[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * MIOptimalBall.java |
---|
| 19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.mi; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.core.Capabilities; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
| 31 | import weka.core.Option; |
---|
| 32 | import weka.core.OptionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.SelectedTag; |
---|
| 35 | import weka.core.Tag; |
---|
| 36 | import weka.core.TechnicalInformation; |
---|
| 37 | import weka.core.TechnicalInformationHandler; |
---|
| 38 | import weka.core.Utils; |
---|
| 39 | import weka.core.WeightedInstancesHandler; |
---|
| 40 | import weka.core.Capabilities.Capability; |
---|
| 41 | import weka.core.TechnicalInformation.Field; |
---|
| 42 | import weka.core.TechnicalInformation.Type; |
---|
| 43 | import weka.core.matrix.DoubleVector; |
---|
| 44 | import weka.filters.Filter; |
---|
| 45 | import weka.filters.unsupervised.attribute.MultiInstanceToPropositional; |
---|
| 46 | import weka.filters.unsupervised.attribute.Normalize; |
---|
| 47 | import weka.filters.unsupervised.attribute.PropositionalToMultiInstance; |
---|
| 48 | import weka.filters.unsupervised.attribute.Standardize; |
---|
| 49 | |
---|
| 50 | import java.util.Enumeration; |
---|
| 51 | import java.util.Vector; |
---|
| 52 | |
---|
| 53 | /** |
---|
| 54 | <!-- globalinfo-start --> |
---|
| 55 | * This classifier tries to find a suitable ball in the multiple-instance space, with a certain data point in the instance space as a ball center. The possible ball center is a certain instance in a positive bag. The possible radiuses are those which can achieve the highest classification accuracy. The model selects the maximum radius as the radius of the optimal ball.<br/> |
---|
| 56 | * <br/> |
---|
| 57 | * For more information about this algorithm, see:<br/> |
---|
| 58 | * <br/> |
---|
| 59 | * Peter Auer, Ronald Ortner: A Boosting Approach to Multiple Instance Learning. In: 15th European Conference on Machine Learning, 63-74, 2004. |
---|
| 60 | * <p/> |
---|
| 61 | <!-- globalinfo-end --> |
---|
| 62 | * |
---|
| 63 | <!-- technical-bibtex-start --> |
---|
| 64 | * BibTeX: |
---|
| 65 | * <pre> |
---|
| 66 | * @inproceedings{Auer2004, |
---|
| 67 | * author = {Peter Auer and Ronald Ortner}, |
---|
| 68 | * booktitle = {15th European Conference on Machine Learning}, |
---|
| 69 | * note = {LNAI 3201}, |
---|
| 70 | * pages = {63-74}, |
---|
| 71 | * publisher = {Springer}, |
---|
| 72 | * title = {A Boosting Approach to Multiple Instance Learning}, |
---|
| 73 | * year = {2004} |
---|
| 74 | * } |
---|
| 75 | * </pre> |
---|
| 76 | * <p/> |
---|
| 77 | <!-- technical-bibtex-end --> |
---|
| 78 | * |
---|
| 79 | <!-- options-start --> |
---|
| 80 | * Valid options are: <p/> |
---|
| 81 | * |
---|
| 82 | * <pre> -N <num> |
---|
| 83 | * Whether to 0=normalize/1=standardize/2=neither. |
---|
| 84 | * (default 0=normalize)</pre> |
---|
| 85 | * |
---|
| 86 | <!-- options-end --> |
---|
| 87 | * |
---|
| 88 | * @author Lin Dong (ld21@cs.waikato.ac.nz) |
---|
| 89 | * @version $Revision: 5928 $ |
---|
| 90 | */ |
---|
| 91 | public class MIOptimalBall |
---|
| 92 | extends AbstractClassifier |
---|
| 93 | implements OptionHandler, WeightedInstancesHandler, |
---|
| 94 | MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { |
---|
| 95 | |
---|
| 96 | /** for serialization */ |
---|
| 97 | static final long serialVersionUID = -6465750129576777254L; |
---|
| 98 | |
---|
| 99 | /** center of the optimal ball */ |
---|
| 100 | protected double[] m_Center; |
---|
| 101 | |
---|
| 102 | /** radius of the optimal ball */ |
---|
| 103 | protected double m_Radius; |
---|
| 104 | |
---|
| 105 | /** the distances from each instance in a positive bag to each bag*/ |
---|
| 106 | protected double [][][]m_Distance; |
