1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * CitationKNN.java |
---|
19 | * Copyright (C) 2005 Miguel Garcia Torres |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.classifiers.mi; |
---|
23 | |
---|
24 | import weka.classifiers.Classifier; |
---|
25 | import weka.classifiers.AbstractClassifier; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.OptionHandler; |
---|
32 | import weka.core.RevisionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.TechnicalInformation; |
---|
35 | import weka.core.TechnicalInformationHandler; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.Capabilities.Capability; |
---|
38 | import weka.core.TechnicalInformation.Field; |
---|
39 | import weka.core.TechnicalInformation.Type; |
---|
40 | |
---|
41 | import java.io.Serializable; |
---|
42 | import java.util.Enumeration; |
---|
43 | import java.util.Vector; |
---|
44 | /** |
---|
45 | <!-- globalinfo-start --> |
---|
46 | * Modified version of the Citation kNN multi instance classifier.<br/> |
---|
47 | * <br/> |
---|
48 | * For more information see:<br/> |
---|
49 | * <br/> |
---|
50 | * Jun Wang, Zucker, Jean-Daniel: Solving Multiple-Instance Problem: A Lazy Learning Approach. In: 17th International Conference on Machine Learning, 1119-1125, 2000. |
---|
51 | * <p/> |
---|
52 | <!-- globalinfo-end --> |
---|
53 | * |
---|
54 | <!-- technical-bibtex-start --> |
---|
55 | * BibTeX: |
---|
56 | * <pre> |
---|
57 | * @inproceedings{Wang2000, |
---|
58 | * author = {Jun Wang and Zucker and Jean-Daniel}, |
---|
59 | * booktitle = {17th International Conference on Machine Learning}, |
---|
60 | * editor = {Pat Langley}, |
---|
61 | * pages = {1119-1125}, |
---|
62 | * title = {Solving Multiple-Instance Problem: A Lazy Learning Approach}, |
---|
63 | * year = {2000} |
---|
64 | * } |
---|
65 | * </pre> |
---|
66 | * <p/> |
---|
67 | <!-- technical-bibtex-end --> |
---|
68 | * |
---|
69 | <!-- options-start --> |
---|
70 | * Valid options are: <p/> |
---|
71 | * |
---|
72 | * <pre> -R <number of references> |
---|
73 | * Number of Nearest References (default 1)</pre> |
---|
74 | * |
---|
75 | * <pre> -C <number of citers> |
---|
76 | * Number of Nearest Citers (default 1)</pre> |
---|
77 | * |
---|
78 | * <pre> -H <rank> |
---|
79 | * Rank of the Hausdorff Distance (default 1)</pre> |
---|
80 | * |
---|
81 | <!-- options-end --> |
---|
82 | * |
---|
83 | * @author Miguel Garcia Torres (mgarciat@ull.es) |
---|
84 | * @version $Revision: 5928 $ |
---|
85 | */ |
---|
86 | public class CitationKNN |
---|
87 | extends AbstractClassifier |
---|
88 | implements OptionHandler, MultiInstanceCapabilitiesHandler, |
---|
89 | TechnicalInformationHandler { |
---|
90 | |
---|
91 | /** for serialization */ |
---|
92 | static final long serialVersionUID = -8435377743874094852L; |
---|
93 | |
---|
94 | /** The index of the class attribute */ |
---|
95 | protected int m_ClassIndex; |
---|
96 | |
---|
97 | /** The number of the class labels */ |
---|
98 | protected int m_NumClasses; |
---|
99 | |
---|
100 | /** */ |
---|
101 | protected int m_IdIndex; |
---|
102 | |
---|
103 | /** Debugging output */ |
---|
104 | protected boolean m_Debug; |
---|
105 | |
---|
106 | /** Class labels for each bag */ |
---|
107 | protected int[] m_Classes; |
---|
108 | |
---|
109 | /** attribute name structure of the relational attribute*/ |
---|
110 | protected Instances m_Attributes; |
---|
111 | |
---|
112 | /** Number of references */ |
---|
113 | protected int m_NumReferences = 1; |
---|
114 | |
---|
115 | /** Number of citers*/ |
---|
116 | protected int m_NumCiters = 1; |
---|
117 | |
---|
118 | /** Training bags*/ |
---|
119 | protected Instances m_TrainBags; |
---|
120 | |
---|
121 | /** Different debugging output */ |
---|
122 | protected boolean m_CNNDebug = false; |
---|
123 | |
---|
124 | protected boolean m_CitersDebug = false; |
---|
125 | |
---|
126 | protected boolean m_ReferencesDebug = false; |
---|
127 | |
---|
128 | protected boolean m_HDistanceDebug = false; |
---|
129 | |
---|
130 | protected boolean m_NeighborListDebug = false; |
---|
131 | |
---|
132 | /** C nearest neighbors considering all the bags*/ |
---|
133 | protected NeighborList[] m_CNN; |
---|
134 | |
---|
135 | /** C nearest citers */ |
---|
136 | protected int[] m_Citers; |
---|
137 | |
---|
138 | /** R nearest references */ |
---|
139 | protected int[] m_References; |
---|
140 | |
---|
141 | /** Rank associated to the Hausdorff distance*/ |
---|
142 | protected int m_HDRank = 1; |
---|
143 | |
---|
144 | /** Normalization of the euclidean distance */ |
---|
145 | private double[] m_Diffs; |
---|
146 | |
---|
147 | private double[] m_Min; |
---|
148 | |
---|
149 | private double m_MinNorm = 0.95; |
---|
150 | |
---|
151 | private double[] m_Max; |
---|
152 | |
---|
153 | private double m_MaxNorm = 1.05; |
---|
154 | |
---|
155 | /** |
---|
156 | * Returns a string describing this filter |
---|
157 | * |
---|
158 | * @return a description of the filter suitable for |
---|
159 | * displaying in the explorer/experimenter gui |
---|
160 | */ |
---|
161 | public String globalInfo() { |
---|
162 | return |
---|
163 | "Modified version of the Citation kNN multi instance classifier.\n\n" |
---|
164 | + "For more information see:\n\n" |
---|
165 | + getTechnicalInformation().toString(); |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | * Returns an instance of a TechnicalInformation object, containing |
