source: src/main/java/weka/classifiers/meta/nestedDichotomies/ClassBalancedND.java @ 9

Last change on this file since 9 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 16.0 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    ClassBalancedND.java
19 *    Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.meta.nestedDichotomies;
24
25import weka.classifiers.Classifier;
26import weka.classifiers.AbstractClassifier;
27import weka.classifiers.RandomizableSingleClassifierEnhancer;
28import weka.classifiers.meta.FilteredClassifier;
29import weka.core.Capabilities;
30import weka.core.Instance;
31import weka.core.Instances;
32import weka.core.Range;
33import weka.core.RevisionUtils;
34import weka.core.TechnicalInformation;
35import weka.core.TechnicalInformationHandler;
36import weka.core.Utils;
37import weka.core.Capabilities.Capability;
38import weka.core.TechnicalInformation.Field;
39import weka.core.TechnicalInformation.Type;
40import weka.filters.Filter;
41import weka.filters.unsupervised.attribute.MakeIndicator;
42import weka.filters.unsupervised.instance.RemoveWithValues;
43
44import java.util.Hashtable;
45import java.util.Random;
46
47/**
48 <!-- globalinfo-start -->
49 * A meta classifier for handling multi-class datasets with 2-class classifiers by building a random class-balanced tree structure.<br/>
50 * <br/>
51 * For more info, check<br/>
52 * <br/>
53 * Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95, 2005.<br/>
54 * <br/>
55 * Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class problems. In: Twenty-first International Conference on Machine Learning, 2004.
56 * <p/>
57 <!-- globalinfo-end -->
58 *
59 <!-- technical-bibtex-start -->
60 * BibTeX:
61 * <pre>
62 * &#64;inproceedings{Dong2005,
63 *    author = {Lin Dong and Eibe Frank and Stefan Kramer},
64 *    booktitle = {PKDD},
65 *    pages = {84-95},
66 *    publisher = {Springer},
67 *    title = {Ensembles of Balanced Nested Dichotomies for Multi-class Problems},
68 *    year = {2005}
69 * }
70 *
71 * &#64;inproceedings{Frank2004,
72 *    author = {Eibe Frank and Stefan Kramer},
73 *    booktitle = {Twenty-first International Conference on Machine Learning},
74 *    publisher = {ACM},
75 *    title = {Ensembles of nested dichotomies for multi-class problems},
76 *    year = {2004}
77 * }
78 * </pre>
79 * <p/>
80 <!-- technical-bibtex-end -->
81 *
82 <!-- options-start -->
83 * Valid options are: <p/>
84 *
85 * <pre> -S &lt;num&gt;
86 *  Random number seed.
87 *  (default 1)</pre>
88 *
89 * <pre> -D
90 *  If set, classifier is run in debug mode and
91 *  may output additional info to the console</pre>
92 *
93 * <pre> -W
94 *  Full name of base classifier.
95 *  (default: weka.classifiers.trees.J48)</pre>
96 *
97 * <pre>
98 * Options specific to classifier weka.classifiers.trees.J48:
99 * </pre>
100 *
101 * <pre> -U
102 *  Use unpruned tree.</pre>
103 *
104 * <pre> -C &lt;pruning confidence&gt;
105 *  Set confidence threshold for pruning.
106 *  (default 0.25)</pre>
107 *
108 * <pre> -M &lt;minimum number of instances&gt;
109 *  Set minimum number of instances per leaf.
110 *  (default 2)</pre>
111 *
112 * <pre> -R
113 *  Use reduced error pruning.</pre>
114 *
115 * <pre> -N &lt;number of folds&gt;
116 *  Set number of folds for reduced error
117 *  pruning. One fold is used as pruning set.
