source: src/main/java/weka/classifiers/mi/MIEMDD.java @ 4

Last change on this file since 4 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 22.8 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 * MIEMDD.java
19 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.mi;
24
25import weka.classifiers.RandomizableClassifier;
26import weka.core.Capabilities;
27import weka.core.FastVector;
28import weka.core.Instance;
29import weka.core.Instances;
30import weka.core.MultiInstanceCapabilitiesHandler;
31import weka.core.Optimization;
32import weka.core.Option;
33import weka.core.OptionHandler;
34import weka.core.RevisionUtils;
35import weka.core.SelectedTag;
36import weka.core.Tag;
37import weka.core.TechnicalInformation;
38import weka.core.TechnicalInformationHandler;
39import weka.core.Utils;
40import weka.core.Capabilities.Capability;
41import weka.core.TechnicalInformation.Field;
42import weka.core.TechnicalInformation.Type;
43import weka.filters.Filter;
44import weka.filters.unsupervised.attribute.Normalize;
45import weka.filters.unsupervised.attribute.ReplaceMissingValues;
46import weka.filters.unsupervised.attribute.Standardize;
47
48import java.util.Enumeration;
49import java.util.Random;
50import java.util.Vector;
51
52/**
53 <!-- globalinfo-start -->
54 * EMDD model builds heavily upon Dietterich's Diverse Density (DD) algorithm.<br/>
55 * It is a general framework for MI learning of converting the MI problem to a single-instance setting using EM. In this implementation, we use most-likely cause DD model and only use 3 random selected postive bags as initial starting points of EM.<br/>
56 * <br/>
57 * For more information see:<br/>
58 * <br/>
59 * Qi Zhang, Sally A. Goldman: EM-DD: An Improved Multiple-Instance Learning Technique. In: Advances in Neural Information Processing Systems 14, 1073-108, 2001.
60 * <p/>
61 <!-- globalinfo-end -->
62 *
63 <!-- technical-bibtex-start -->
64 * BibTeX:
65 * <pre>
66 * &#64;inproceedings{Zhang2001,
67 *    author = {Qi Zhang and Sally A. Goldman},
68 *    booktitle = {Advances in Neural Information Processing Systems 14},
69 *    pages = {1073-108},
70 *    publisher = {MIT Press},
71 *    title = {EM-DD: An Improved Multiple-Instance Learning Technique},
72 *    year = {2001}
73 * }
74 * </pre>
75 * <p/>
76 <!-- technical-bibtex-end -->
77 *
78 <!-- options-start -->
79 * Valid options are: <p/>
80 *
81 * <pre> -N &lt;num&gt;
82 *  Whether to 0=normalize/1=standardize/2=neither.
83 *  (default 1=standardize)</pre>
84 *
85 * <pre> -S &lt;num&gt;
86 *  Random number seed.
87 *  (default 1)</pre>
88 *
89 * <pre> -D
90 *  If set, classifier is run in debug mode and
91 *  may output additional info to the console</pre>
92 *
93 <!-- options-end -->
94 *     
95 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
96 * @author Lin Dong (ld21@cs.waikato.ac.nz)
97 * @version $Revision: 5481 $
98 */
99public class MIEMDD 
100  extends RandomizableClassifier
101  implements OptionHandler, MultiInstanceCapabilitiesHandler,
102             TechnicalInformationHandler {
103
104  /** for serialization */
105  static final long serialVersionUID = 3899547154866223734L;
106 
107  /** The index of the class attribute */
108  protected int m_ClassIndex;
109
110  protected double[] m_Par;
111
112  /** The number of the class labels */
113  protected int m_NumClasses;
114
115  /** Class labels for each bag */
116  protected int[] m_Classes;
117
118  /** MI data */
119  protected double[][][] m_Data;
120
121  /** All attribute names */
122  protected Instances m_Attributes;
123
124  /** MI data */       
125  protected double[][] m_emData;
126
127  /** The filter used to standardize/normalize all values. */
128  protected Filter m_Filter = null;
129
130  /** Whether to normalize/standardize/neither, default:standardize */
131  protected int m_filterType = FILTER_STANDARDIZE;
132
133  /** Normalize training data */
134  public static final int FILTER_NORMALIZE = 0;
135  /** Standardize training data */
136  public static final int FILTER_STANDARDIZE = 1;
137  /** No normalization/standardization */
138  public static final int FILTER_NONE = 2;
139  /** The filter to apply to the training data */
140  public static final Tag[] TAGS_FILTER = {
141    new Tag(FILTER_NORMALIZE, "Normalize training data"),
142    new Tag(FILTER_STANDARDIZE, "Standardize training data"),
143    new Tag(FILTER_NONE, "No normalization/standardization"),
144  };
145
