/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * CitationKNN.java * Copyright (C) 2005 Miguel Garcia Torres */ package weka.classifiers.mi; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.MultiInstanceCapabilitiesHandler; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.io.Serializable; import java.util.Enumeration; import java.util.Vector; /** * Modified version of the Citation kNN multi instance classifier.
*
* For more information see:
*
* Jun Wang, Zucker, Jean-Daniel: Solving Multiple-Instance Problem: A Lazy Learning Approach. In: 17th International Conference on Machine Learning, 1119-1125, 2000. *

* * BibTeX: *

 * @inproceedings{Wang2000,
 *    author = {Jun Wang and Zucker and Jean-Daniel},
 *    booktitle = {17th International Conference on Machine Learning},
 *    editor = {Pat Langley},
 *    pages = {1119-1125},
 *    title = {Solving Multiple-Instance Problem: A Lazy Learning Approach},
 *    year = {2000}
 * }
 * 
*

* * Valid options are:

* *

 -R <number of references>
 *  Number of Nearest References (default 1)
* *
 -C <number of citers>
 *  Number of Nearest Citers (default 1)
* *
 -H <rank>
 *  Rank of the Hausdorff Distance (default 1)
* * * @author Miguel Garcia Torres (mgarciat@ull.es) * @version $Revision: 5928 $ */ public class CitationKNN extends AbstractClassifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -8435377743874094852L; /** The index of the class attribute */ protected int m_ClassIndex; /** The number of the class labels */ protected int m_NumClasses; /** */ protected int m_IdIndex; /** Debugging output */ protected boolean m_Debug; /** Class labels for each bag */ protected int[] m_Classes; /** attribute name structure of the relational attribute*/ protected Instances m_Attributes; /** Number of references */ protected int m_NumReferences = 1; /** Number of citers*/ protected int m_NumCiters = 1; /** Training bags*/ protected Instances m_TrainBags; /** Different debugging output */ protected boolean m_CNNDebug = false; protected boolean m_CitersDebug = false; protected boolean m_ReferencesDebug = false; protected boolean m_HDistanceDebug = false; protected boolean m_NeighborListDebug = false; /** C nearest neighbors considering all the bags*/ protected NeighborList[] m_CNN; /** C nearest citers */ protected int[] m_Citers; /** R nearest references */ protected int[] m_References; /** Rank associated to the Hausdorff distance*/ protected int m_HDRank = 1; /** Normalization of the euclidean distance */ private double[] m_Diffs; private double[] m_Min; private double m_MinNorm = 0.95; private double[] m_Max; private double m_MaxNorm = 1.05; /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Modified version of the Citation kNN multi instance classifier.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Jun Wang and Zucker and Jean-Daniel"); result.setValue(Field.TITLE, "Solving Multiple-Instance Problem: A Lazy Learning Approach"); result.setValue(Field.BOOKTITLE, "17th International Conference on Machine Learning"); result.setValue(Field.EDITOR, "Pat Langley"); result.setValue(Field.YEAR, "2000"); result.setValue(Field.PAGES, "1119-1125"); return result; } /** * Calculates the normalization of each attribute. */ public void preprocessData(){ int i,j, k; double min, max; Instances instances; Instance instance; // compute the min/max of each feature for (i=0;i max) max= instance.value(i); } } m_Min[i] = min * m_MinNorm; m_Max[i] = max * m_MaxNorm; m_Diffs[i]= max * m_MaxNorm - min * m_MinNorm; } } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String HDRankTipText() { return "The rank associated to the Hausdorff distance."; } /** * Sets the rank associated to the Hausdorff distance * @param hDRank the rank of the Hausdorff distance */ public void setHDRank(int hDRank){ m_HDRank = hDRank; } /** * Returns the rank associated to the Hausdorff distance * @return the rank number */ public int getHDRank(){ return m_HDRank; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numReferencesTipText() { return "The number of references considered to estimate the class " + "prediction of tests bags."; } /** * Sets the number of references considered to estimate * the class prediction of tests bags * @param