---|
170 | * detailed information about the technical background of this class, |
---|
171 | * e.g., paper reference or book this class is based on. |
---|
172 | * |
---|
173 | * @return the technical information about this class |
---|
174 | */ |
---|
175 | public TechnicalInformation getTechnicalInformation() { |
---|
176 | TechnicalInformation result; |
---|
177 | |
---|
178 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
179 | result.setValue(Field.AUTHOR, "Jun Wang and Zucker and Jean-Daniel"); |
---|
180 | result.setValue(Field.TITLE, "Solving Multiple-Instance Problem: A Lazy Learning Approach"); |
---|
181 | result.setValue(Field.BOOKTITLE, "17th International Conference on Machine Learning"); |
---|
182 | result.setValue(Field.EDITOR, "Pat Langley"); |
---|
183 | result.setValue(Field.YEAR, "2000"); |
---|
184 | result.setValue(Field.PAGES, "1119-1125"); |
---|
185 | |
---|
186 | return result; |
---|
187 | } |
---|
188 | |
---|
189 | /** |
---|
190 | * Calculates the normalization of each attribute. |
---|
191 | */ |
---|
192 | public void preprocessData(){ |
---|
193 | int i,j, k; |
---|
194 | double min, max; |
---|
195 | Instances instances; |
---|
196 | Instance instance; |
---|
197 | // compute the min/max of each feature |
---|
198 | |
---|
199 | for (i=0;i<m_Attributes.numAttributes();i++) { |
---|
200 | min=Double.POSITIVE_INFINITY ; |
---|
201 | max=Double.NEGATIVE_INFINITY ; |
---|
202 | for(j = 0; j < m_TrainBags.numInstances(); j++){ |
---|
203 | instances = m_TrainBags.instance(j).relationalValue(1); |
---|
204 | for (k=0;k<instances.numInstances();k++) { |
---|
205 | instance = instances.instance(k); |
---|
206 | if(instance.value(i) < min) |
---|
207 | min= instance.value(i); |
---|
208 | if(instance.value(i) > max) |
---|
209 | max= instance.value(i); |
---|
210 | } |
---|
211 | } |
---|
212 | m_Min[i] = min * m_MinNorm; |
---|
213 | m_Max[i] = max * m_MaxNorm; |
---|
214 | m_Diffs[i]= max * m_MaxNorm - min * m_MinNorm; |
---|
215 | } |
---|
216 | |
---|
217 | } |
---|
218 | |
---|
219 | /** |
---|
220 | * Returns the tip text for this property |
---|
221 | * |
---|
222 | * @return tip text for this property suitable for |
---|
223 | * displaying in the explorer/experimenter gui |
---|
224 | */ |
---|
225 | public String HDRankTipText() { |
---|
226 | return "The rank associated to the Hausdorff distance."; |
---|
227 | } |
---|
228 | |
---|
229 | /** |
---|
230 | * Sets the rank associated to the Hausdorff distance |
---|
231 | * @param hDRank the rank of the Hausdorff distance |
---|
232 | */ |
---|
233 | public void setHDRank(int hDRank){ |
---|
234 | m_HDRank = hDRank; |
---|
235 | } |
---|
236 | |
---|
237 | /** |
---|
238 | * Returns the rank associated to the Hausdorff distance |
---|
239 | * @return the rank number |
---|
240 | */ |
---|
241 | public int getHDRank(){ |
---|
242 | return m_HDRank; |
---|
243 | } |
---|
244 | |
---|
245 | /** |
---|
246 | * Returns the tip text for this property |
---|
247 | * |
---|
248 | * @return tip text for this property suitable for |
---|
249 | * displaying in the explorer/experimenter gui |
---|
250 | */ |
---|
251 | public String numReferencesTipText() { |
---|
252 | return |
---|
253 | "The number of references considered to estimate the class " |
---|
254 | + "prediction of tests bags."; |
---|
255 | } |
---|
256 | |
---|
257 | /** |
---|
258 | * Sets the number of references considered to estimate |
---|
259 | * the class prediction of tests bags |
---|
260 | * @param numReferences the number of references |
---|
261 | */ |
---|
262 | public void setNumReferences(int numReferences){ |
---|
263 | m_NumReferences = numReferences; |
---|
264 | } |
---|
265 | |
---|
266 | /** |
---|
267 | * Returns the number of references considered to estimate |
---|
268 | * the class prediction of tests bags |
---|
269 | * @return the number of references |
---|
270 | */ |
---|
271 | public int getNumReferences(){ |
---|
272 | return m_NumReferences; |
---|
273 | } |
---|
274 | |
---|
275 | /** |
---|
276 | * Returns the tip text for this property |
---|
277 | * |
---|
278 | * @return tip text for this property suitable for |
---|
279 | * displaying in the explorer/experimenter gui |
---|
280 | */ |
---|
281 | public String numCitersTipText() { |
---|
282 | return |
---|
283 | "The number of citers considered to estimate the class " |
---|
284 | + "prediction of test bags."; |
---|
285 | } |
---|
286 | |
---|
287 | /** |
---|
288 | * Sets the number of citers considered to estimate |
---|
289 | * the class prediction of tests bags |
---|
290 | * @param numCiters the number of citers |
---|
291 | */ |
---|
292 | public void setNumCiters(int numCiters){ |
---|
293 | m_NumCiters = numCiters; |
---|
294 | } |
---|
295 | |
---|
296 | /** |
---|
297 | * Returns the number of citers considered to estimate |
---|
298 | * the class prediction of tests bags |
---|
299 | * @return the number of citers |
---|
300 | */ |
---|
301 | public int getNumCiters(){ |
---|
302 | return m_NumCiters; |
---|
303 | } |
---|
304 | |
---|
305 | /** |
---|
306 | * Returns default capabilities of the classifier. |
---|
307 | * |
---|
308 | * @return the capabilities of this classifier |
---|
309 | */ |
---|
310 | public Capabilities getCapabilities() { |
---|
311 | Capabilities result = super.getCapabilities(); |
---|
312 | result.disableAll(); |
---|
313 | |
