/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* MDD.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.mi;
import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import weka.filters.unsupervised.attribute.Standardize;
import java.util.Enumeration;
import java.util.Vector;
/**
* Modified Diverse Density algorithm, with collective assumption.
*
* More information about DD:
*
* Oded Maron (1998). Learning from ambiguity.
*
* O. Maron, T. Lozano-Perez (1998). A Framework for Multiple Instance Learning. Neural Information Processing Systems. 10.
*
* @phdthesis{Maron1998, * author = {Oded Maron}, * school = {Massachusetts Institute of Technology}, * title = {Learning from ambiguity}, * year = {1998} * } * * @article{Maron1998, * author = {O. Maron and T. Lozano-Perez}, * journal = {Neural Information Processing Systems}, * title = {A Framework for Multiple Instance Learning}, * volume = {10}, * year = {1998} * } ** * * Valid options are: * *
-D * Turn on debugging output.* *
-N <num> * Whether to 0=normalize/1=standardize/2=neither. * (default 1=standardize)* * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Xin Xu (xx5@cs.waikato.ac.nz) * @version $Revision: 5928 $ */ public class MDD extends AbstractClassifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -7273119490545290581L; /** The index of the class attribute */ protected int m_ClassIndex; protected double[] m_Par; /** The number of the class labels */ protected int m_NumClasses; /** Class labels for each bag */ protected int[] m_Classes; /** MI data */ protected double[][][] m_Data; /** All attribute names */ protected Instances m_Attributes; /** The filter used to standardize/normalize all values. */ protected Filter m_Filter =null; /** Whether to normalize/standardize/neither, default:standardize */ protected int m_filterType = FILTER_STANDARDIZE; /** Normalize training data */ public static final int FILTER_NORMALIZE = 0; /** Standardize training data */ public static final int FILTER_STANDARDIZE = 1; /** No normalization/standardization */ public static final int FILTER_NONE = 2; /** The filter to apply to the training data */ public static final Tag [] TAGS_FILTER = { new Tag(FILTER_NORMALIZE, "Normalize training data"), new Tag(FILTER_STANDARDIZE, "Standardize training data"), new Tag(FILTER_NONE, "No normalization/standardization"), }; /** The filter used to get rid of missing values. */ protected ReplaceMissingValues m_Missing = new ReplaceMissingValues(); /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Modified Diverse Density algorithm, with collective assumption.\n\n" + "More information about DD:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.PHDTHESIS); result.setValue(Field.AUTHOR, "Oded Maron"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "Learning from ambiguity"); result.setValue(Field.SCHOOL, "Massachusetts Institute of Technology"); additional = result.add(Type.ARTICLE); additional.setValue(Field.AUTHOR, "O. Maron and T. Lozano-Perez"); additional.setValue(Field.YEAR, "1998"); additional.setValue(Field.TITLE, "A Framework for Multiple Instance Learning"); additional.setValue(Field.JOURNAL, "Neural Information Processing Systems"); additional.setValue(Field.VOLUME, "10"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); result.addElement(new Option( "\tWhether to 0=normalize/1=standardize/2=neither.\n" + "\t(default 1=standardize)", "N", 1, "-N