numReferences the number of references */ public void setNumReferences(int numReferences){ m_NumReferences = numReferences; } /** * Returns the number of references considered to estimate * the class prediction of tests bags * @return the number of references */ public int getNumReferences(){ return m_NumReferences; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numCitersTipText() { return "The number of citers considered to estimate the class " + "prediction of test bags."; } /** * Sets the number of citers considered to estimate * the class prediction of tests bags * @param numCiters the number of citers */ public void setNumCiters(int numCiters){ m_NumCiters = numCiters; } /** * Returns the number of citers considered to estimate * the class prediction of tests bags * @return the number of citers */ public int getNumCiters(){ return m_NumCiters; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // other result.enable(Capability.ONLY_MULTIINSTANCE); return result; } /** * Returns the capabilities of this multi-instance classifier for the * relational data. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getMultiInstanceCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.disableAllClasses(); result.enable(Capability.NO_CLASS); return result; } /** * Builds the classifier * * @param train the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances train) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(train); // remove instances with missing class train = new Instances(train); train.deleteWithMissingClass(); m_TrainBags = train; m_ClassIndex = train.classIndex(); m_IdIndex = 0; m_NumClasses = train.numClasses(); m_Classes = new int [train.numInstances()]; // Class values m_Attributes = train.instance(0).relationalValue(1).stringFreeStructure(); m_Citers = new int[train.numClasses()]; m_References = new int[train.numClasses()]; m_Diffs = new double[m_Attributes.numAttributes()]; m_Min = new double[m_Attributes.numAttributes()]; m_Max = new double[m_Attributes.numAttributes()]; preprocessData(); buildCNN(); if(m_CNNDebug){ System.out.println("########################################### "); System.out.println("###########CITATION######################## "); System.out.println("########################################### "); for(int i = 0; i < m_CNN.length; i++){ System.out.println("Bag: " + i); m_CNN[i].printReducedList(); } } } /** * generates all the variables associated to the citation * classifier * * @throws Exception if generation fails */ public void buildCNN() throws Exception { int numCiters = 0; if((m_NumCiters >= m_TrainBags.numInstances()) || (m_NumCiters < 0)) throw new Exception("Number of citers is out of the range [0, numInstances)"); else numCiters = m_NumCiters; m_CNN = new NeighborList[m_TrainBags.numInstances()]; Instance bag; for(int i = 0; i< m_TrainBags.numInstances(); i++){ bag = m_TrainBags.instance(i); //first we find its neighbors NeighborList neighborList = findNeighbors(bag, numCiters, m_TrainBags); m_CNN[i] = neighborList; } } /** * calculates the citers associated to a bag * @param bag the bag cited */ public void countBagCiters(Instance bag){ //Initialization of the vector for(int i = 0; i < m_TrainBags.numClasses(); i++) m_Citers[i] = 0; // if(m_CitersDebug == true) System.out.println("-------CITERS--------"); NeighborList neighborList; NeighborNode current; boolean stopSearch = false; int index; // compute the distance between the test bag and each training bag. Update // the bagCiter count in case it be a neighbour double bagDistance = 0; for(int i = 0; i < m_TrainBags.numInstances(); i++){ //measure the distance bagDistance = distanceSet(bag, m_TrainBags.instance(i)); if(m_CitersDebug == true){ System.out.print("bag - bag(" + i + "): " + bagDistance); System.out.println(" <" + m_TrainBags.instance(i).classValue() + ">"); } //compare the distance to see if it would belong to the // neighborhood of each training exemplar neighborList = m_CNN[i]; current = neighborList.mFirst; while((current != null) && (!stopSearch)) { if(m_CitersDebug == true) System.out.println("\t\tciter Distance: " + current.mDistance); if(current.mDistance < bagDistance){ current = current.mNext; } else{ stopSearch = true; if(m_CitersDebug == true){ System.out.println("\t***"); } } } if(stopSearch == true){ stopSearch = false; index = (int)(m_TrainBags.instance(i)).classValue(); m_Citers[index] += 1; } } if(m_CitersDebug == true){ for(int i= 0; i < m_Citers.length; i++){ System.out.println("[" + i + "]: " + m_Citers[i]); } } } /** * Calculates the references of the exemplar bag * @param bag the exemplar to which the nearest references * will be calculated */ public void countBagReferences(Instance bag){ int index = 0, referencesIndex = 0; if(m_TrainBags.numInstances() < m_NumReferences) referencesIndex = m_TrainBags.numInstances() - 1; else referencesIndex = m_NumReferences; if(m_CitersDebug == true){ System.out.println("-------References (" + referencesIndex+ ")--------"); } //Initialization of the vector for(int i = 0; i < m_References.length; i++) m_References[i] = 0; if(referencesIndex > 0){ //first we find its neighbors NeighborList neighborList = findNeighbors(bag, referencesIndex, m_TrainBags); if(m_ReferencesDebug == true){ System.out.println("Bag: " + bag + " Neighbors: "); neighborList.printReducedList(); } NeighborNode current = neighborList.mFirst; while(current != null){ index = (int) current.mBag.classValue(); m_References[index] += 1; current = current.mNext; } } if(m_ReferencesDebug == true){ System.out.println("References:"); for(int j = 0; j < m_References.length; j++) System.out.println("[" + j + "]: " + m_References[j]); } } /** * Build the list of nearest k neighbors to the given test instance. * @param bag the bag to search for neighbors of * @param kNN the number of nearest neighbors * @param bags the data * @return a list of neighbors */ protected NeighborList findNeighbors(Instance bag, int kNN, Instances bags){ double distance; int index = 0; if(kNN > bags.numInstances()) kNN = bags.numInstances() - 1; NeighborList neighborList = new NeighborList(kNN); for(int i = 0; i < bags.numInstances(); i++){ if(bag != bags.instance(i)){ // for hold-one-out cross-validation distance = distanceSet(bag, bags.instance(i)) ; //mDistanceSet.distance(bag, mInstances, bags.exemplar(i), mInstances); if(m_NeighborListDebug) System.out.println("distance(bag, " + i + "): " + distance); if(neighborList.isEmpty() || (index < kNN) || (distance <= neighborList.mLast.mDistance)) neighborList.insertSorted(distance, bags.instance(i), i); index++; } } if(m_NeighborListDebug){ System.out.println("bag neighbors:"); neighborList.printReducedList(); } return neighborList; } /** * Calculates the distance between two instances * @param first instance * @param second instance * @return the distance value */ public double distanceSet(Instance first, Instance second){ double[] h_f = new double[first.relationalValue(1).numInstances()]; double distance; //initilization for(int i = 0; i < h_f.length; i++) h_f[i] = Double.MAX_VALUE; int rank; if(m_HDRank >= first.relationalValue(1).numInstances()) rank = first.relationalValue(1).numInstances(); else if(m_HDRank < 1) rank = 1; else rank = m_HDRank; if(m_HDistanceDebug){ System.out.println("-------HAUSDORFF DISTANCE--------"); System.out.println("rank: " + rank + "\nset of instances:"); System.out.println("\tset 1:"); for(int i = 0; i < first.relationalValue(1).numInstances(); i++) System.out.println(first.relationalValue(1).instance(i)); System.out.println("\n\tset 2:"); for(int i = 0; i < second.relationalValue(1).numInstances(); i++) System.out.println(second.relationalValue(1).instance(i)); System.out.println("\n"); } //for each instance in bag first for(int i = 0; i < first.relationalValue(1).numInstances(); i++){ // calculate the distance to each instance in // bag second if(m_HDistanceDebug){ System.out.println("\nDistances:"); } for(int j = 0; j < second.relationalValue(1).numInstances(); j++){ distance = distance(first.relationalValue(1).instance(i), second.relationalValue(1).instance(j)); if(distance < h_f[i]) h_f[i] = distance; if(m_HDistanceDebug){ System.out.println("\tdist(" + i + ", "+ j + "): " + distance + " --> h_f[" + i + "]: " + h_f[i]); } } } int[] index_f = Utils.stableSort(h_f); if(m_HDistanceDebug){ System.out.println("\nRanks:\n"); for(int i = 0; i < index_f.length; i++) System.out.println("\trank " + (i + 