---|
314 | // attributes |
---|
315 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
316 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
317 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
318 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
319 | result.enable(Capability.MISSING_VALUES); |
---|
320 | |
---|
321 | // class |
---|
322 | result.enable(Capability.NOMINAL_CLASS); |
---|
323 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
324 | |
---|
325 | // other |
---|
326 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
327 | |
---|
328 | return result; |
---|
329 | } |
---|
330 | |
---|
331 | /** |
---|
332 | * Returns the capabilities of this multi-instance classifier for the |
---|
333 | * relational data. |
---|
334 | * |
---|
335 | * @return the capabilities of this object |
---|
336 | * @see Capabilities |
---|
337 | */ |
---|
338 | public Capabilities getMultiInstanceCapabilities() { |
---|
339 | Capabilities result = super.getCapabilities(); |
---|
340 | result.disableAll(); |
---|
341 | |
---|
342 | // attributes |
---|
343 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
344 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
345 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
346 | result.enable(Capability.MISSING_VALUES); |
---|
347 | |
---|
348 | // class |
---|
349 | result.disableAllClasses(); |
---|
350 | result.enable(Capability.NO_CLASS); |
---|
351 | |
---|
352 | return result; |
---|
353 | } |
---|
354 | |
---|
355 | /** |
---|
356 | * Builds the classifier |
---|
357 | * |
---|
358 | * @param train the training data to be used for generating the |
---|
359 | * boosted classifier. |
---|
360 | * @throws Exception if the classifier could not be built successfully |
---|
361 | */ |
---|
362 | public void buildClassifier(Instances train) throws Exception { |
---|
363 | // can classifier handle the data? |
---|
364 | getCapabilities().testWithFail(train); |
---|
365 | |
---|
366 | // remove instances with missing class |
---|
367 | train = new Instances(train); |
---|
368 | train.deleteWithMissingClass(); |
---|
369 | |
---|
370 | m_TrainBags = train; |
---|
371 | m_ClassIndex = train.classIndex(); |
---|
372 | m_IdIndex = 0; |
---|
373 | m_NumClasses = train.numClasses(); |
---|
374 | |
---|
375 | m_Classes = new int [train.numInstances()]; // Class values |
---|
376 | m_Attributes = train.instance(0).relationalValue(1).stringFreeStructure(); |
---|
377 | |
---|
378 | m_Citers = new int[train.numClasses()]; |
---|
379 | m_References = new int[train.numClasses()]; |
---|
380 | |
---|
381 | m_Diffs = new double[m_Attributes.numAttributes()]; |
---|
382 | m_Min = new double[m_Attributes.numAttributes()]; |
---|
383 | m_Max = new double[m_Attributes.numAttributes()]; |
---|
384 | |
---|
385 | preprocessData(); |
---|
386 | |
---|
387 | buildCNN(); |
---|
388 | |
---|
389 | if(m_CNNDebug){ |
---|
390 | System.out.println("########################################### "); |
---|
391 | System.out.println("###########CITATION######################## "); |
---|
392 | System.out.println("########################################### "); |
---|
393 | for(int i = 0; i < m_CNN.length; i++){ |
---|
394 | System.out.println("Bag: " + i); |
---|
395 | m_CNN[i].printReducedList(); |
---|
396 | } |
---|
397 | } |
---|
398 | } |
---|
399 | |
---|
400 | /** |
---|
401 | * generates all the variables associated to the citation |
---|
402 | * classifier |
---|
403 | * |
---|
404 | * @throws Exception if generation fails |
---|
405 | */ |
---|
406 | public void buildCNN() throws Exception { |
---|
407 | |
---|
408 | int numCiters = 0; |
---|
409 | |
---|
410 | if((m_NumCiters >= m_TrainBags.numInstances()) || |
---|
411 | (m_NumCiters < 0)) |
---|
412 | throw new Exception("Number of citers is out of the range [0, numInstances)"); |
---|
413 | else |
---|
414 | numCiters = m_NumCiters; |
---|
415 | |
---|
416 | m_CNN = new NeighborList[m_TrainBags.numInstances()]; |
---|
417 | Instance bag; |
---|
418 | |
---|
419 | for(int i = 0; i< m_TrainBags.numInstances(); i++){ |
---|
420 | bag = m_TrainBags.instance(i); |
---|
421 | //first we find its neighbors |
---|
422 | NeighborList neighborList = findNeighbors(bag, numCiters, m_TrainBags); |
---|
423 | m_CNN[i] = neighborList; |
---|
424 | } |
---|
425 | } |
---|
426 | |
---|
427 | /** |
---|
428 | * calculates the citers associated to a bag |
---|
429 | * @param bag the bag cited |
---|
430 | */ |
---|
431 | public void countBagCiters(Instance bag){ |
---|
432 | |
---|
433 | //Initialization of the vector |
---|
434 | for(int i = 0; i < m_TrainBags.numClasses(); i++) |
---|
435 | m_Citers[i] = 0; |
---|
436 | // |
---|
437 | if(m_CitersDebug == true) |
---|
438 | System.out.println("-------CITERS--------"); |
---|
439 | |
---|
440 | NeighborList neighborList; |
---|
441 | NeighborNode current; |
---|
442 | boolean stopSearch = false; |
---|
443 | int index; |
---|
444 | |
---|
445 | // compute the distance between the test bag and each training bag. Update |
---|
446 | // the bagCiter count in case it be a neighbour |
---|
447 | |
---|
448 | double bagDistance = 0; |
---|
449 | for(int i = 0; i < m_TrainBags.numInstances(); i++){ |
---|
450 | //measure the distance |
---|
451 | bagDistance = distanceSet(bag, m_TrainBags.instance(i)); |
---|
452 | if(m_CitersDebug == true){ |
---|
453 | System.out.print("bag - bag(" + i + "): " + bagDistance); |