146  /** The filter used to get rid of missing values. */
147  protected ReplaceMissingValues m_Missing = new ReplaceMissingValues();
148
149  /**
150   * Returns a string describing this filter
151   *
152   * @return a description of the filter suitable for
153   * displaying in the explorer/experimenter gui
154   */
155  public String globalInfo() {
156    return 
157        "EMDD model builds heavily upon Dietterich's Diverse Density (DD) "
158      + "algorithm.\nIt is a general framework for MI learning of converting "
159      + "the MI problem to a single-instance setting using EM. In this "
160      + "implementation, we use most-likely cause DD model and only use 3 "
161      + "random selected postive bags as initial starting points of EM.\n\n"
162      + "For more information see:\n\n"
163      + getTechnicalInformation().toString();
164  }
165
166  /**
167   * Returns an instance of a TechnicalInformation object, containing
168   * detailed information about the technical background of this class,
169   * e.g., paper reference or book this class is based on.
170   *
171   * @return the technical information about this class
172   */
173  public TechnicalInformation getTechnicalInformation() {
174    TechnicalInformation        result;
175   
176    result = new TechnicalInformation(Type.INPROCEEDINGS);
177    result.setValue(Field.AUTHOR, "Qi Zhang and Sally A. Goldman");
178    result.setValue(Field.TITLE, "EM-DD: An Improved Multiple-Instance Learning Technique");
179    result.setValue(Field.BOOKTITLE, "Advances in Neural Information Processing Systems 14");
180    result.setValue(Field.YEAR, "2001");
181    result.setValue(Field.PAGES, "1073-108");
182    result.setValue(Field.PUBLISHER, "MIT Press");
183   
184    return result;
185  }
186
187  /**
188   * Returns an enumeration describing the available options
189   *
190   * @return an enumeration of all the available options
191   */
192  public Enumeration listOptions() {
193    Vector result = new Vector();
194   
195    result.addElement(new Option(
196          "\tWhether to 0=normalize/1=standardize/2=neither.\n" 
197          + "\t(default 1=standardize)",
198          "N", 1, "-N <num>"));
199
200    Enumeration enm = super.listOptions();
201    while (enm.hasMoreElements())
202      result.addElement(enm.nextElement());
203
204    return result.elements();
205  }
206
207  /**
208   * Parses a given list of options. <p/>
209   *
210   <!-- options-start -->
211   * Valid options are: <p/>
212   *
213   * <pre> -N &lt;num&gt;
214   *  Whether to 0=normalize/1=standardize/2=neither.
215   *  (default 1=standardize)</pre>
216   *
217   * <pre> -S &lt;num&gt;
218   *  Random number seed.
219   *  (default 1)</pre>
220   *
221   * <pre> -D
222   *  If set, classifier is run in debug mode and
223   *  may output additional info to the console</pre>
224   *
225   <!-- options-end -->
226   *
227   * @param options the list of options as an array of strings
228   * @throws Exception if an option is not supported
229   */
230  public void setOptions(String[] options) throws Exception {
231    String      tmpStr;
232   
233    tmpStr = Utils.getOption('N', options);
234    if (tmpStr.length() != 0) {
235      setFilterType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_FILTER));
236    } else {
237      setFilterType(new SelectedTag(FILTER_STANDARDIZE, TAGS_FILTER));
238    }     
239
240    super.setOptions(options);
241  }
242
243
244  /**
245   * Gets the current settings of the classifier.
246   *
247   * @return an array of strings suitable for passing to setOptions
248   */
249  public String[] getOptions() {
250    Vector      result;
251    String[]    options;
252    int         i;
253   
254    result  = new Vector();
255    options = super.getOptions();
256    for (i = 0; i < options.length; i++)
257      result.add(options[i]);
258   
259    result.add("-N");
260    result.add("" + m_filterType);
261
262    return (String[]) result.toArray(new String[result.size()]);
263  }
264
265  /**
266   * Returns the tip text for this property
267   *
268   * @return tip text for this property suitable for
269   * displaying in the explorer/experimenter gui
270   */
271  public String filterTypeTipText() {
272    return "The filter type for transforming the training data.";
273  }
274
275  /**
276   * Gets how the training data will be transformed. Will be one of
277   * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.