1) + ": " + h_f[index_f[i]]); System.out.println("\n\t\t>>>>> rank " + rank + ": " + h_f[index_f[rank - 1]] + " <<<<<"); } return h_f[index_f[rank - 1]]; } /** * distance between two instances * @param first the first instance * @param second the other instance * @return the distance in double precision */ public double distance(Instance first, Instance second){ double sum = 0, diff; for(int i = 0; i < m_Attributes.numAttributes(); i++){ diff = (first.value(i) - m_Min[i])/ m_Diffs[i] - (second.value(i) - m_Min[i])/ m_Diffs[i]; sum += diff * diff; } return sum = Math.sqrt(sum); } /** * Computes the distribution for a given exemplar * * @param bag the exemplar for which distribution is computed * @return the distribution * @throws Exception if the distribution can't be computed successfully */ public double[] distributionForInstance(Instance bag) throws Exception { if(m_TrainBags.numInstances() == 0) throw new Exception("No training bags!"); updateNormalization(bag); //build references (R nearest neighbors) countBagReferences(bag); //build citers countBagCiters(bag); return makeDistribution(); } /** * Updates the normalization of each attribute. * * @param bag the exemplar to update the normalization for */ public void updateNormalization(Instance bag){ int i, k; double min, max; Instances instances; Instance instance; // compute the min/max of each feature for (i = 0; i < m_TrainBags.attribute(1).relation().numAttributes(); i++) { min = m_Min[i] / m_MinNorm; max = m_Max[i] / m_MaxNorm; instances = bag.relationalValue(1); for (k=0;k max) max = instance.value(i); } m_Min[i] = min * m_MinNorm; m_Max[i] = max * m_MaxNorm; m_Diffs[i]= max * m_MaxNorm - min * m_MinNorm; } } /** * Wether the instances of two exemplars are or are not equal * @param exemplar1 first exemplar * @param exemplar2 second exemplar * @return if the instances of the exemplars are equal or not */ public boolean equalExemplars(Instance exemplar1, Instance exemplar2){ if(exemplar1.relationalValue(1).numInstances() == exemplar2.relationalValue(1).numInstances()){ Instances instances1 = exemplar1.relationalValue(1); Instances instances2 = exemplar2.relationalValue(1); for(int i = 0; i < instances1.numInstances(); i++){ Instance instance1 = instances1.instance(i); Instance instance2 = instances2.instance(i); for(int j = 0; j < instance1.numAttributes(); j++){ if(instance1.value(j) != instance2.value(j)){ return false; } } } return true; } return false; } /** * Turn the references and citers list into a probability distribution * * @return the probability distribution * @throws Exception if computation of distribution fails */ protected double[] makeDistribution() throws Exception { double total = 0; double[] distribution = new double[m_TrainBags.numClasses()]; boolean debug = false; total = (double)m_TrainBags.numClasses() / Math.max(1, m_TrainBags.numInstances()); for(int i = 0; i < m_TrainBags.numClasses(); i++){ distribution[i] = 1.0 / Math.max(1, m_TrainBags.numInstances()); if(debug) System.out.println("distribution[" + i + "]: " + distribution[i]); } if(debug)System.out.println("total: " + total); for(int i = 0; i < m_TrainBags.numClasses(); i++){ distribution[i] += m_References[i]; distribution[i] += m_Citers[i]; } total = 0; //total for(int i = 0; i < m_TrainBags.numClasses(); i++){ total += distribution[i]; if(debug)System.out.println("distribution[" + i + "]: " + distribution[i]); } for(int i = 0; i < m_TrainBags.numClasses(); i++){ distribution[i] = distribution[i] / total; if(debug)System.out.println("distribution[" + i + "]: " + distribution[i]); } return distribution; } /** * Returns an enumeration of all the available options.. * * @return an enumeration of all available options. */ public Enumeration listOptions(){ Vector result = new Vector(); result.addElement(new Option( "\tNumber of Nearest References (default 1)", "R", 0, "-R ")); result.addElement(new Option( "\tNumber of Nearest Citers (default 1)", "C", 0, "-C ")); result.addElement(new Option( "\tRank of the Hausdorff Distance (default 1)", "H", 0, "-H ")); return result.elements(); } /** * Sets the OptionHandler's options using the given list. All options * will be set (or reset) during this call (i.e. incremental setting * of options is not possible).