---|
454 | System.out.println(" <" + m_TrainBags.instance(i).classValue() + ">"); |
---|
455 | } |
---|
456 | //compare the distance to see if it would belong to the |
---|
457 | // neighborhood of each training exemplar |
---|
458 | neighborList = m_CNN[i]; |
---|
459 | current = neighborList.mFirst; |
---|
460 | |
---|
461 | while((current != null) && (!stopSearch)) { |
---|
462 | if(m_CitersDebug == true) |
---|
463 | System.out.println("\t\tciter Distance: " + current.mDistance); |
---|
464 | if(current.mDistance < bagDistance){ |
---|
465 | current = current.mNext; |
---|
466 | } else{ |
---|
467 | stopSearch = true; |
---|
468 | if(m_CitersDebug == true){ |
---|
469 | System.out.println("\t***"); |
---|
470 | } |
---|
471 | } |
---|
472 | } |
---|
473 | |
---|
474 | if(stopSearch == true){ |
---|
475 | stopSearch = false; |
---|
476 | index = (int)(m_TrainBags.instance(i)).classValue(); |
---|
477 | m_Citers[index] += 1; |
---|
478 | } |
---|
479 | |
---|
480 | } |
---|
481 | |
---|
482 | if(m_CitersDebug == true){ |
---|
483 | for(int i= 0; i < m_Citers.length; i++){ |
---|
484 | System.out.println("[" + i + "]: " + m_Citers[i]); |
---|
485 | } |
---|
486 | } |
---|
487 | |
---|
488 | } |
---|
489 | |
---|
490 | /** |
---|
491 | * Calculates the references of the exemplar bag |
---|
492 | * @param bag the exemplar to which the nearest references |
---|
493 | * will be calculated |
---|
494 | */ |
---|
495 | public void countBagReferences(Instance bag){ |
---|
496 | int index = 0, referencesIndex = 0; |
---|
497 | |
---|
498 | if(m_TrainBags.numInstances() < m_NumReferences) |
---|
499 | referencesIndex = m_TrainBags.numInstances() - 1; |
---|
500 | else |
---|
501 | referencesIndex = m_NumReferences; |
---|
502 | |
---|
503 | if(m_CitersDebug == true){ |
---|
504 | System.out.println("-------References (" + referencesIndex+ ")--------"); |
---|
505 | } |
---|
506 | //Initialization of the vector |
---|
507 | for(int i = 0; i < m_References.length; i++) |
---|
508 | m_References[i] = 0; |
---|
509 | |
---|
510 | if(referencesIndex > 0){ |
---|
511 | //first we find its neighbors |
---|
512 | NeighborList neighborList = findNeighbors(bag, referencesIndex, m_TrainBags); |
---|
513 | if(m_ReferencesDebug == true){ |
---|
514 | System.out.println("Bag: " + bag + " Neighbors: "); |
---|
515 | neighborList.printReducedList(); |
---|
516 | } |
---|
517 | NeighborNode current = neighborList.mFirst; |
---|
518 | while(current != null){ |
---|
519 | index = (int) current.mBag.classValue(); |
---|
520 | m_References[index] += 1; |
---|
521 | current = current.mNext; |
---|
522 | } |
---|
523 | } |
---|
524 | if(m_ReferencesDebug == true){ |
---|
525 | System.out.println("References:"); |
---|
526 | for(int j = 0; j < m_References.length; j++) |
---|
527 | System.out.println("[" + j + "]: " + m_References[j]); |
---|
528 | } |
---|
529 | } |
---|
530 | |
---|
531 | /** |
---|
532 | * Build the list of nearest k neighbors to the given test instance. |
---|
533 | * @param bag the bag to search for neighbors of |
---|
534 | * @param kNN the number of nearest neighbors |
---|
535 | * @param bags the data |
---|
536 | * @return a list of neighbors |
---|
537 | */ |
---|
538 | protected NeighborList findNeighbors(Instance bag, int kNN, Instances bags){ |
---|
539 | double distance; |
---|
540 | int index = 0; |
---|
541 | |
---|
542 | if(kNN > bags.numInstances()) |
---|
543 | kNN = bags.numInstances() - 1; |
---|
544 | |
---|
545 | NeighborList neighborList = new NeighborList(kNN); |
---|
546 | for(int i = 0; i < bags.numInstances(); i++){ |
---|
547 | if(bag != bags.instance(i)){ // for hold-one-out cross-validation |
---|
548 | distance = distanceSet(bag, bags.instance(i)) ; //mDistanceSet.distance(bag, mInstances, bags.exemplar(i), mInstances); |
---|
549 | if(m_NeighborListDebug) |
---|
550 | System.out.println("distance(bag, " + i + "): " + distance); |
---|
551 | if(neighborList.isEmpty() || (index < kNN) || (distance <= neighborList.mLast.mDistance)) |
---|
552 | neighborList.insertSorted(distance, bags.instance(i), i); |
---|
553 | index++; |
---|
554 | } |
---|
555 | } |
---|
556 | |
---|
557 | if(m_NeighborListDebug){ |
---|
558 | System.out.println("bag neighbors:"); |
---|
559 | neighborList.printReducedList(); |
---|
560 | } |
---|
561 | |
---|
562 | return neighborList; |
---|
563 | } |
---|
564 | |
---|
565 | /** |
---|
566 | * Calculates the distance between two instances |
---|
567 | * @param first instance |
---|
568 | * @param second instance |
---|
569 | * @return the distance value |
---|
570 | */ |
---|
571 | public double distanceSet(Instance first, Instance second){ |
---|
572 | double[] h_f = new double[first.relationalValue(1).numInstances()]; |
---|
573 | double distance; |
---|
574 | |
---|
575 | //initilization |
---|
576 | for(int i = 0; i < h_f.length; i++) |
---|
577 | h_f[i] = Double.MAX_VALUE; |
---|
578 | |
---|
579 | |
---|
580 | int rank; |
---|
581 | |
---|
582 | |
---|
583 | if(m_HDRank >= first.relationalValue(1).numInstances()) |
---|
584 | rank = first.relationalValue(1).numInstances(); |
---|
585 | else if(m_HDRank < 1) |
---|
586 | rank = 1; |
---|
587 | else |
---|
588 | rank = m_HDRank; |
---|
589 | |
---|
590 | if(m_HDistanceDebug){ |
---|
591 | System.out.println("-------HAUSDORFF DISTANCE--------"); |
---|
592 | System.out.println("rank: " + rank + "\nset of instances:"); |