278   *
279   * @return the filtering mode
280   */
281  public SelectedTag getFilterType() {
282    return new SelectedTag(m_filterType, TAGS_FILTER);
283  }
284
285  /**
286   * Sets how the training data will be transformed. Should be one of
287   * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.
288   *
289   * @param newType the new filtering mode
290   */
291  public void setFilterType(SelectedTag newType) {
292
293    if (newType.getTags() == TAGS_FILTER) {
294      m_filterType = newType.getSelectedTag().getID();
295    }
296  }
297
298  private class OptEng 
299    extends Optimization {
300    /**
301     * Evaluate objective function
302     * @param x the current values of variables
303     * @return the value of the objective function
304     */
305    protected double objectiveFunction(double[] x){
306      double nll = 0; // -LogLikelihood
307      for (int i=0; i<m_Classes.length; i++){ // ith bag
308        double ins=0.0;
309        for (int k=0; k<m_emData[i].length; k++)  //attribute index
310          ins += (m_emData[i][k]-x[k*2])*(m_emData[i][k]-x[k*2])*
311            x[k*2+1]*x[k*2+1];
312        ins = Math.exp(-ins); // Pr. of being positive
313
314        if (m_Classes[i]==1){
315          if (ins <= m_Zero) ins = m_Zero;
316          nll -= Math.log(ins); //bag level -LogLikelihood
317        }
318        else{
319          ins = 1.0 - ins;  //Pr. of being negative
320          if(ins<=m_Zero) ins=m_Zero;
321          nll -= Math.log(ins);
322        }
323      }
324      return nll;
325    }
326
327    /**
328     * Evaluate Jacobian vector
329     * @param x the current values of variables
330     * @return the gradient vector
331     */
332    protected double[] evaluateGradient(double[] x){
333      double[] grad = new double[x.length];
334      for (int i=0; i<m_Classes.length; i++){ // ith bag
335        double[] numrt = new double[x.length];
336        double exp=0.0;
337        for (int k=0; k<m_emData[i].length; k++) //attr index
338          exp += (m_emData[i][k]-x[k*2])*(m_emData[i][k]-x[k*2])
339            *x[k*2+1]*x[k*2+1];
340        exp = Math.exp(-exp);  //Pr. of being positive
341
342        //Instance-wise update
343        for (int p=0; p<m_emData[i].length; p++){  // pth variable
344          numrt[2*p] = 2.0*(x[2*p]-m_emData[i][p])*x[p*2+1]*x[p*2+1];
345          numrt[2*p+1] = 2.0*(x[2*p]-m_emData[i][p])*(x[2*p]-m_emData[i][p])
346            *x[p*2+1];
347        }
348
349        //Bag-wise update
350        for (int q=0; q<m_emData[i].length; q++){
351          if (m_Classes[i] == 1) {//derivation of (-LogLikeliHood) for positive bags
352            grad[2*q] += numrt[2*q];
353            grad[2*q+1] += numrt[2*q+1];
354          }
355          else{ //derivation of (-LogLikeliHood) for negative bags
356            grad[2*q] -= numrt[2*q]*exp/(1.0-exp);
357            grad[2*q+1] -= numrt[2*q+1]*exp/(1.0-exp);
358          }
359        }
360      } // one bag
361
362      return grad;
363    }
364   
365    /**
366     * Returns the revision string.
367     *
368     * @return          the revision
369     */
370    public String getRevision() {
371      return RevisionUtils.extract("$Revision: 5481 $");
372    }
373  }
374
375  /**
376   * Returns default capabilities of the classifier.
