
| 311 | |
---|
| 312 | options = super.getOptions(); |
---|
| 313 | for (i = 0; i < options.length; i++) |
---|
| 314 | result.add(options[i]); |
---|
| 315 | |
---|
| 316 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | /** |
---|
| 320 | * Returns the tip text for this property |
---|
| 321 | * |
---|
| 322 | * @return tip text for this property suitable for |
---|
| 323 | * displaying in the explorer/experimenter gui |
---|
| 324 | */ |
---|
| 325 | public String weightMethodTipText() { |
---|
| 326 | return "The method used for weighting the instances."; |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | /** |
---|
| 330 | * The new method for weighting the instances. |
---|
| 331 | * |
---|
| 332 | * @param method the new method |
---|
| 333 | */ |
---|
| 334 | public void setWeightMethod(SelectedTag method){ |
---|
| 335 | if (method.getTags() == MultiInstanceToPropositional.TAGS_WEIGHTMETHOD) |
---|
| 336 | m_WeightMethod = method.getSelectedTag().getID(); |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | /** |
---|
| 340 | * Returns the current weighting method for instances. |
---|
| 341 | * |
---|
| 342 | * @return the current weighting method |
---|
| 343 | */ |
---|
| 344 | public SelectedTag getWeightMethod(){ |
---|
| 345 | return new SelectedTag( |
---|
| 346 | m_WeightMethod, MultiInstanceToPropositional.TAGS_WEIGHTMETHOD); |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | /** |
---|
| 350 | * Returns the tip text for this property |
---|
| 351 | * |
---|
| 352 | * @return tip text for this property suitable for |
---|
| 353 | * displaying in the explorer/experimenter gui |
---|
| 354 | */ |
---|
| 355 | public String methodTipText() { |
---|
| 356 | return "The method used for testing."; |
---|
| 357 | } |
---|
| 358 | |
---|
| 359 | /** |
---|
| 360 | * Set the method used in testing. |
---|
| 361 | * |
---|
| 362 | * @param method the index of method to use. |
---|
| 363 | */ |
---|
| 364 | public void setMethod(SelectedTag method) { |
---|
| 365 | if (method.getTags() == TAGS_TESTMETHOD) |
---|
| 366 | m_Method = method.getSelectedTag().getID(); |
---|
| 367 | } |
---|
| 368 | |
---|
| 369 | /** |
---|
| 370 | * Get the method used in testing. |
---|
| 371 | * |
---|
| 372 | * @return the index of method used in testing. |
---|
| 373 | */ |
---|
| 374 | public SelectedTag getMethod() { |
---|
| 375 | return new SelectedTag(m_Method, TAGS_TESTMETHOD); |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | /** |
---|
| 379 | * Returns default capabilities of the classifier. |
---|
| 380 | * |
---|
| 381 | * @return the capabilities of this classifier |
---|
| 382 | */ |
---|
| 383 | public Capabilities getCapabilities() { |
---|
| 384 | Capabilities result = super.getCapabilities(); |
---|
| 385 | |
---|
| 386 | // class |
---|
| 387 | result.disableAllClasses(); |
---|
| 388 | result.disableAllClassDependencies(); |
---|
| 389 | if (super.getCapabilities().handles(Capability.NOMINAL_CLASS)) |
---|
| 390 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 391 | if (super.getCapabilities().handles(Capability.BINARY_CLASS)) |
---|
| 392 | result.enable(Capability.BINARY_CLASS); |
---|
| 393 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
| 394 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 395 | |
---|
| 396 | // other |
---|
| 397 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
| 398 | |
---|
| 399 | return result; |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | /** |
---|
| 403 | * Returns the capabilities of this multi-instance classifier for the |
---|
| 404 | * relational data. |
---|
| 405 | * |
---|
| 406 | * @return the capabilities of this object |
---|
| 407 | * @see Capabilities |
---|
| 408 | */ |
---|
| 409 | public Capabilities getMultiInstanceCapabilities() { |
---|
| 410 | Capabilities result = super.getCapabilities(); |
---|
| 411 | |
---|
| 412 | // class |
---|
| 413 | result.disableAllClasses(); |
---|
| 414 | result.enable(Capability.NO_CLASS); |
---|
| 415 | |
---|
| 416 | return result; |
---|
| 417 | } |
---|
| 418 | |
---|
| 419 | /** |
---|
| 420 | * Builds the classifier |
---|
| 421 | * |
---|
| 422 | * @param data the training data to be used for generating the |
---|
| 423 | * boosted classifier. |
---|
| 424 | * @throws Exception if the classifier could not be built successfully |
---|
| 425 | */ |
---|
| 426 | public void buildClassifier(Instances data) throws Exception { |
---|
| 427 | |
---|
| 428 | // can classifier handle the data? |
---|
| 429 | getCapabilities().testWithFail(data); |
---|
| 430 | |
---|
| 431 | // remove instances with missing class |
---|
| 432 | Instances train = new Instances(data); |