---|
593 | System.out.println("\tset 1:"); |
---|
594 | for(int i = 0; i < first.relationalValue(1).numInstances(); i++) |
---|
595 | System.out.println(first.relationalValue(1).instance(i)); |
---|
596 | |
---|
597 | System.out.println("\n\tset 2:"); |
---|
598 | for(int i = 0; i < second.relationalValue(1).numInstances(); i++) |
---|
599 | System.out.println(second.relationalValue(1).instance(i)); |
---|
600 | |
---|
601 | System.out.println("\n"); |
---|
602 | } |
---|
603 | |
---|
604 | //for each instance in bag first |
---|
605 | for(int i = 0; i < first.relationalValue(1).numInstances(); i++){ |
---|
606 | // calculate the distance to each instance in |
---|
607 | // bag second |
---|
608 | if(m_HDistanceDebug){ |
---|
609 | System.out.println("\nDistances:"); |
---|
610 | } |
---|
611 | for(int j = 0; j < second.relationalValue(1).numInstances(); j++){ |
---|
612 | distance = distance(first.relationalValue(1).instance(i), second.relationalValue(1).instance(j)); |
---|
613 | if(distance < h_f[i]) |
---|
614 | h_f[i] = distance; |
---|
615 | if(m_HDistanceDebug){ |
---|
616 | System.out.println("\tdist(" + i + ", "+ j + "): " + distance + " --> h_f[" + i + "]: " + h_f[i]); |
---|
617 | } |
---|
618 | } |
---|
619 | } |
---|
620 | int[] index_f = Utils.stableSort(h_f); |
---|
621 | |
---|
622 | if(m_HDistanceDebug){ |
---|
623 | System.out.println("\nRanks:\n"); |
---|
624 | for(int i = 0; i < index_f.length; i++) |
---|
625 | System.out.println("\trank " + (i + 1) + ": " + h_f[index_f[i]]); |
---|
626 | |
---|
627 | System.out.println("\n\t\t>>>>> rank " + rank + ": " + h_f[index_f[rank - 1]] + " <<<<<"); |
---|
628 | } |
---|
629 | |
---|
630 | return h_f[index_f[rank - 1]]; |
---|
631 | } |
---|
632 | |
---|
633 | /** |
---|
634 | * distance between two instances |
---|
635 | * @param first the first instance |
---|
636 | * @param second the other instance |
---|
637 | * @return the distance in double precision |
---|
638 | */ |
---|
639 | public double distance(Instance first, Instance second){ |
---|
640 | |
---|
641 | double sum = 0, diff; |
---|
642 | for(int i = 0; i < m_Attributes.numAttributes(); i++){ |
---|
643 | diff = (first.value(i) - m_Min[i])/ m_Diffs[i] - |
---|
644 | (second.value(i) - m_Min[i])/ m_Diffs[i]; |
---|
645 | sum += diff * diff; |
---|
646 | } |
---|
647 | return sum = Math.sqrt(sum); |
---|
648 | } |
---|
649 | |
---|
650 | /** |
---|
651 | * Computes the distribution for a given exemplar |
---|
652 | * |
---|
653 | * @param bag the exemplar for which distribution is computed |
---|
654 | * @return the distribution |
---|
655 | * @throws Exception if the distribution can't be computed successfully |
---|
656 | */ |
---|
657 | public double[] distributionForInstance(Instance bag) |
---|
658 | throws Exception { |
---|
659 | |
---|
660 | if(m_TrainBags.numInstances() == 0) |
---|
661 | throw new Exception("No training bags!"); |
---|
662 | |
---|
663 | updateNormalization(bag); |
---|
664 | |
---|
665 | //build references (R nearest neighbors) |
---|
666 | countBagReferences(bag); |
---|
667 | |
---|
668 | //build citers |
---|
669 | countBagCiters(bag); |
---|
670 | |
---|
671 | return makeDistribution(); |
---|
672 | } |
---|
673 | |
---|
674 | /** |
---|
675 | * Updates the normalization of each attribute. |
---|
676 | * |
---|
677 | * @param bag the exemplar to update the normalization for |
---|
678 | */ |
---|
679 | public void updateNormalization(Instance bag){ |
---|
680 | int i, k; |
---|
681 | double min, max; |
---|
682 | Instances instances; |
---|
683 | Instance instance; |
---|
684 | // compute the min/max of each feature |
---|
685 | for (i = 0; i < m_TrainBags.attribute(1).relation().numAttributes(); i++) { |
---|
686 | min = m_Min[i] / m_MinNorm; |
---|
687 | max = m_Max[i] / m_MaxNorm; |
---|
688 | |
---|
689 | instances = bag.relationalValue(1); |
---|
690 | for (k=0;k<instances.numInstances();k++) { |
---|
691 | instance = instances.instance(k); |
---|
692 | if(instance.value(i) < min) |
---|
693 | min = instance.value(i); |
---|
694 | if(instance.value(i) > max) |
---|
695 | max = instance.value(i); |
---|
696 | } |
---|
697 | m_Min[i] = min * m_MinNorm; |
---|
698 | m_Max[i] = max * m_MaxNorm; |
---|
699 | m_Diffs[i]= max * m_MaxNorm - min * m_MinNorm; |
---|
700 | } |
---|
701 | } |
---|
702 | |
---|
703 | /** |
---|
704 | * Wether the instances of two exemplars are or are not equal |
---|
705 | * @param exemplar1 first exemplar |
---|
706 | * @param exemplar2 second exemplar |
---|
707 | * @return if the instances of the exemplars are equal or not |
---|
708 | */ |
---|
709 | public boolean equalExemplars(Instance exemplar1, Instance exemplar2){ |
---|
710 | if(exemplar1.relationalValue(1).numInstances() == |
---|
711 | exemplar2.relationalValue(1).numInstances()){ |
---|
712 | Instances instances1 = exemplar1.relationalValue(1); |
---|
713 | Instances instances2 = exemplar2.relationalValue(1); |
---|
714 | for(int i = 0; i < instances1.numInstances(); i++){ |
---|
715 | Instance instance1 = instances1.instance(i); |
---|
716 | Instance instance2 = instances2.instance(i); |
---|
717 | for(int j = 0; j < instance1.numAttributes(); j++){ |
---|
718 | if(instance1.value(j) != instance2.value(j)){ |
---|
719 | return false; |
---|
720 | } |
---|
721 | } |
---|
722 | } |
---|
723 | return true; |
---|
724 | } |
---|
725 | return false; |
---|
726 | } |
---|
727 | |
---|