* * Valid options are:

* *

 -R <number of references>
   *  Number of Nearest References (default 1)
* *
 -C <number of citers>
   *  Number of Nearest Citers (default 1)
* *
 -H <rank>
   *  Rank of the Hausdorff Distance (default 1)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception{ setDebug(Utils.getFlag('D', options)); String option = Utils.getOption('R', options); if(option.length() != 0) setNumReferences(Integer.parseInt(option)); else setNumReferences(1); option = Utils.getOption('C', options); if(option.length() != 0) setNumCiters(Integer.parseInt(option)); else setNumCiters(1); option = Utils.getOption('H', options); if(option.length() != 0) setHDRank(Integer.parseInt(option)); else setHDRank(1); } /** * Gets the current option settings for the OptionHandler. * * @return the list of current option settings as an array of strings */ public String[] getOptions() { Vector result; result = new Vector(); if (getDebug()) result.add("-D"); result.add("-R"); result.add("" + getNumReferences()); result.add("-C"); result.add("" + getNumCiters()); result.add("-H"); result.add("" + getHDRank()); return (String[]) result.toArray(new String[result.size()]); } /** * returns a string representation of the classifier * * @return the string representation */ public String toString() { StringBuffer result; int i; result = new StringBuffer(); // title result.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); result.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); if (m_Citers == null) { result.append("no model built yet!\n"); } else { // internal representation result.append("Citers....: " + Utils.arrayToString(m_Citers) + "\n"); result.append("References: " + Utils.arrayToString(m_References) + "\n"); result.append("Min.......: "); for (i = 0; i < m_Min.length; i++) { if (i > 0) result.append(","); result.append(Utils.doubleToString(m_Min[i], 3)); } result.append("\n"); result.append("Max.......: "); for (i = 0; i < m_Max.length; i++) { if (i > 0) result.append(","); result.append(Utils.doubleToString(m_Max[i], 3)); } result.append("\n"); result.append("Diffs.....: "); for (i = 0; i < m_Diffs.length; i++) { if (i > 0) result.append(","); result.append(Utils.doubleToString(m_Diffs[i], 3)); } result.append("\n"); } return result.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class. * * @param argv should contain the command line arguments to the * scheme (see Evaluation) */ public static void main(String[] argv) { runClassifier(new CitationKNN(), argv); } //######################################################################## //######################################################################## //######################################################################## //######################################################################## //######################################################################## /** * A class for storing data about a neighboring instance */ private class NeighborNode implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = -3947320761906511289L; /** The neighbor bag */ private Instance mBag; /** The distance from the current instance to this neighbor */ private double mDistance; /** A link to the next neighbor instance */ private NeighborNode mNext; /** the position in the bag */ private int mBagPosition; /** * Create a new neighbor node. * * @param distance the distance to the neighbor * @param bag the bag instance * @param position the position in the bag * @param next the next neighbor node */ public NeighborNode(double distance, Instance bag, int position, NeighborNode next){ mDistance = distance; mBag = bag; mNext = next; mBagPosition = position; } /** * Create a new neighbor node that doesn't link to any other nodes. * * @param distance the distance to the neighbor * @param bag the neighbor instance * @param position the position in the bag */ public NeighborNode(double distance, Instance bag, int