---|
| 107 | |
---|
| 108 | /** The filter used to standardize/normalize all values. */ |
---|
| 109 | protected Filter m_Filter = null; |
---|
| 110 | |
---|
| 111 | /** Whether to normalize/standardize/neither */ |
---|
| 112 | protected int m_filterType = FILTER_NORMALIZE; |
---|
| 113 | |
---|
| 114 | /** Normalize training data */ |
---|
| 115 | public static final int FILTER_NORMALIZE = 0; |
---|
| 116 | /** Standardize training data */ |
---|
| 117 | public static final int FILTER_STANDARDIZE = 1; |
---|
| 118 | /** No normalization/standardization */ |
---|
| 119 | public static final int FILTER_NONE = 2; |
---|
| 120 | /** The filter to apply to the training data */ |
---|
| 121 | public static final Tag [] TAGS_FILTER = { |
---|
| 122 | new Tag(FILTER_NORMALIZE, "Normalize training data"), |
---|
| 123 | new Tag(FILTER_STANDARDIZE, "Standardize training data"), |
---|
| 124 | new Tag(FILTER_NONE, "No normalization/standardization"), |
---|
| 125 | }; |
---|
| 126 | |
---|
| 127 | /** filter used to convert the MI dataset into single-instance dataset */ |
---|
| 128 | protected MultiInstanceToPropositional m_ConvertToSI = new MultiInstanceToPropositional(); |
---|
| 129 | |
---|
| 130 | /** filter used to convert the single-instance dataset into MI dataset */ |
---|
| 131 | protected PropositionalToMultiInstance m_ConvertToMI = new PropositionalToMultiInstance(); |
---|
| 132 | |
---|
| 133 | /** |
---|
| 134 | * Returns a string describing this filter |
---|
| 135 | * |
---|
| 136 | * @return a description of the filter suitable for |
---|
| 137 | * displaying in the explorer/experimenter gui |
---|
| 138 | */ |
---|
| 139 | public String globalInfo() { |
---|
| 140 | return |
---|
| 141 | "This classifier tries to find a suitable ball in the " |
---|
| 142 | + "multiple-instance space, with a certain data point in the instance " |
---|
| 143 | + "space as a ball center. The possible ball center is a certain " |
---|
| 144 | + "instance in a positive bag. The possible radiuses are those which can " |
---|
| 145 | + "achieve the highest classification accuracy. The model selects the " |
---|
| 146 | + "maximum radius as the radius of the optimal ball.\n\n" |
---|
| 147 | + "For more information about this algorithm, see:\n\n" |
---|
| 148 | + getTechnicalInformation().toString(); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | /** |
---|
| 152 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 153 | * detailed information about the technical background of this class, |
---|
| 154 | * e.g., paper reference or book this class is based on. |
---|
| 155 | * |
---|
| 156 | * @return the technical information about this class |
---|
| 157 | */ |
---|
| 158 | public TechnicalInformation getTechnicalInformation() { |
---|
| 159 | TechnicalInformation result; |
---|
| 160 | |
---|
| 161 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 162 | result.setValue(Field.AUTHOR, "Peter Auer and Ronald Ortner"); |
---|
| 163 | result.setValue(Field.TITLE, "A Boosting Approach to Multiple Instance Learning"); |
---|
| 164 | result.setValue(Field.BOOKTITLE, "15th European Conference on Machine Learning"); |
---|
| 165 | result.setValue(Field.YEAR, "2004"); |
---|
| 166 | result.setValue(Field.PAGES, "63-74"); |
---|
| 167 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
| 168 | result.setValue(Field.NOTE, "LNAI 3201"); |
---|
| 169 | |
---|
| 170 | return result; |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | /** |
---|
| 174 | * Returns default capabilities of the classifier. |
---|
| 175 | * |
---|
| 176 | * @return the capabilities of this classifier |
---|
| 177 | */ |
---|
| 178 | public Capabilities getCapabilities() { |
---|
| 179 | Capabilities result = super.getCapabilities(); |
---|
| 180 | result.disableAll(); |
---|
| 181 | |
---|
| 182 | // attributes |
---|