728 | /** |
---|
729 | * Turn the references and citers list into a probability distribution |
---|
730 | * |
---|
731 | * @return the probability distribution |
---|
732 | * @throws Exception if computation of distribution fails |
---|
733 | */ |
---|
734 | protected double[] makeDistribution() throws Exception { |
---|
735 | |
---|
736 | double total = 0; |
---|
737 | double[] distribution = new double[m_TrainBags.numClasses()]; |
---|
738 | boolean debug = false; |
---|
739 | |
---|
740 | total = (double)m_TrainBags.numClasses() / Math.max(1, m_TrainBags.numInstances()); |
---|
741 | |
---|
742 | for(int i = 0; i < m_TrainBags.numClasses(); i++){ |
---|
743 | distribution[i] = 1.0 / Math.max(1, m_TrainBags.numInstances()); |
---|
744 | if(debug) System.out.println("distribution[" + i + "]: " + distribution[i]); |
---|
745 | } |
---|
746 | |
---|
747 | if(debug)System.out.println("total: " + total); |
---|
748 | |
---|
749 | for(int i = 0; i < m_TrainBags.numClasses(); i++){ |
---|
750 | distribution[i] += m_References[i]; |
---|
751 | distribution[i] += m_Citers[i]; |
---|
752 | } |
---|
753 | |
---|
754 | total = 0; |
---|
755 | //total |
---|
756 | for(int i = 0; i < m_TrainBags.numClasses(); i++){ |
---|
757 | total += distribution[i]; |
---|
758 | if(debug)System.out.println("distribution[" + i + "]: " + distribution[i]); |
---|
759 | } |
---|
760 | |
---|
761 | for(int i = 0; i < m_TrainBags.numClasses(); i++){ |
---|
762 | distribution[i] = distribution[i] / total; |
---|
763 | if(debug)System.out.println("distribution[" + i + "]: " + distribution[i]); |
---|
764 | |
---|
765 | } |
---|
766 | |
---|
767 | return distribution; |
---|
768 | } |
---|
769 | |
---|
770 | /** |
---|
771 | * Returns an enumeration of all the available options.. |
---|
772 | * |
---|
773 | * @return an enumeration of all available options. |
---|
774 | */ |
---|
775 | public Enumeration listOptions(){ |
---|
776 | Vector result = new Vector(); |
---|
777 | |
---|
778 | result.addElement(new Option( |
---|
779 | "\tNumber of Nearest References (default 1)", |
---|
780 | "R", 0, "-R <number of references>")); |
---|
781 | |
---|
782 | result.addElement(new Option( |
---|
783 | "\tNumber of Nearest Citers (default 1)", |
---|
784 | "C", 0, "-C <number of citers>")); |
---|
785 | |
---|
786 | result.addElement(new Option( |
---|
787 | "\tRank of the Hausdorff Distance (default 1)", |
---|
788 | "H", 0, "-H <rank>")); |
---|
789 | |
---|
790 | return result.elements(); |
---|
791 | } |
---|
792 | |
---|
793 | /** |
---|
794 | * Sets the OptionHandler's options using the given list. All options |
---|
795 | * will be set (or reset) during this call (i.e. incremental setting |
---|
796 | * of options is not possible). <p/> |
---|
797 | * |
---|
798 | <!-- options-start --> |
---|
799 | * Valid options are: <p/> |
---|
800 | * |
---|
801 | * <pre> -R <number of references> |
---|
802 | * Number of Nearest References (default 1)</pre> |
---|
803 | * |
---|
804 | * <pre> -C <number of citers> |
---|
805 | * Number of Nearest Citers (default 1)</pre> |
---|
806 | * |
---|
807 | * <pre> -H <rank> |
---|
808 | * Rank of the Hausdorff Distance (default 1)</pre> |
---|
809 | * |
---|
810 | <!-- options-end --> |
---|
811 | * |
---|
812 | * @param options the list of options as an array of strings |
---|
813 | * @throws Exception if an option is not supported |
---|
814 | */ |
---|
815 | public void setOptions(String[] options) throws Exception{ |
---|
816 | setDebug(Utils.getFlag('D', options)); |
---|
817 | |
---|
818 | String option = Utils.getOption('R', options); |
---|
819 | if(option.length() != 0) |
---|
820 | setNumReferences(Integer.parseInt(option)); |
---|
821 | else |
---|
822 | setNumReferences(1); |
---|
823 | |
---|
824 | option = Utils.getOption('C', options); |
---|
825 | if(option.length() != 0) |
---|
826 | setNumCiters(Integer.parseInt(option)); |
---|
827 | else |
---|
828 | setNumCiters(1); |
---|
829 | |
---|
830 | option = Utils.getOption('H', options); |
---|
831 | if(option.length() != 0) |
---|
832 | setHDRank(Integer.parseInt(option)); |
---|
833 | else |
---|
834 | setHDRank(1); |
---|
835 | } |
---|
836 | /** |
---|
837 | * Gets the current option settings for the OptionHandler. |
---|
838 | * |
---|
839 | * @return the list of current option settings as an array of strings |
---|
840 | */ |
---|
841 | public String[] getOptions() { |
---|
842 | Vector result; |
---|
843 | |
---|
844 | result = new Vector(); |
---|
845 | |
---|
846 | if (getDebug()) |
---|
847 | result.add("-D"); |
---|
848 | |
---|
849 | result.add("-R"); |
---|
850 | result.add("" + getNumReferences()); |
---|
851 | |
---|
852 | result.add("-C"); |
---|
853 | result.add("" + getNumCiters()); |
---|
854 | |
---|
855 | result.add("-H"); |
---|
856 | result.add("" + getHDRank()); |
---|
857 | |
---|
858 | return (String[]) result.toArray(new String[result.size()]); |
---|
859 | } |
---|
860 | |
---|
861 | /** |
---|
862 | * returns a string representation of the classifier |
---|
863 | * |
---|
864 | * @return the string representation |
---|
865 | */ |
---|
866 | public String toString() { |
---|
867 | StringBuffer result; |
---|
868 | int i; |
---|
869 | |
---|
870 | result = new StringBuffer(); |
---|
871 | |
---|
872 | // title |
---|
873 | result.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
874 | result.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
875 | |
---|
876 | if (m_Citers == null) { |
---|
877 | result.append("no model built yet!\n"); |
---|
878 | } |
---|
879 | else { |
---|
880 | // internal representation |
---|
881 | result.append("Citers....: " + Utils.arrayToString(m_Citers) + "\n"); |
---|
882 | |
---|
883 | result.append("References: " + Utils.arrayToString(m_References) + "\n"); |
---|
884 | |
---|
885 | result.append("Min.......: "); |
---|
886 | for (i = 0; i < m_Min.length; i++) { |
---|
887 | if (i > 0) |
---|
888 | result.append(","); |
---|
889 | result.append(Utils.doubleToString(m_Min[i], 3)); |
---|
890 | } |
---|
891 | result.append("\n"); |
---|
892 | |
---|
893 | result.append("Max.......: "); |
---|
894 | for (i = 0; i < m_Max.length; i++) { |
---|
895 | if (i > 0) |
---|
896 | result.append(","); |
---|
897 | result.append(Utils.doubleToString(m_Max[i], 3)); |
---|
898 | } |
---|
899 | result.append("\n"); |
---|
900 | |
---|
901 | result.append("Diffs.....: "); |
---|
902 | for (i = 0; i < m_Diffs.length; i++) { |
---|
903 | if (i > 0) |
---|
904 | result.append(","); |
---|
905 | result.append(Utils.doubleToString(m_Diffs[i], 3)); |
---|
906 | } |
---|
907 | result.append("\n"); |
---|
908 | } |
---|
909 | |
---|
910 | return result.toString(); |
---|
911 | } |
---|
912 | |
---|
913 | /** |
---|
914 | * Returns the revision string. |
---|
915 | * |
---|
916 | * @return the revision |
---|
917 | */ |
---|
918 | public String getRevision() { |
---|
919 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
920 | } |
---|
921 | |
---|
922 | /** |
---|
923 | * Main method for testing this class. |
---|
924 | * |
---|
925 | * @param argv should contain the command line arguments to the |
---|
926 | * scheme (see Evaluation) |
---|
927 | */ |
---|
928 | public static void main(String[] argv) { |
---|
929 | runClassifier(new CitationKNN(), argv); |
---|
930 | } |
---|
931 | |
---|
932 | //######################################################################## |
---|
933 | //######################################################################## |
---|
934 | //######################################################################## |
---|
935 | //######################################################################## |
---|
936 | //######################################################################## |
---|
937 | |
---|
938 | /** |
---|
939 | * A class for storing data about a neighboring instance |
---|
940 | */ |
---|
941 | private class NeighborNode |
---|
942 | implements Serializable, RevisionHandler { |
---|
943 | |
---|
944 | /** for serialization */ |
---|
945 | static final long serialVersionUID = -3947320761906511289L; |
---|
946 | |
---|
947 | /** The neighbor bag */ |
---|
948 | private Instance mBag; |
---|
949 | |
---|
950 | /** The distance from the current instance to this neighbor */ |
---|
951 | private double mDistance; |
---|
952 | |
---|
953 | /** A link to the next neighbor instance */ |
---|
954 | private NeighborNode mNext; |
---|
955 | |
---|
956 | /** the position in the bag */ |
---|
957 | private int mBagPosition; |
---|
958 | |
---|
959 | /** |
---|
960 | * Create a new neighbor node. |
---|
961 | * |
---|
962 | * @param distance the distance to the neighbor |
---|
963 | * @param bag the bag instance |
---|
964 | * @param position the position in the bag |
---|
965 | * @param next the next neighbor node |
---|
966 | */ |
---|
967 | public NeighborNode(double distance, Instance bag, int position, NeighborNode next){ |
---|
968 | mDistance = distance; |
---|
969 | mBag = bag; |
---|
970 | mNext = next; |
---|
971 | mBagPosition = position; |
---|
972 | } |
---|
973 | |
---|
974 | /** |
---|
975 | * Create a new neighbor node that doesn't link to any other nodes. |
---|
976 | * |
---|
977 | * @param distance the distance to the neighbor |
---|
978 | * @param bag the neighbor instance |
---|
979 | * @param position the position in the bag |
---|
980 | */ |
---|
981 | public NeighborNode(double distance, Instance bag, int position) { |
---|
982 | this(distance, bag, position, null); |
---|
983 | } |
---|
984 | |
---|
985 | /** |
---|
986 | * Returns the revision string. |
---|
987 | * |
---|
988 | * @return the revision |
---|
989 | */ |
---|
990 | public String getRevision() { |
---|
991 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
992 | } |
---|
993 | } |
---|
994 | |
---|
995 | //################################################## |
---|
996 | /** |
---|
997 | * A class for a linked list to store the nearest k neighbours |
---|
998 | * to an instance. We use a list so that we can take care of |
---|
999 | * cases where multiple neighbours are the same distance away. |
---|
1000 | * i.e. the minimum length of the list is k. |
---|
1001 | */ |
---|
1002 | private class NeighborList |
---|
1003 | implements Serializable, RevisionHandler { |
---|
1004 | |
---|
1005 | /** for serialization */ |
---|
1006 | static final long serialVersionUID = 3432555644456217394L; |
---|
1007 | |
---|
1008 | /** The first node in the list */ |
---|
1009 | private NeighborNode mFirst; |
---|
1010 | /** The last node in the list */ |
---|
1011 | private NeighborNode mLast; |
---|
1012 | |
---|
1013 | /** The number of nodes to attempt to maintain in the list */ |
---|
1014 | private int mLength = 1; |
---|
1015 | |
---|
1016 | /** |
---|
1017 | * Creates the neighborlist with a desired length |
---|
1018 | * |
---|
1019 | * @param length the length of list to attempt to maintain |
---|
1020 | */ |
---|
1021 | public NeighborList(int length) { |
---|
1022 | mLength = length; |
---|
1023 | } |
---|
1024 | /** |
---|
1025 | * Gets whether the list is empty. |
---|
1026 | * |
---|
1027 | * @return true if so |
---|
1028 | */ |
---|
1029 | public boolean isEmpty() { |
---|
1030 | return (mFirst == null); |
---|
1031 | } |
---|
1032 | /** |
---|
1033 | * Gets the current length of the list. |
---|
1034 | * |
---|
1035 | * @return the current length of the list |
---|
1036 | */ |
---|
1037 | public int currentLength() { |
---|
1038 | |
---|
1039 | int i = 0; |
---|
1040 | NeighborNode current = mFirst; |
---|
1041 | while (current != null) { |
---|
1042 | i++; |
---|
1043 | current = current.mNext; |
---|
1044 | } |
---|
1045 | return i; |
---|
1046 | } |
---|
1047 | |
---|
1048 | /** |
---|
1049 | * Inserts an instance neighbor into the list, maintaining the list |
---|
1050 | * sorted by distance. |
---|
1051 | * |
---|
1052 | * @param distance the distance to the instance |
---|
1053 | * @param bag the neighboring instance |
---|
1054 | * @param position the position in the bag |
---|
1055 | */ |
---|
1056 | public void insertSorted(double distance, Instance bag, int position) { |
---|
1057 | |
---|
1058 | if (isEmpty()) { |
---|
1059 | mFirst = mLast = new NeighborNode(distance, bag, position); |
---|
1060 | } else { |
---|
1061 | NeighborNode current = mFirst; |
---|
1062 | if (distance < mFirst.mDistance) {// Insert at head |
---|
1063 | mFirst = new NeighborNode(distance, bag, position, mFirst); |
---|
1064 | } else { // Insert further down the list |
---|
1065 | for( ;(current.mNext != null) && |
---|
1066 | (current.mNext.mDistance < distance); |
---|
1067 | current = current.mNext); |
---|
1068 | current.mNext = new NeighborNode(distance, bag, position, current.mNext); |
---|
1069 | if (current.equals(mLast)) { |
---|
1070 | mLast = current.mNext; |
---|
1071 | } |
---|
1072 | } |
---|
1073 | |
---|
1074 | // Trip down the list until we've got k list elements (or more if the |
---|
1075 | // distance to the last elements is the same). |
---|
1076 | int valcount = 0; |
---|
1077 | for(current = mFirst; current.mNext != null; |
---|
1078 | current = current.mNext) { |
---|
1079 | valcount++; |
---|
1080 | if ((valcount >= mLength) && (current.mDistance != |
---|
1081 | current.mNext.mDistance)) { |
---|
1082 | mLast = current; |
---|
1083 | current.mNext = null; |
---|
1084 | break; |
---|
1085 | } |
---|
1086 | } |
---|
1087 | } |
---|
1088 | } |
---|
1089 | |
---|
1090 | /** |
---|
1091 | * Prunes the list to contain the k nearest neighbors. If there are |
---|
1092 | * multiple neighbors at the k'th distance, all will be kept. |
---|
1093 | * |
---|
1094 | * @param k the number of neighbors to keep in the list. |
---|
1095 | */ |
---|
1096 | public void pruneToK(int k) { |
---|
1097 | if (isEmpty()) |
---|
1098 | return; |
---|
1099 | if (k < 1) |
---|
1100 | k = 1; |
---|
1101 | |
---|
1102 | int currentK = 0; |
---|
1103 | double currentDist = mFirst.mDistance; |
---|
1104 | NeighborNode current = mFirst; |
---|
1105 | for(; current.mNext != null; current = current.mNext) { |
---|
1106 | currentK++; |
---|
1107 | currentDist = current.mDistance; |
---|
1108 | if ((currentK >= k) && (currentDist != current.mNext.mDistance)) { |
---|
1109 | mLast = current; |
---|
1110 | current.mNext = null; |
---|
1111 | break; |
---|
1112 | } |
---|
1113 | } |
---|
1114 | } |
---|
1115 | |
---|
1116 | /** |
---|
1117 | * Prints out the contents of the neighborlist |
---|
1118 | */ |
---|
1119 | public void printList() { |
---|
1120 | |
---|
1121 | if (isEmpty()) { |
---|
1122 | System.out.println("Empty list"); |
---|
1123 | } else { |
---|
1124 | NeighborNode current = mFirst; |
---|
1125 | while (current != null) { |
---|
1126 | System.out.print("Node: instance " + current.mBagPosition + "\n"); |
---|
1127 | System.out.println(current.mBag); |
---|
1128 | System.out.println(", distance " + current.mDistance); |
---|
1129 | current = current.mNext; |
---|
1130 | } |
---|
1131 | System.out.println(); |
---|
1132 | } |
---|
1133 | } |
---|
1134 | /** |
---|
1135 | * Prints out the contents of the neighborlist |
---|
1136 | */ |
---|
1137 | public void printReducedList() { |
---|
1138 | |
---|
1139 | if (isEmpty()) { |
---|
1140 | System.out.println("Empty list"); |
---|
1141 | } else { |
---|
1142 | NeighborNode current = mFirst; |
---|
1143 | while (current != null) { |
---|
1144 | System.out.print("Node: bag " + current.mBagPosition + " (" + current.mBag.relationalValue(1).numInstances() +"): "); |
---|
1145 | //for(int i = 0; i < current.mBag.getInstances().numInstances(); i++){ |
---|
1146 | //System.out.print(" " + (current.mBag).getInstances().instance(i)); |
---|
1147 | //} |
---|
1148 | System.out.print(" <" + current.mBag.classValue() + ">"); |
---|
1149 | System.out.println(" (d: " + current.mDistance + ")"); |
---|
1150 | current = current.mNext; |
---|
1151 | } |
---|
1152 | System.out.println(); |
---|
1153 | } |
---|
1154 | } |
---|
1155 | |
---|
1156 | /** |
---|
1157 | * Returns the revision string. |
---|
1158 | * |
---|
1159 | * @return the revision |
---|
1160 | */ |
---|
1161 | public String getRevision() { |
---|
1162 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
1163 | } |
---|
1164 | } |
---|
1165 | } |
---|