/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* MIOptimalBall.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.mi;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.matrix.DoubleVector;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.MultiInstanceToPropositional;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.PropositionalToMultiInstance;
import weka.filters.unsupervised.attribute.Standardize;
import java.util.Enumeration;
import java.util.Vector;
/**
* This classifier tries to find a suitable ball in the multiple-instance space, with a certain data point in the instance space as a ball center. The possible ball center is a certain instance in a positive bag. The possible radiuses are those which can achieve the highest classification accuracy. The model selects the maximum radius as the radius of the optimal ball.
*
* For more information about this algorithm, see:
*
* Peter Auer, Ronald Ortner: A Boosting Approach to Multiple Instance Learning. In: 15th European Conference on Machine Learning, 63-74, 2004.
*
* @inproceedings{Auer2004, * author = {Peter Auer and Ronald Ortner}, * booktitle = {15th European Conference on Machine Learning}, * note = {LNAI 3201}, * pages = {63-74}, * publisher = {Springer}, * title = {A Boosting Approach to Multiple Instance Learning}, * year = {2004} * } ** * * Valid options are: * *
-N <num> * Whether to 0=normalize/1=standardize/2=neither. * (default 0=normalize)* * * @author Lin Dong (ld21@cs.waikato.ac.nz) * @version $Revision: 5928 $ */ public class MIOptimalBall extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -6465750129576777254L; /** center of the optimal ball */ protected double[] m_Center; /** radius of the optimal ball */ protected double m_Radius; /** the distances from each instance in a positive bag to each bag*/ protected double [][][]m_Distance; /** The filter used to standardize/normalize all values. */ protected Filter m_Filter = null; /** Whether to normalize/standardize/neither */ protected int m_filterType = FILTER_NORMALIZE; /** Normalize training data */ public static final int FILTER_NORMALIZE = 0; /** Standardize training data */ public static final int FILTER_STANDARDIZE = 1; /** No normalization/standardization */ public static final int FILTER_NONE = 2; /** The filter to apply to the training data */ public static final Tag [] TAGS_FILTER = { new Tag(FILTER_NORMALIZE, "Normalize training data"), new Tag(FILTER_STANDARDIZE, "Standardize training data"), new Tag(FILTER_NONE, "No normalization/standardization"), }; /** filter used to convert the MI dataset into single-instance dataset */ protected MultiInstanceToPropositional m_ConvertToSI = new MultiInstanceToPropositional(); /** filter used to convert the single-instance dataset into MI dataset */ protected PropositionalToMultiInstance m_ConvertToMI = new PropositionalToMultiInstance(); /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "This classifier tries to find a suitable ball in the " + "multiple-instance space, with a certain data point in the instance " + "space as a ball center. The possible ball center is a certain " + "instance in a positive bag. The possible radiuses are those which can " + "achieve the highest classification accuracy. The model selects the " + "maximum radius as the radius of the optimal ball.\n\n" + "For more information about this algorithm, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Peter Auer and Ronald Ortner"); result.setValue(Field.TITLE, "A Boosting Approach to Multiple Instance Learning"); result.setValue(Field.BOOKTITLE, "15th European Conference on Machine Learning"); result.setValue(Field.YEAR, "2004"); result.setValue(Field.PAGES, "63-74"); result.setValue(Field.PUBLISHER, "Springer"); result.setValue(Field.NOTE, "LNAI 3201"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.BINARY_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // other result.enable(Capability.ONLY_MULTIINSTANCE); return result; } /** * Returns the capabilities of this multi-instance classifier for the * relational data. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getMultiInstanceCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.disableAllClasses(); result.enable(Capability.NO_CLASS); return result; } /** * Builds the classifier * * @param data the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class Instances train = new Instances(data); train.deleteWithMissingClass(); int numAttributes = train.attribute(1).relation().numAttributes(); m_Center = new double[numAttributes]; if (getDebug()) System.out.println("Start training ..."); // convert the training dataset into single-instance dataset m_ConvertToSI.setInputFormat(train); train = Filter.useFilter( train, m_ConvertToSI); if (m_filterType == FILTER_STANDARDIZE) m_Filter = new Standardize(); else if (m_filterType == FILTER_NORMALIZE) m_Filter = new Normalize(); else m_Filter = null; if (m_Filter!=null) { // normalize/standardize the converted training dataset m_Filter.setInputFormat(train); train = Filter.useFilter(train, m_Filter); } // convert the single-instance dataset into multi-instance dataset m_ConvertToMI.setInputFormat(train); train = Filter.useFilter(train, m_ConvertToMI); /*calculate all the distances (and store them in m_Distance[][][]), which are from each instance in all positive bags to all bags */ calculateDistance(train); /*find the suitable ball center (m_Center) and the corresponding radius (m_Radius)*/ findRadius(train); if (getDebug()) System.out.println("Finish building optimal ball model"); } /** * calculate the distances from each instance in a positive bag to each bag. * All result distances are stored in m_Distance[i][j][k], where * m_Distance[i][j][k] refers the distances from the jth instance in ith bag * to the kth bag * * @param train the multi-instance dataset (with relational attribute) */ public void calculateDistance (Instances train) { int numBags =train.numInstances(); int numInstances; Instance tempCenter; m_Distance = new double [numBags][][]; for (int i=0; i
-N <num> * Whether to 0=normalize/1=standardize/2=neither. * (default 0=normalize)* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String nString = Utils.getOption('N', options); if (nString.length() != 0) { setFilterType(new SelectedTag(Integer.parseInt(nString), TAGS_FILTER)); } else { setFilterType(new SelectedTag(FILTER_NORMALIZE, TAGS_FILTER)); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String filterTypeTipText() { return "The filter type for transforming the training data."; } /** * Sets how the training data will be transformed. Should be one of * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. * * @param newType the new filtering mode */ public void setFilterType(SelectedTag newType) { if (newType.getTags() == TAGS_FILTER) { m_filterType = newType.getSelectedTag().getID(); } } /** * Gets how the training data will be transformed. Will be one of * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. * * @return the filtering mode */ public SelectedTag getFilterType() { return new SelectedTag(m_filterType, TAGS_FILTER); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class. * * @param argv should contain the command line arguments to the * scheme (see Evaluation) */ public static void main(String[] argv) { runClassifier(new MIOptimalBall(), argv); } }