| 183 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 184 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
| 185 | result.enable(Capability.MISSING_VALUES); |
---|
| 186 | |
---|
| 187 | // class |
---|
| 188 | result.enable(Capability.BINARY_CLASS); |
---|
| 189 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 190 | |
---|
| 191 | // other |
---|
| 192 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
| 193 | |
---|
| 194 | return result; |
---|
| 195 | } |
---|
| 196 | |
---|
| 197 | /** |
---|
| 198 | * Returns the capabilities of this multi-instance classifier for the |
---|
| 199 | * relational data. |
---|
| 200 | * |
---|
| 201 | * @return the capabilities of this object |
---|
| 202 | * @see Capabilities |
---|
| 203 | */ |
---|
| 204 | public Capabilities getMultiInstanceCapabilities() { |
---|
| 205 | Capabilities result = super.getCapabilities(); |
---|
| 206 | result.disableAll(); |
---|
| 207 | |
---|
| 208 | // attributes |
---|
| 209 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 210 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 211 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 212 | result.enable(Capability.MISSING_VALUES); |
---|
| 213 | |
---|
| 214 | // class |
---|
| 215 | result.disableAllClasses(); |
---|
| 216 | result.enable(Capability.NO_CLASS); |
---|
| 217 | |
---|
| 218 | return result; |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | /** |
---|
| 222 | * Builds the classifier |
---|
| 223 | * |
---|
| 224 | * @param data the training data to be used for generating the |
---|
| 225 | * boosted classifier. |
---|
| 226 | * @throws Exception if the classifier could not be built successfully |
---|
| 227 | */ |
---|
| 228 | public void buildClassifier(Instances data) throws Exception { |
---|
| 229 | // can classifier handle the data? |
---|
| 230 | getCapabilities().testWithFail(data); |
---|
| 231 | |
---|
| 232 | // remove instances with missing class |
---|
| 233 | Instances train = new Instances(data); |
---|
| 234 | train.deleteWithMissingClass(); |
---|
| 235 | |
---|
| 236 | int numAttributes = train.attribute(1).relation().numAttributes(); |
---|
| 237 | m_Center = new double[numAttributes]; |
---|
| 238 | |
---|
| 239 | if (getDebug()) |
---|
| 240 | System.out.println("Start training ..."); |
---|
| 241 | |
---|
| 242 | // convert the training dataset into single-instance dataset |
---|
| 243 | m_ConvertToSI.setInputFormat(train); |
---|
| 244 | train = Filter.useFilter( train, m_ConvertToSI); |
---|
| 245 | |
---|
| 246 | if (m_filterType == FILTER_STANDARDIZE) |
---|
| 247 | m_Filter = new Standardize(); |
---|
| 248 | else if (m_filterType == FILTER_NORMALIZE) |
---|
| 249 | m_Filter = new Normalize(); |
---|
| 250 | else |
---|
| 251 | m_Filter = null; |
---|
| 252 | |
---|
| 253 | if (m_Filter!=null) { |
---|
| 254 | // normalize/standardize the converted training dataset |
---|
| 255 | m_Filter.setInputFormat(train); |
---|
| 256 | train = Filter.useFilter(train, m_Filter); |
---|
| 257 | } |
---|
| 258 | |
---|
| 259 | // convert the single-instance dataset into multi-instance dataset |
---|
| 260 | m_ConvertToMI.setInputFormat(train); |
---|
| 261 | train = Filter.useFilter(train, m_ConvertToMI); |
---|
| 262 | |
---|
| 263 | /*calculate all the distances (and store them in m_Distance[][][]), which |
---|
| 264 | are from each instance in all positive bags to all bags */ |
---|
| 265 | calculateDistance(train); |
---|
| 266 | |
---|
| 267 | /*find the suitable ball center (m_Center) and the corresponding radius (m_Radius)*/ |
---|
| 268 | findRadius(train); |
---|
| 269 | |
---|
| 270 | if (getDebug()) |
---|
| 271 | System.out.println("Finish building optimal ball model"); |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | /** |
---|
| 277 | * calculate the distances from each instance in a positive bag to each bag. |