---|
| 433 | train.deleteWithMissingClass(); |
---|
| 434 | |
---|
| 435 | if (m_Classifier == null) { |
---|
| 436 | throw new Exception("A base classifier has not been specified!"); |
---|
| 437 | } |
---|
| 438 | |
---|
| 439 | if (getDebug()) |
---|
| 440 | System.out.println("Start training ..."); |
---|
| 441 | m_NumClasses = train.numClasses(); |
---|
| 442 | |
---|
| 443 | //convert the training dataset into single-instance dataset |
---|
| 444 | m_ConvertToProp.setWeightMethod(getWeightMethod()); |
---|
| 445 | m_ConvertToProp.setInputFormat(train); |
---|
| 446 | train = Filter.useFilter(train, m_ConvertToProp); |
---|
| 447 | train.deleteAttributeAt(0); // remove the bag index attribute |
---|
| 448 | |
---|
| 449 | m_Classifier.buildClassifier(train); |
---|
| 450 | } |
---|
| 451 | |
---|
| 452 | /** |
---|
| 453 | * Computes the distribution for a given exemplar |
---|
| 454 | * |
---|
| 455 | * @param exmp the exemplar for which distribution is computed |
---|
| 456 | * @return the distribution |
---|
| 457 | * @throws Exception if the distribution can't be computed successfully |
---|
| 458 | */ |
---|
| 459 | public double[] distributionForInstance(Instance exmp) |
---|
| 460 | throws Exception { |
---|
| 461 | |
---|
| 462 | Instances testData = new Instances (exmp.dataset(),0); |
---|
| 463 | testData.add(exmp); |
---|
| 464 | |
---|
| 465 | // convert the training dataset into single-instance dataset |
---|
| 466 | m_ConvertToProp.setWeightMethod( |
---|
| 467 | new SelectedTag( |
---|
| 468 | MultiInstanceToPropositional.WEIGHTMETHOD_ORIGINAL, |
---|
| 469 | MultiInstanceToPropositional.TAGS_WEIGHTMETHOD)); |
---|
| 470 | testData = Filter.useFilter(testData, m_ConvertToProp); |
---|
| 471 | testData.deleteAttributeAt(0); //remove the bag index attribute |
---|
| 472 | |
---|
| 473 | // Compute the log-probability of the bag |
---|
| 474 | double [] distribution = new double[m_NumClasses]; |
---|
| 475 | double nI = (double)testData.numInstances(); |
---|
| 476 | double [] maxPr = new double [m_NumClasses]; |
---|
| 477 | |
---|
| 478 | for(int i=0; i<nI; i++){ |
---|
| 479 | double[] dist = m_Classifier.distributionForInstance(testData.instance(i)); |
---|
| 480 | for(int j=0; j<m_NumClasses; j++){ |
---|
| 481 | |
---|
| 482 | switch(m_Method){ |
---|
| 483 | case TESTMETHOD_ARITHMETIC: |
---|
| 484 | distribution[j] += dist[j]/nI; |
---|
| 485 | break; |
---|
| 486 | case TESTMETHOD_GEOMETRIC: |
---|
| 487 | // Avoid 0/1 probability |
---|
| 488 | if(dist[j]<0.001) |
---|
| 489 | dist[j] = 0.001; |
---|
| 490 | else if(dist[j]>0.999) |
---|
| 491 | dist[j] = 0.999; |
---|
| 492 | |
---|
| 493 | distribution[j] += Math.log(dist[j])/nI; |
---|
| 494 | break; |
---|
| 495 | case TESTMETHOD_MAXPROB: |
---|
| 496 | if (dist[j]>maxPr[j]) |
---|
| 497 | maxPr[j] = dist[j]; |
---|
| 498 | break; |
---|
| 499 | } |
---|
| 500 | } |
---|
| 501 | } |
---|
| 502 | |
---|
| 503 | if(m_Method == TESTMETHOD_GEOMETRIC) |
---|
| 504 | for(int j=0; j<m_NumClasses; j++) |
---|
| 505 | distribution[j] = Math.exp(distribution[j]); |
---|
| 506 | |
---|
| 507 | if(m_Method == TESTMETHOD_MAXPROB){ // for positive bag |
---|
| 508 | distribution[1] = maxPr[1]; |
---|
| 509 | distribution[0] = 1 - distribution[1]; |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | if (Utils.eq(Utils.sum(distribution), 0)) { |
---|
| 513 | for (int i = 0; i < distribution.length; i++) |
---|
| 514 | distribution[i] = 1.0 / (double) distribution.length; |
---|
| 515 | } |
---|
| 516 | else { |
---|
| 517 | Utils.normalize(distribution); |
---|
| 518 | } |
---|
| 519 | |
---|
| 520 | return distribution; |
---|
| 521 | } |
---|
| 522 | |
---|
| 523 | /** |
---|
| 524 | * Gets a string describing the classifier. |
---|
| 525 | * |
---|
| 526 | * @return a string describing the classifer built. |
---|
| 527 | */ |
---|
| 528 | public String toString() { |
---|
| 529 | return "MIWrapper with base classifier: \n"+m_Classifier.toString(); |
---|
| 530 | } |
---|
| 531 | |
---|
| 532 | /** |
---|
| 533 | * Returns the revision string. |
---|
| 534 | * |
---|
| 535 | * @return the revision |
---|
| 536 | */ |
---|
| 537 | public String getRevision() { |
---|
| 538 | return RevisionUtils.extract("$Revision: 1.5 $"); |
---|
| 539 | } |
---|
| 540 | |
---|
| 541 | /** |
---|
| 542 | * Main method for testing this class. |
---|
| 543 | * |
---|
| 544 | * @param argv should contain the command line arguments to the |
---|
| 545 | * scheme (see Evaluation) |
---|
| 546 | */ |
---|
| 547 | public static void main(String[] argv) { |
---|
| 548 | runClassifier(new MIWrapper(), argv); |
---|
| 549 | } |
---|
| 550 | } |
---|