377   *
378   * @return      the capabilities of this classifier
379   */
380  public Capabilities getCapabilities() {
381    Capabilities result = super.getCapabilities();
382    result.disableAll();
383
384    // attributes
385    result.enable(Capability.NOMINAL_ATTRIBUTES);
386    result.enable(Capability.RELATIONAL_ATTRIBUTES);
387    result.enable(Capability.MISSING_VALUES);
388
389    // class
390    result.enable(Capability.BINARY_CLASS);
391    result.enable(Capability.MISSING_CLASS_VALUES);
392   
393    // other
394    result.enable(Capability.ONLY_MULTIINSTANCE);
395   
396    return result;
397  }
398
399  /**
400   * Returns the capabilities of this multi-instance classifier for the
401   * relational data.
402   *
403   * @return            the capabilities of this object
404   * @see               Capabilities
405   */
406  public Capabilities getMultiInstanceCapabilities() {
407    Capabilities result = super.getCapabilities();
408    result.disableAll();
409   
410    // attributes
411    result.enable(Capability.NOMINAL_ATTRIBUTES);
412    result.enable(Capability.NUMERIC_ATTRIBUTES);
413    result.enable(Capability.DATE_ATTRIBUTES);
414    result.enable(Capability.MISSING_VALUES);
415
416    // class
417    result.disableAllClasses();
418    result.enable(Capability.NO_CLASS);
419   
420    return result;
421  }
422
423  /**
424   * Builds the classifier
425   *
426   * @param train the training data to be used for generating the
427   * boosted classifier.
428   * @throws Exception if the classifier could not be built successfully
429   */
430  public void buildClassifier(Instances train) throws Exception {
431    // can classifier handle the data?
432    getCapabilities().testWithFail(train);
433
434    // remove instances with missing class
435    train = new Instances(train);
436    train.deleteWithMissingClass();
437   
438    m_ClassIndex = train.classIndex();
439    m_NumClasses = train.numClasses();
440
441    int nR = train.attribute(1).relation().numAttributes();
442    int nC = train.numInstances();
443    int[] bagSize = new int[nC];
444    Instances datasets = new Instances(train.attribute(1).relation(), 0);
445
446    m_Data = new double [nC][nR][];              // Data values
447    m_Classes = new int [nC];                    // Class values
448    m_Attributes = datasets.stringFreeStructure();
449    if (m_Debug) {
450      System.out.println("\n\nExtracting data...");
451    }
452
453    for (int h = 0; h < nC; h++)  {//h_th bag
454      Instance current = train.instance(h);
455      m_Classes[h] = (int)current.classValue();  // Class value starts from 0
456      Instances currInsts = current.relationalValue(1);
457      for (int i = 0; i < currInsts.numInstances(); i++){
458        Instance inst = currInsts.instance(i);
459        datasets.add(inst);
460      }
461
462      int nI = currInsts.numInstances();
463      bagSize[h] = nI;
464    }
465
466
467    /* filter the training data */
468    if (m_filterType == FILTER_STANDARDIZE) 
469      m_Filter = new Standardize();
470    else if (m_filterType == FILTER_NORMALIZE)
471      m_Filter = new Normalize();
472    else 
473      m_Filter = null; 
474
475    if (m_Filter != null) {   
476      m_Filter.setInputFormat(datasets);
477      datasets = Filter.useFilter(datasets, m_Filter); 
478    }
479
480    m_Missing.setInputFormat(datasets);
481    datasets = Filter.useFilter(datasets, m_Missing);
482
483    int instIndex = 0;
484    int start = 0;     
485    for (int h = 0; h < nC; h++)  {     
486      for (int i = 0; i < datasets.numAttributes(); i++) {
487        // initialize m_data[][][]
488        m_Data[h][i] = new double[bagSize[h]];
489        instIndex=start;
490        for (int k = 0; k < bagSize[h]; k++){
491          m_Data[h][i][k] = datasets.instance(instIndex).value(i);
492          instIndex++;
493        }
494      }
495      start=instIndex;
496    }
497
498    if (m_Debug) {
499      System.out.println("\n\nIteration History..." );
500    }
501
502    m_emData =new double[nC][nR];
503    m_Par= new double[2*nR];
504
505    double[] x = new double[nR*2];
506    double[] tmp = new double[x.length];
507    double[] pre_x = new double[x.length];
508    double[] best_hypothesis = new double[x.length];