---|
| 278 | * All result distances are stored in m_Distance[i][j][k], where |
---|
| 279 | * m_Distance[i][j][k] refers the distances from the jth instance in ith bag |
---|
| 280 | * to the kth bag |
---|
| 281 | * |
---|
| 282 | * @param train the multi-instance dataset (with relational attribute) |
---|
| 283 | */ |
---|
| 284 | public void calculateDistance (Instances train) { |
---|
| 285 | int numBags =train.numInstances(); |
---|
| 286 | int numInstances; |
---|
| 287 | Instance tempCenter; |
---|
| 288 | |
---|
| 289 | m_Distance = new double [numBags][][]; |
---|
| 290 | for (int i=0; i<numBags; i++) { |
---|
| 291 | if (train.instance(i).classValue() == 1.0) { //positive bag |
---|
| 292 | numInstances = train.instance(i).relationalValue(1).numInstances(); |
---|
| 293 | m_Distance[i]= new double[numInstances][]; |
---|
| 294 | for (int j=0; j<numInstances; j++) { |
---|
| 295 | tempCenter = train.instance(i).relationalValue(1).instance(j); |
---|
| 296 | m_Distance[i][j]=new double [numBags]; //store the distance from one center to all the bags |
---|
| 297 | for (int k=0; k<numBags; k++){ |
---|
| 298 | if (i==k) |
---|
| 299 | m_Distance[i][j][k]= 0; |
---|
| 300 | else |
---|
| 301 | m_Distance[i][j][k]= minBagDistance (tempCenter, train.instance(k)); |
---|
| 302 | } |
---|
| 303 | } |
---|
| 304 | } |
---|
| 305 | } |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | /** |
---|
| 309 | * Calculate the distance from one data point to a bag |
---|
| 310 | * |
---|
| 311 | * @param center the data point in instance space |
---|
| 312 | * @param bag the bag |
---|
| 313 | * @return the double value as the distance. |
---|
| 314 | */ |
---|
| 315 | public double minBagDistance (Instance center, Instance bag){ |
---|
| 316 | double distance; |
---|
| 317 | double minDistance = Double.MAX_VALUE; |
---|
| 318 | Instances temp = bag.relationalValue(1); |
---|
| 319 | //calculate the distance from the data point to each instance in the bag and return the minimum distance |
---|
| 320 | for (int i=0; i<temp.numInstances(); i++){ |
---|
| 321 | distance =0; |
---|
| 322 | for (int j=0; j<center.numAttributes(); j++) |
---|
| 323 | distance += (center.value(j)-temp.instance(i).value(j))*(center.value(j)-temp.instance(i).value(j)); |
---|
| 324 | |
---|
| 325 | if (minDistance>distance) |
---|
| 326 | minDistance = distance; |
---|
| 327 | } |
---|
| 328 | return Math.sqrt(minDistance); |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | /** |
---|
| 332 | * Find the maximum radius for the optimal ball. |
---|
| 333 | * |
---|
| 334 | * @param train the multi-instance data |
---|
| 335 | */ |
---|
| 336 | public void findRadius(Instances train) { |
---|
| 337 | int numBags, numInstances; |
---|
| 338 | double radius, bagDistance; |
---|
| 339 | int highestCount=0; |
---|
| 340 | |
---|
| 341 | numBags = train.numInstances(); |
---|
| 342 | //try each instance in all positive bag as a ball center (tempCenter), |
---|
| 343 | for (int i=0; i<numBags; i++) { |
---|
| 344 | if (train.instance(i).classValue()== 1.0) {//positive bag |
---|
| 345 | numInstances = train.instance(i).relationalValue(1).numInstances(); |
---|
| 346 | for (int j=0; j<numInstances; j++) { |
---|
| 347 | Instance tempCenter = train.instance(i).relationalValue(1).instance(j); |
---|
| 348 | |
---|
| 349 | //set the possible set of ball radius corresponding to each tempCenter, |
---|
| 350 | double sortedDistance[] = sortArray(m_Distance[i][j]); //sort the distance value |
---|
| 351 | for (int k=1; k<sortedDistance.length; k++){ |
---|
| 352 | radius = sortedDistance[k]-(sortedDistance[k]-sortedDistance[k-1])/2.0 ; |
---|
| 353 | |
---|
| 354 | //evaluate the performance on the training data according to |
---|
| 355 | //the curren selected tempCenter and the set of radius |
---|
| 356 | int correctCount =0; |
---|
| 357 | for (int n=0; n<numBags; n++){ |
---|
| 358 | bagDistance=m_Distance[i][j][n]; |
---|
| 359 | if ((bagDistance <= radius && train.instance(n).classValue()==1.0) |
---|
| 360 | ||(bagDistance > radius && train.instance(n).classValue ()==0.0)) |
---|
| 361 | correctCount += train.instance(n).weight(); |
---|
| 362 | |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | //and keep the track of the ball center and the maximum radius which can achieve the highest accuracy. |
---|
| 366 | if (correctCount > highestCount || (correctCount==highestCount && radius > m_Radius)){ |
---|
| 367 | highestCount = correctCount; |
---|
| 368 | m_Radius = radius; |
---|
| 369 | for (int p=0; p<tempCenter.numAttributes(); p++) |
---|
| 370 | m_Center[p]= tempCenter.value(p); |
---|
| 371 | } |
---|
| 372 | } |
---|
| 373 | } |
---|
| 374 | } |
---|
| 375 | } |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | /** |
---|
| 379 | * Sort the array. |
---|
| 380 | * |
---|
| 381 | * @param distance the array need to be sorted |
---|
| 382 | * @return sorted array |
---|
| 383 | */ |
---|
| 384 | public double [] sortArray(double [] distance) { |
---|
| 385 | double [] sorted = new double [distance.length]; |
---|
| 386 | |
---|
| 387 | //make a copy of the array |
---|
| 388 | double []disCopy = new double[distance.length]; |
---|
| 389 | for (int i=0;i<distance.length; i++) |
---|
| 390 | disCopy[i]= distance[i]; |
---|
| 391 | |
---|
| 392 | DoubleVector sortVector = new DoubleVector(disCopy); |
---|
| 393 | sortVector.sort(); |
---|
| 394 | sorted = sortVector.getArrayCopy(); |
---|
| 395 | return sorted; |
---|
| 396 | } |
---|
| 397 | |
---|
| 398 | |
---|
| 399 | /** |
---|
| 400 | * Computes the distribution for a given multiple instance |
---|
| 401 | * |
---|
| 402 | * @param newBag the instance for which distribution is computed |
---|
| 403 | * @return the distribution |
---|
| 404 | * @throws Exception if the distribution can't be computed successfully |
---|
| 405 | */ |
---|
| 406 | public double[] distributionForInstance(Instance newBag) |
---|
| 407 | throws Exception { |
---|
| 408 | |
---|
| 409 | double [] distribution = new double[2]; |
---|
| 410 | double distance; |
---|
| 411 | distribution[0]=0; |
---|
| 412 | distribution[1]=0; |
---|
| 413 | |
---|
| 414 | Instances insts = new Instances(newBag.dataset(),0); |
---|
| 415 | insts.add(newBag); |
---|
| 416 | |
---|
| 417 | // Filter instances |
---|
| 418 | insts= Filter.useFilter( insts, m_ConvertToSI); |
---|
| 419 | if (m_Filter!=null) |
---|
| 420 | insts = Filter.useFilter(insts, m_Filter); |
---|
| 421 | |
---|
| 422 | //calculate the distance from each single instance to the ball center |
---|
| 423 | int numInsts = insts.numInstances(); |
---|
| 424 | insts.deleteAttributeAt(0); //remove the bagIndex attribute, no use for the distance calculation |
---|
| 425 | |
---|
| 426 | for (int i=0; i<numInsts; i++){ |
---|
| 427 | distance =0; |
---|
| 428 | for (int j=0; j<insts.numAttributes()-1; j++) |
---|
| 429 | distance += (insts.instance(i).value(j) - m_Center[j])*(insts.instance(i).value(j)-m_Center[j]); |
---|
| 430 | |
---|
| 431 | if (distance <=m_Radius*m_Radius){ // check whether this single instance is inside the ball |
---|
| 432 | distribution[1]=1.0; //predicted as a positive bag |
---|
| 433 | break; |
---|
| 434 | } |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | distribution[0]= 1-distribution[1]; |
---|
| 438 | |
---|
| 439 | return distribution; |
---|
| 440 | } |
---|
| 441 | |
---|
| 442 | /** |
---|
| 443 | * Returns an enumeration describing the available options. |
---|
| 444 | * |
---|
| 445 | * @return an enumeration of all the available options. |
---|
| 446 | */ |
---|
| 447 | public Enumeration listOptions() { |
---|
| 448 | Vector result = new Vector(); |
---|
| 449 | |
---|
| 450 | result.addElement(new Option( |
---|
| 451 | "\tWhether to 0=normalize/1=standardize/2=neither. \n" |
---|
| 452 | + "\t(default 0=normalize)", |
---|
| 453 | "N", 1, "-N <num>")); |
---|
| 454 | |
---|
| 455 | return result.elements(); |
---|
| 456 | } |
---|
| 457 | |
---|
| 458 | /** |
---|
| 459 | * Gets the current settings of the classifier. |
---|
| 460 | * |
---|
| 461 | * @return an array of strings suitable for passing to setOptions |
---|
| 462 | */ |
---|
| 463 | public String[] getOptions() { |
---|
| 464 | Vector result; |
---|
| 465 | |
---|
| 466 | result = new Vector(); |
---|
| 467 | |
---|
| 468 | if (getDebug()) |
---|
| 469 | result.add("-D"); |
---|
| 470 | |
---|
| 471 | result.add("-N"); |
---|
| 472 | result.add("" + m_filterType); |
---|
| 473 | |
---|
| 474 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | /** |
---|
| 478 | * Parses a given list of options. <p/> |
---|
| 479 | * |
---|
| 480 | <!-- options-start --> |
---|
| 481 | * Valid options are: <p/> |
---|
| 482 | * |
---|
| 483 | * <pre> -N <num> |
---|
| 484 | * Whether to 0=normalize/1=standardize/2=neither. |
---|
| 485 | * (default 0=normalize)</pre> |
---|
| 486 | * |
---|
| 487 | <!-- options-end --> |
---|
| 488 | * |
---|
| 489 | * @param options the list of options as an array of strings |
---|
| 490 | * @throws Exception if an option is not supported |
---|
| 491 | */ |
---|
| 492 | public void setOptions(String[] options) throws Exception { |
---|
| 493 | setDebug(Utils.getFlag('D', options)); |
---|
| 494 | |
---|
| 495 | String nString = Utils.getOption('N', options); |
---|
| 496 | if (nString.length() != 0) { |
---|
| 497 | setFilterType(new SelectedTag(Integer.parseInt(nString), TAGS_FILTER)); |
---|
| 498 | } else { |
---|
| 499 | setFilterType(new SelectedTag(FILTER_NORMALIZE, TAGS_FILTER)); |
---|
| 500 | } |
---|
| 501 | } |
---|
| 502 | |
---|
| 503 | /** |
---|
| 504 | * Returns the tip text for this property |
---|
| 505 | * |
---|
| 506 | * @return tip text for this property suitable for |
---|
| 507 | * displaying in the explorer/experimenter gui |
---|
| 508 | */ |
---|
| 509 | public String filterTypeTipText() { |
---|
| 510 | return "The filter type for transforming the training data."; |
---|
| 511 | } |
---|
| 512 | |
---|
| 513 | /** |
---|
| 514 | * Sets how the training data will be transformed. Should be one of |
---|
| 515 | * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. |
---|
| 516 | * |
---|
| 517 | * @param newType the new filtering mode |
---|
| 518 | */ |
---|
| 519 | public void setFilterType(SelectedTag newType) { |
---|
| 520 | |
---|
| 521 | if (newType.getTags() == TAGS_FILTER) { |
---|
| 522 | m_filterType = newType.getSelectedTag().getID(); |
---|
| 523 | } |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | /** |
---|
| 527 | * Gets how the training data will be transformed. Will be one of |
---|
| 528 | * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. |
---|
| 529 | * |
---|
| 530 | * @return the filtering mode |
---|
| 531 | */ |
---|
| 532 | public SelectedTag getFilterType() { |
---|
| 533 | |
---|
| 534 | return new SelectedTag(m_filterType, TAGS_FILTER); |
---|
| 535 | } |
---|
| 536 | |
---|
| 537 | /** |
---|
| 538 | * Returns the revision string. |
---|
| 539 | * |
---|
| 540 | * @return the revision |
---|
| 541 | */ |
---|
| 542 | public String getRevision() { |
---|
| 543 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | /** |
---|
| 547 | * Main method for testing this class. |
---|
| 548 | * |
---|
| 549 | * @param argv should contain the command line arguments to the |
---|
| 550 | * scheme (see Evaluation) |
---|
| 551 | */ |
---|
| 552 | public static void main(String[] argv) { |
---|
| 553 | runClassifier(new MIOptimalBall(), argv); |
---|
| 554 | } |
---|
| 555 | } |
---|