118 *  (default 3)</pre>
119 *
120 * <pre> -B
121 *  Use binary splits only.</pre>
122 *
123 * <pre> -S
124 *  Don't perform subtree raising.</pre>
125 *
126 * <pre> -L
127 *  Do not clean up after the tree has been built.</pre>
128 *
129 * <pre> -A
130 *  Laplace smoothing for predicted probabilities.</pre>
131 *
132 * <pre> -Q &lt;seed&gt;
133 *  Seed for random data shuffling (default 1).</pre>
134 *
135 <!-- options-end -->
136 *
137 * @author Lin Dong
138 * @author Eibe Frank
139 */
140public class ClassBalancedND 
141  extends RandomizableSingleClassifierEnhancer
142  implements TechnicalInformationHandler {
143
144  /** for serialization */
145  static final long serialVersionUID = 5944063630650811903L;
146 
147  /** The filtered classifier in which the base classifier is wrapped. */
148  protected FilteredClassifier m_FilteredClassifier;
149   
150  /** The hashtable for this node. */
151  protected Hashtable m_classifiers;
152
153  /** The first successor */
154  protected ClassBalancedND m_FirstSuccessor = null;
155
156  /** The second successor */
157  protected ClassBalancedND m_SecondSuccessor = null;
158 
159  /** The classes that are grouped together at the current node */
160  protected Range m_Range = null;
161   
162  /** Is Hashtable given from END? */
163  protected boolean m_hashtablegiven = false;
164   
165  /**
166   * Constructor.
167   */
168  public ClassBalancedND() {
169   
170    m_Classifier = new weka.classifiers.trees.J48();
171  }
172 
173  /**
174   * String describing default classifier.
175   *
176   * @return the default classifier classname
177   */
178  protected String defaultClassifierString() {
179   
180    return "weka.classifiers.trees.J48";
181  }
182
183  /**
184   * Returns an instance of a TechnicalInformation object, containing
185   * detailed information about the technical background of this class,
186   * e.g., paper reference or book this class is based on.
187   *
188   * @return the technical information about this class
189   */
190  public TechnicalInformation getTechnicalInformation() {
191    TechnicalInformation        result;
192    TechnicalInformation        additional;
193   
194    result = new TechnicalInformation(Type.INPROCEEDINGS);
195    result.setValue(Field.AUTHOR, "Lin Dong and Eibe Frank and Stefan Kramer");
196    result.setValue(Field.TITLE, "Ensembles of Balanced Nested Dichotomies for Multi-class Problems");
197    result.setValue(Field.BOOKTITLE, "PKDD");
198    result.setValue(Field.YEAR, "2005");
199    result.setValue(Field.PAGES, "84-95");
200    result.setValue(Field.PUBLISHER, "Springer");
201
202    additional = result.add(Type.INPROCEEDINGS);
203    additional.setValue(Field.AUTHOR, "Eibe Frank and Stefan Kramer");
204    additional.setValue(Field.TITLE, "Ensembles of nested dichotomies for multi-class problems");
205    additional.setValue(Field.BOOKTITLE, "Twenty-first International Conference on Machine Learning");
206    additional.setValue(Field.YEAR, "2004");
207    additional.setValue(Field.PUBLISHER, "ACM");
208   
209    return result;
210  }
211
212  /**
213   * Set hashtable from END.
214   *
215   * @param table the hashtable to use
216   */
217  public void setHashtable(Hashtable table) {
218
219    m_hashtablegiven = true;
220    m_classifiers = table;
221  }
222   
223  /**
224   * Generates a classifier for the current node and proceeds recursively.
225   *
226   * @param data contains the (multi-class) instances
227   * @param classes contains the indices of the classes that are present
228   * @param rand the random number generator to use
229   * @param classifier the classifier to use
230   * @param table the Hashtable to use
231   * @throws Exception if anything goes worng
232   */
233  private void generateClassifierForNode(Instances data, Range classes,
234                                         Random rand, Classifier classifier, Hashtable table) 
235    throws Exception {
236       
237    // Get the indices
238    int[] indices = classes.getSelection();
239
240    // Randomize the order of the indices
241    for (int j = indices.length - 1; j > 0; j--) {
242      int randPos = rand.nextInt(j + 1);
243      int temp = indices[randPos];
244      indices[randPos] = indices[j];
245      indices[j] = temp;
246    }
247
248    // Pick the classes for the current split
249    int first = indices.length / 2;
250    int second = indices.length - first;
251    int[] firstInds = new int[first];
252    int[] secondInds = new int[second];
253    System.arraycopy(indices, 0, firstInds, 0, first);
254    System.arraycopy(indices, first, secondInds, 0, second);
255       
256    // Sort the indices (important for hash key)!
257    int[] sortedFirst = Utils.sort(firstInds);
258    int[] sortedSecond = Utils.sort(secondInds);
259    int[] firstCopy = new int[first];
260    int[] secondCopy = new int[second];
261    for (int i = 0; i < sortedFirst.length; i++) {
262      firstCopy[i] = firstInds[sortedFirst[i]];
263    }
264    firstInds = firstCopy;
265    for (int i = 0; i < sortedSecond.length; i++) {
266      secondCopy[i] = secondInds[sortedSecond[i]];
267    }
268    secondInds = secondCopy;
269               
270    // Unify indices to improve hashing
271    if (firstInds[0] > secondInds[0]) {
272      int[] help = secondInds;
273      secondInds = firstInds;
274      firstInds = help;
275      int help2 = second;
276      second = first;
277      first = help2;
278    }
279
280    m_Range = new Range(Range.indicesToRangeList(firstInds));
281    m_Range.setUpper(data.numClasses() - 1);
282
283    Range secondRange = new Range(Range.indicesToRangeList(secondInds));
284    secondRange.setUpper(data.numClasses() - 1);
285       
286    // Change the class labels and build the classifier
287    MakeIndicator filter = new MakeIndicator();
288    filter.setAttributeIndex("" + (data.classIndex() + 1));
289    filter.setValueIndices(m_Range.getRanges());
290    filter.setNumeric(false);
291    filter.setInputFormat(data);
292    m_FilteredClassifier = new FilteredClassifier();
293    if (data.numInstances() > 0) {
294      m_FilteredClassifier.setClassifier(AbstractClassifier.makeCopies(classifier, 1)[0]);
295    } else {
296      m_FilteredClassifier.setClassifier(new weka.classifiers.rules.ZeroR());
297    }
298    m_FilteredClassifier.setFilter(filter);
299
300    // Save reference to hash table at current node
301    m_classifiers=table;
302       
303    if (!m_classifiers.containsKey( getString(firstInds) + "|" + getString(secondInds))) {
304      m_FilteredClassifier.buildClassifier(data);
305      m_classifiers.put(getString(firstInds) + "|" + getString(secondInds), m_FilteredClassifier);
306    } else {
307      m_FilteredClassifier=(FilteredClassifier)m_classifiers.get(getString(firstInds) + "|" + 
308                                                                 getString(secondInds));       
309    }
310                               
311    // Create two successors if necessary
312    m_FirstSuccessor = new ClassBalancedND();
313    if (first == 1) {
314      m_FirstSuccessor.m_Range = m_Range;
315    } else {
316      RemoveWithValues rwv = new RemoveWithValues();
317      rwv.setInvertSelection(true);
318      rwv.setNominalIndices(m_Range.getRanges());
319      rwv.setAttributeIndex("" + (data.classIndex() + 1));
320      rwv.setInputFormat(data);
321      Instances firstSubset = Filter.useFilter(data, rwv);
322      m_FirstSuccessor.generateClassifierForNode(firstSubset, m_Range, 
323                                                 rand, classifier, m_classifiers);
324    }
325    m_SecondSuccessor = new ClassBalancedND();
326    if (second == 1) {
327      m_SecondSuccessor.m_Range = secondRange;
328    } else {
329      RemoveWithValues rwv = new RemoveWithValues();
330      rwv.setInvertSelection(true);
331      rwv.setNominalIndices(secondRange.getRanges());
332      rwv.setAttributeIndex("" + (data.classIndex() + 1));
333      rwv.setInputFormat(data);
334      Instances secondSubset = Filter.useFilter(data, rwv);
335      m_SecondSuccessor = new ClassBalancedND();
336     
337      m_SecondSuccessor.generateClassifierForNode(secondSubset, secondRange, 
338                                                  rand, classifier, m_classifiers);
339    }
340  }
341
342  /**
343   * Returns default capabilities of the classifier.
344   *
345   * @return      the capabilities of this classifier
346   */
347  public Capabilities getCapabilities() {
348    Capabilities result = super.getCapabilities();
349
350    // class
351    result.disableAllClasses();
352    result.enable(Capability.NOMINAL_CLASS);
353    result.enable(Capability.MISSING_CLASS_VALUES);
354
355    // instances
356    result.setMinimumNumberInstances(1);
357   
358    return result;
359  }
360   
361  /**
362   * Builds tree recursively.
363   *
364   * @param data contains the (multi-class) instances
365   * @throws Exception if the building fails
366   */
367  public void buildClassifier(Instances data) throws Exception {
368
369    // can classifier handle the data?
370    getCapabilities().testWithFail(data);
371
372    // remove instances with missing class
373    data = new Instances(data);
374    data.deleteWithMissingClass();
375   
376    Random random = data.getRandomNumberGenerator(m_Seed);
377       
378    if (!m_hashtablegiven) {
379      m_classifiers = new Hashtable();
380    }
381       
382    // Check which classes are present in the
383    // data and construct initial list of classes
384    boolean[] present = new boolean[data.numClasses()];
385    for (int i = 0; i < data.numInstances(); i++) {
386      present[(int)data.instance(i).classValue()] = true;
387    }
388    StringBuffer list = new StringBuffer();
389    for (int i = 0; i < present.length; i++) {
390      if (present[i]) {
391        if (list.length() > 0) {
392          list.append(",");
393        }
394        list.append(i + 1);
395      }
396    }
397     
398    Range newRange = new Range(list.toString());
399    newRange.setUpper(data.numClasses() - 1);
400       
401    generateClassifierForNode(data, newRange, random, m_Classifier, m_classifiers);
402  }
403   
404  /**
405   * Predicts the class distribution for a given instance
406   *
407   * @param inst the (multi-class) instance to be classified
408   * @return the class distribution
409   * @throws Exception if computing fails
410   */
411  public double[] distributionForInstance(Instance inst) throws Exception {
412       
413    double[] newDist = new double[inst.numClasses()];
414    if (m_FirstSuccessor == null) {
415      for (int i = 0; i < inst.numClasses(); i++) {
416        if (m_Range.isInRange(i)) {
417          newDist[i] = 1;
418        }
419      }
420      return newDist;
421    } else {
422      double[] firstDist = m_FirstSuccessor.distributionForInstance(inst);
423      double[] secondDist = m_SecondSuccessor.distributionForInstance(inst);
424      double[] dist = m_FilteredClassifier.distributionForInstance(inst);
425      for (int i = 0; i < inst.numClasses(); i++) {
426        if ((firstDist[i] > 0) && (secondDist[i] > 0)) {
427          System.err.println("Panik!!");
428        }
429        if (m_Range.isInRange(i)) {
430          newDist[i] = dist[1] * firstDist[i];
431        } else {
432          newDist[i] = dist[0] * secondDist[i];
433        }
434      }
435      return newDist;
436    }
437  }
438   
439  /**
440   * Returns the list of indices as a string.
441   *
442   * @param indices the indices to return as string
443   * @return the indices as string
444   */
445  public String getString(int [] indices) {
446
447    StringBuffer string = new StringBuffer();
448    for (int i = 0; i < indices.length; i++) {
449      if (i > 0) {
450        string.append(',');
451      }
452      string.append(indices[i]);
453    }
454    return string.toString();
455  }
456       
457  /**
458   * @return a description of the classifier suitable for
459   * displaying in the explorer/experimenter gui
460   */
461  public String globalInfo() {
462           
463    return 
464        "A meta classifier for handling multi-class datasets with 2-class "
465      + "classifiers by building a random class-balanced tree structure.\n\n"
466      + "For more info, check\n\n"
467      + getTechnicalInformation().toString();
468  }
469       
470  /**
471   * Outputs the classifier as a string.
472   *
473   * @return a string representation of the classifier
474   */
475  public String toString() {
476           
477    if (m_classifiers == null) {
478      return "ClassBalancedND: No model built yet.";
479    }
480    StringBuffer text = new StringBuffer();
481    text.append("ClassBalancedND");
482    treeToString(text, 0);
483           
484    return text.toString();
485  }
486       
487  /**
488   * Returns string description of the tree.
489   *
490   * @param text the buffer to add the node to
491   * @param nn the node number
492   * @return the next node number
493   */
494  private int treeToString(StringBuffer text, int nn) {
495           
496    nn++;
497    text.append("\n\nNode number: " + nn + "\n\n");
498    if (m_FilteredClassifier != null) {
499      text.append(m_FilteredClassifier);
500    } else {
501      text.append("null");
502    }
503    if (m_FirstSuccessor != null) {
504      nn = m_FirstSuccessor.treeToString(text, nn);
505      nn = m_SecondSuccessor.treeToString(text, nn);
506    }
507    return nn;
508  }
509 
510  /**
511   * Returns the revision string.
512   *
513   * @return            the revision
514   */
515  public String getRevision() {
516    return RevisionUtils.extract("$Revision: 5928 $");
517  }
518       
519  /**
520   * Main method for testing this class.
521   *
522   * @param argv the options
523   */
524  public static void main(String [] argv) {
525    runClassifier(new ClassBalancedND(), argv);
526  }
527}
528
Note: See TracBrowser for help on using the repository browser.