509    double[][] b = new double[2][x.length];
510
511    OptEng opt;
512    double bestnll = Double.MAX_VALUE;
513    double min_error = Double.MAX_VALUE;
514    double nll, pre_nll;
515    int iterationCount;
516
517
518    for (int t = 0; t < x.length; t++) {
519      b[0][t] = Double.NaN;
520      b[1][t] = Double.NaN;
521    }
522
523    //random pick 3 positive bags
524    Random r = new Random(getSeed());
525    FastVector index = new FastVector(); 
526    int n1, n2, n3;
527    do {
528      n1 = r.nextInt(nC-1);     
529    } while (m_Classes[n1] == 0);
530    index.addElement(new Integer(n1)); 
531
532    do {
533      n2 = r.nextInt(nC-1);
534    } while (n2 == n1|| m_Classes[n2] == 0);
535    index.addElement(new Integer(n2)); 
536
537    do {
538      n3 = r.nextInt(nC-1);
539    } while (n3 == n1 || n3 == n2 || m_Classes[n3] == 0);
540    index.addElement(new Integer(n3));
541
542    for (int s = 0; s < index.size(); s++){
543      int exIdx = ((Integer)index.elementAt(s)).intValue();
544      if (m_Debug)
545        System.out.println("\nH0 at "+exIdx);
546
547
548      for (int p = 0; p < m_Data[exIdx][0].length; p++) {
549        //initialize a hypothesis
550        for (int q = 0; q < nR; q++) {
551          x[2 * q] = m_Data[exIdx][q][p];
552          x[2 * q + 1] = 1.0;
553        } 
554
555        pre_nll = Double.MAX_VALUE;
556        nll = Double.MAX_VALUE/10.0;
557        iterationCount = 0;
558        //while (Math.abs(nll-pre_nll)>0.01*pre_nll && iterationCount<10) {  //stop condition
559        while (nll < pre_nll && iterationCount < 10) {
560          iterationCount++;
561          pre_nll = nll;
562
563          if (m_Debug) 
564            System.out.println("\niteration: "+iterationCount);
565
566          //E-step (find one instance from each bag with max likelihood )
567          for (int i = 0; i < m_Data.length; i++) { //for each bag
568
569            int insIndex = findInstance(i, x); 
570
571            for (int att = 0; att < m_Data[0].length; att++) //for each attribute
572              m_emData[i][att] = m_Data[i][att][insIndex];
573          }
574          if (m_Debug)
575            System.out.println("E-step for new H' finished");
576
577          //M-step
578          opt = new OptEng();
579          tmp = opt.findArgmin(x, b);
580          while (tmp == null) {
581            tmp = opt.getVarbValues();
582            if (m_Debug)
583              System.out.println("200 iterations finished, not enough!");
584            tmp = opt.findArgmin(tmp, b);
585          }
586          nll = opt.getMinFunction();
587
588          pre_x = x;
589          x = tmp; // update hypothesis
590
591
592          //keep the track of the best target point which has the minimum nll
593          /* if (nll < bestnll) {
594             bestnll = nll;
595             m_Par = tmp;
596             if (m_Debug)
597             System.out.println("!!!!!!!!!!!!!!!!Smaller NLL found: " + nll);
598             }*/
599
600          //if (m_Debug)
601          //System.out.println(exIdx+" "+p+": "+nll+" "+pre_nll+" " +bestnll);
602
603        } //converged for one instance
604
605        //evaluate the hypothesis on the training data and
606        //keep the track of the hypothesis with minimum error on training data
607        double distribution[] = new double[2];
608        int error = 0;
609        if (nll > pre_nll)
610          m_Par = pre_x; 
611        else
612          m_Par = x;
613
614        for (int i = 0; i<train.numInstances(); i++) {
615          distribution = distributionForInstance (train.instance(i));
616          if (distribution[1] >= 0.5 && m_Classes[i] == 0)
617            error++;
618          else if (distribution[1]<0.5 && m_Classes[i] == 1)
619            error++;
620        }
621        if (error < min_error) {
622          best_hypothesis = m_Par;
623          min_error = error;
624          if (nll > pre_nll)
625            bestnll = pre_nll;
626          else
627            bestnll = nll;
628          if (m_Debug)
629            System.out.println("error= "+ error +"  nll= " + bestnll);
630        }
631      }
632      if (m_Debug) {
633        System.out.println(exIdx+ ":  -------------<Converged>--------------");
634        System.out.println("current minimum error= "+min_error+"  nll= "+bestnll);
635      }
636    } 
637    m_Par = best_hypothesis;
638  }
639
640
641  /**
642   * given x, find the instance in ith bag with the most likelihood
643   * probability, which is most likely to responsible for the label of the
644   * bag For a positive bag, find the instance with the maximal probability
645   * of being positive For a negative bag, find the instance with the minimal
646   * probability of being negative
647   *
648   * @param i the bag index
649   * @param x the current values of variables
650   * @return index of the instance in the bag
651   */
652  protected int findInstance(int i, double[] x){
653
654    double min=Double.MAX_VALUE;
655    int insIndex=0;
656    int nI = m_Data[i][0].length; // numInstances in ith bag
657
658    for (int j=0; j<nI; j++){
659      double ins=0.0;
660      for (int k=0; k<m_Data[i].length; k++)  // for each attribute
661        ins += (m_Data[i][k][j]-x[k*2])*(m_Data[i][k][j]-x[k*2])*
662          x[k*2+1]*x[k*2+1];
663
664      //the probability can be calculated as Math.exp(-ins)
665      //to find the maximum Math.exp(-ins) is equivalent to find the minimum of (ins)
666      if (ins<min)  {
667        min=ins;
668        insIndex=j;
669      }
670    }
671    return insIndex;
672  }
673
674
675  /**
676   * Computes the distribution for a given exemplar
677   *
678   * @param exmp the exemplar for which distribution is computed
679   * @return the distribution
680   * @throws Exception if the distribution can't be computed successfully
681   */
682  public double[] distributionForInstance(Instance exmp)
683    throws Exception {
684
685    // Extract the data
686    Instances ins = exmp.relationalValue(1);
687    if (m_Filter != null)
688      ins = Filter.useFilter(ins, m_Filter);
689
690    ins = Filter.useFilter(ins, m_Missing);
691
692    int nI = ins.numInstances(), nA = ins.numAttributes();
693    double[][] dat = new double [nI][nA];
694    for (int j = 0; j < nI; j++){
695      for (int k=0; k<nA; k++){
696        dat[j][k] = ins.instance(j).value(k);
697      }
698    }
699    //find the concept instance in the exemplar
700    double min = Double.MAX_VALUE;
701    double maxProb = -1.0;
702    for (int j = 0; j < nI; j++){
703      double exp = 0.0;
704      for (int k = 0; k<nA; k++)  // for each attribute
705        exp += (dat[j][k]-m_Par[k*2])*(dat[j][k]-m_Par[k*2])*m_Par[k*2+1]*m_Par[k*2+1];
706      //the probability can be calculated as Math.exp(-exp)
707      //to find the maximum Math.exp(-exp) is equivalent to find the minimum of (exp)
708      if (exp < min)  {
709        min     = exp;
710        maxProb = Math.exp(-exp); //maximum probability of being positive   
711      }
712    }   
713
714    // Compute the probability of the bag
715    double[] distribution = new double[2];
716    distribution[1] = maxProb; 
717    distribution[0] = 1.0 - distribution[1];  //mininum prob. of being negative
718
719    return distribution;
720  }
721
722
723  /**
724   * Gets a string describing the classifier.
725   *
726   * @return a string describing the classifer built.
727   */
728  public String toString() {
729
730    String result = "MIEMDD";
731    if (m_Par == null) {
732      return result + ": No model built yet.";
733    }
734
735    result += "\nCoefficients...\n"
736      + "Variable       Point       Scale\n";
737    for (int j = 0, idx=0; j < m_Par.length/2; j++, idx++) {
738      result += m_Attributes.attribute(idx).name();
739      result += " "+Utils.doubleToString(m_Par[j*2], 12, 4);
740      result += " "+Utils.doubleToString(m_Par[j*2+1], 12, 4)+"\n";
741    }
742
743    return result;
744  }
745 
746  /**
747   * Returns the revision string.
748   *
749   * @return            the revision
750   */
751  public String getRevision() {
752    return RevisionUtils.extract("$Revision: 5481 $");
753  }
754
755  /**
756   * Main method for testing this class.
757   *
758   * @param argv should contain the command line arguments to the
759   * scheme (see Evaluation)
760   */
761  public static void main(String[] argv) {
762    runClassifier(new MIEMDD(), argv);
763  }
764}
Note: See TracBrowser for help on using the repository browser.