position) { this(distance, bag, position, null); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } } //################################################## /** * A class for a linked list to store the nearest k neighbours * to an instance. We use a list so that we can take care of * cases where multiple neighbours are the same distance away. * i.e. the minimum length of the list is k. */ private class NeighborList implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = 3432555644456217394L; /** The first node in the list */ private NeighborNode mFirst; /** The last node in the list */ private NeighborNode mLast; /** The number of nodes to attempt to maintain in the list */ private int mLength = 1; /** * Creates the neighborlist with a desired length * * @param length the length of list to attempt to maintain */ public NeighborList(int length) { mLength = length; } /** * Gets whether the list is empty. * * @return true if so */ public boolean isEmpty() { return (mFirst == null); } /** * Gets the current length of the list. * * @return the current length of the list */ public int currentLength() { int i = 0; NeighborNode current = mFirst; while (current != null) { i++; current = current.mNext; } return i; } /** * Inserts an instance neighbor into the list, maintaining the list * sorted by distance. * * @param distance the distance to the instance * @param bag the neighboring instance * @param position the position in the bag */ public void insertSorted(double distance, Instance bag, int position) { if (isEmpty()) { mFirst = mLast = new NeighborNode(distance, bag, position); } else { NeighborNode current = mFirst; if (distance < mFirst.mDistance) {// Insert at head mFirst = new NeighborNode(distance, bag, position, mFirst); } else { // Insert further down the list for( ;(current.mNext != null) && (current.mNext.mDistance < distance); current = current.mNext); current.mNext = new NeighborNode(distance, bag, position, current.mNext); if (current.equals(mLast)) { mLast = current.mNext; } } // Trip down the list until we've got k list elements (or more if the // distance to the last elements is the same). int valcount = 0; for(current = mFirst; current.mNext != null; current = current.mNext) { valcount++; if ((valcount >= mLength) && (current.mDistance != current.mNext.mDistance)) { mLast = current; current.mNext = null; break; } } } } /** * Prunes the list to contain the k nearest neighbors. If there are * multiple neighbors at the k'th distance, all will be kept. * * @param k the number of neighbors to keep in the list. */ public void pruneToK(int k) { if (isEmpty()) return; if (k < 1) k = 1; int currentK = 0; double currentDist = mFirst.mDistance; NeighborNode current = mFirst; for(; current.mNext != null; current = current.mNext) { currentK++; currentDist = current.mDistance; if ((currentK >= k) && (currentDist != current.mNext.mDistance)) { mLast = current; current.mNext = null; break; } } } /** * Prints out the contents of the neighborlist */ public void printList() { if (isEmpty()) { System.out.println("Empty list"); } else { NeighborNode current = mFirst; while (current != null) { System.out.print("Node: instance " + current.mBagPosition + "\n"); System.out.println(current.mBag); System.out.println(", distance " + current.mDistance); current = current.mNext; } System.out.println(); } } /** * Prints out the contents of the neighborlist */ public void printReducedList() { if (isEmpty()) { System.out.println("Empty list"); } else { NeighborNode current = mFirst; while (current != null) { System.out.print("Node: bag " + current.mBagPosition + " (" + current.mBag.relationalValue(1).numInstances() +"): "); //for(int i = 0; i < current.mBag.getInstances().numInstances(); i++){ //System.out.print(" " + (current.mBag).getInstances().instance(i)); //} System.out.print(" <" + current.mBag.classValue() + ">"); System.out.println(" (d: " + current.mDistance + ")"); current = current.mNext; } System.out.println(); } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } } }