1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ClassBalancedND.java |
---|
19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta.nestedDichotomies; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.RandomizableSingleClassifierEnhancer; |
---|
28 | import weka.classifiers.meta.FilteredClassifier; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.Range; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.TechnicalInformation; |
---|
35 | import weka.core.TechnicalInformationHandler; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.Capabilities.Capability; |
---|
38 | import weka.core.TechnicalInformation.Field; |
---|
39 | import weka.core.TechnicalInformation.Type; |
---|
40 | import weka.filters.Filter; |
---|
41 | import weka.filters.unsupervised.attribute.MakeIndicator; |
---|
42 | import weka.filters.unsupervised.instance.RemoveWithValues; |
---|
43 | |
---|
44 | import java.util.Hashtable; |
---|
45 | import java.util.Random; |
---|
46 | |
---|
47 | /** |
---|
48 | <!-- globalinfo-start --> |
---|
49 | * A meta classifier for handling multi-class datasets with 2-class classifiers by building a random class-balanced tree structure.<br/> |
---|
50 | * <br/> |
---|
51 | * For more info, check<br/> |
---|
52 | * <br/> |
---|
53 | * Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95, 2005.<br/> |
---|
54 | * <br/> |
---|
55 | * Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class problems. In: Twenty-first International Conference on Machine Learning, 2004. |
---|
56 | * <p/> |
---|
57 | <!-- globalinfo-end --> |
---|
58 | * |
---|
59 | <!-- technical-bibtex-start --> |
---|
60 | * BibTeX: |
---|
61 | * <pre> |
---|
62 | * @inproceedings{Dong2005, |
---|
63 | * author = {Lin Dong and Eibe Frank and Stefan Kramer}, |
---|
64 | * booktitle = {PKDD}, |
---|
65 | * pages = {84-95}, |
---|
66 | * publisher = {Springer}, |
---|
67 | * title = {Ensembles of Balanced Nested Dichotomies for Multi-class Problems}, |
---|
68 | * year = {2005} |
---|
69 | * } |
---|
70 | * |
---|
71 | * @inproceedings{Frank2004, |
---|
72 | * author = {Eibe Frank and Stefan Kramer}, |
---|
73 | * booktitle = {Twenty-first International Conference on Machine Learning}, |
---|
74 | * publisher = {ACM}, |
---|
75 | * title = {Ensembles of nested dichotomies for multi-class problems}, |
---|
76 | * year = {2004} |
---|
77 | * } |
---|
78 | * </pre> |
---|
79 | * <p/> |
---|
80 | <!-- technical-bibtex-end --> |
---|
81 | * |
---|
82 | <!-- options-start --> |
---|
83 | * Valid options are: <p/> |
---|
84 | * |
---|
85 | * <pre> -S <num> |
---|
86 | * Random number seed. |
---|
87 | * (default 1)</pre> |
---|
88 | * |
---|
89 | * <pre> -D |
---|
90 | * If set, classifier is run in debug mode and |
---|
91 | * may output additional info to the console</pre> |
---|
92 | * |
---|
93 | * <pre> -W |
---|
94 | * Full name of base classifier. |
---|
95 | * (default: weka.classifiers.trees.J48)</pre> |
---|
96 | * |
---|
97 | * <pre> |
---|
98 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
99 | * </pre> |
---|
100 | * |
---|
101 | * <pre> -U |
---|
102 | * Use unpruned tree.</pre> |
---|
103 | * |
---|
104 | * <pre> -C <pruning confidence> |
---|
105 | * Set confidence threshold for pruning. |
---|
106 | * (default 0.25)</pre> |
---|
107 | * |
---|
108 | * <pre> -M <minimum number of instances> |
---|
109 | * Set minimum number of instances per leaf. |
---|
110 | * (default 2)</pre> |
---|
111 | * |
---|
112 | * <pre> -R |
---|
113 | * Use reduced error pruning.</pre> |
---|
114 | * |
---|
115 | * <pre> -N <number of folds> |
---|
116 | * Set number of folds for reduced error |
---|
117 | * pruning. One fold is used as pruning set. |
---|
118 | * (default 3)</pre> |
---|
119 | * |
---|
120 | * <pre> -B |
---|
121 | * Use binary splits only.</pre> |
---|
122 | * |
---|
123 | * <pre> -S |
---|
124 | * Don't perform subtree raising.</pre> |
---|
125 | * |
---|
126 | * <pre> -L |
---|
127 | * Do not clean up after the tree has been built.</pre> |
---|
128 | * |
---|
129 | * <pre> -A |
---|
130 | * Laplace smoothing for predicted probabilities.</pre> |
---|
131 | * |
---|
132 | * <pre> -Q <seed> |
---|
133 | * Seed for random data shuffling (default 1).</pre> |
---|
134 | * |
---|
135 | <!-- options-end --> |
---|
136 | * |
---|
137 | * @author Lin Dong |
---|
138 | * @author Eibe Frank |
---|
139 | */ |
---|
140 | public class ClassBalancedND |
---|
141 | extends RandomizableSingleClassifierEnhancer |
---|
142 | implements TechnicalInformationHandler { |
---|
143 | |
---|
144 | /** for serialization */ |
---|
145 | static final long serialVersionUID = 5944063630650811903L; |
---|
146 | |
---|
147 | /** The filtered classifier in which the base classifier is wrapped. */ |
---|
148 | protected FilteredClassifier m_FilteredClassifier; |
---|
149 | |
---|
150 | /** The hashtable for this node. */ |
---|
151 | protected Hashtable m_classifiers; |
---|
152 | |
---|
153 | /** The first successor */ |
---|
154 | protected ClassBalancedND m_FirstSuccessor = null; |
---|
155 | |
---|
156 | /** The second successor */ |
---|
157 | protected ClassBalancedND m_SecondSuccessor = null; |
---|
158 | |
---|
159 | /** The classes that are grouped together at the current node */ |
---|
160 | protected Range m_Range = null; |
---|
161 | |
---|
162 | /** Is Hashtable given from END? */ |
---|
163 | protected boolean m_hashtablegiven = false; |
---|
164 | |
---|
165 | /** |
---|
166 | * Constructor. |
---|
167 | */ |
---|
168 | public ClassBalancedND() { |
---|
169 | |
---|
170 | m_Classifier = new weka.classifiers.trees.J48(); |
---|
171 | } |
---|
172 | |
---|
173 | /** |
---|
174 | * String describing default classifier. |
---|
175 | * |
---|
176 | * @return the default classifier classname |
---|
177 | */ |
---|
178 | protected String defaultClassifierString() { |
---|
179 | |
---|
180 | return "weka.classifiers.trees.J48"; |
---|
181 | } |
---|
182 | |
---|
183 | /** |
---|
184 | * Returns an instance of a TechnicalInformation object, containing |
---|
185 | * detailed information about the technical background of this class, |
---|
186 | * e.g., paper reference or book this class is based on. |
---|
187 | * |
---|
188 | * @return the technical information about this class |
---|
189 | */ |
---|
190 | public TechnicalInformation getTechnicalInformation() { |
---|
191 | TechnicalInformation result; |
---|
192 | TechnicalInformation additional; |
---|
193 | |
---|
194 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
195 | result.setValue(Field.AUTHOR, "Lin Dong and Eibe Frank and Stefan Kramer"); |
---|
196 | result.setValue(Field.TITLE, "Ensembles of Balanced Nested Dichotomies for Multi-class Problems"); |
---|
197 | result.setValue(Field.BOOKTITLE, "PKDD"); |
---|
198 | result.setValue(Field.YEAR, "2005"); |
---|
199 | result.setValue(Field.PAGES, "84-95"); |
---|
200 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
201 | |
---|
202 | additional = result.add(Type.INPROCEEDINGS); |
---|
203 | additional.setValue(Field.AUTHOR, "Eibe Frank and Stefan Kramer"); |
---|
204 | additional.setValue(Field.TITLE, "Ensembles of nested dichotomies for multi-class problems"); |
---|
205 | additional.setValue(Field.BOOKTITLE, "Twenty-first International Conference on Machine Learning"); |
---|
206 | additional.setValue(Field.YEAR, "2004"); |
---|
207 | additional.setValue(Field.PUBLISHER, "ACM"); |
---|
208 | |
---|
209 | return result; |
---|
210 | } |
---|
211 | |
---|
212 | /** |
---|
213 | * Set hashtable from END. |
---|
214 | * |
---|
215 | * @param table the hashtable to use |
---|
216 | */ |
---|
217 | public void setHashtable(Hashtable table) { |
---|
218 | |
---|
219 | m_hashtablegiven = true; |
---|
220 | m_classifiers = table; |
---|
221 | } |
---|
222 | |
---|
223 | /** |
---|
224 | * Generates a classifier for the current node and proceeds recursively. |
---|
225 | * |
---|
226 | * @param data contains the (multi-class) instances |
---|
227 | * @param classes contains the indices of the classes that are present |
---|
228 | * @param rand the random number generator to use |
---|
229 | * @param classifier the classifier to use |
---|
230 | * @param table the Hashtable to use |
---|
231 | * @throws Exception if anything goes worng |
---|
232 | */ |
---|
233 | private void generateClassifierForNode(Instances data, Range classes, |
---|
234 | Random rand, Classifier classifier, Hashtable table) |
---|
235 | throws Exception { |
---|
236 | |
---|
237 | // Get the indices |
---|
238 | int[] indices = classes.getSelection(); |
---|
239 | |
---|
240 | // Randomize the order of the indices |
---|
241 | for (int j = indices.length - 1; j > 0; j--) { |
---|
242 | int randPos = rand.nextInt(j + 1); |
---|
243 | int temp = indices[randPos]; |
---|
244 | indices[randPos] = indices[j]; |
---|
245 | indices[j] = temp; |
---|
246 | } |
---|
247 | |
---|
248 | // Pick the classes for the current split |
---|
249 | int first = indices.length / 2; |
---|
250 | int second = indices.length - first; |
---|
251 | int[] firstInds = new int[first]; |
---|
252 | int[] secondInds = new int[second]; |
---|
253 | System.arraycopy(indices, 0, firstInds, 0, first); |
---|
254 | System.arraycopy(indices, first, secondInds, 0, second); |
---|
255 | |
---|
256 | // Sort the indices (important for hash key)! |
---|
257 | int[] sortedFirst = Utils.sort(firstInds); |
---|
258 | int[] sortedSecond = Utils.sort(secondInds); |
---|
259 | int[] firstCopy = new int[first]; |
---|
260 | int[] secondCopy = new int[second]; |
---|
261 | for (int i = 0; i < sortedFirst.length; i++) { |
---|
262 | firstCopy[i] = firstInds[sortedFirst[i]]; |
---|
263 | } |
---|
264 | firstInds = firstCopy; |
---|
265 | for (int i = 0; i < sortedSecond.length; i++) { |
---|
266 | secondCopy[i] = secondInds[sortedSecond[i]]; |
---|
267 | } |
---|
268 | secondInds = secondCopy; |
---|
269 | |
---|
270 | // Unify indices to improve hashing |
---|
271 | if (firstInds[0] > secondInds[0]) { |
---|
272 | int[] help = secondInds; |
---|
273 | secondInds = firstInds; |
---|
274 | firstInds = help; |
---|
275 | int help2 = second; |
---|
276 | second = first; |
---|
277 | first = help2; |
---|
278 | } |
---|
279 | |
---|
280 | m_Range = new Range(Range.indicesToRangeList(firstInds)); |
---|
281 | m_Range.setUpper(data.numClasses() - 1); |
---|
282 | |
---|
283 | Range secondRange = new Range(Range.indicesToRangeList(secondInds)); |
---|
284 | secondRange.setUpper(data.numClasses() - 1); |
---|
285 | |
---|
286 | // Change the class labels and build the classifier |
---|
287 | MakeIndicator filter = new MakeIndicator(); |
---|
288 | filter.setAttributeIndex("" + (data.classIndex() + 1)); |
---|
289 | filter.setValueIndices(m_Range.getRanges()); |
---|
290 | filter.setNumeric(false); |
---|
291 | filter.setInputFormat(data); |
---|
292 | m_FilteredClassifier = new FilteredClassifier(); |
---|
293 | if (data.numInstances() > 0) { |
---|
294 | m_FilteredClassifier.setClassifier(AbstractClassifier.makeCopies(classifier, 1)[0]); |
---|
295 | } else { |
---|
296 | m_FilteredClassifier.setClassifier(new weka.classifiers.rules.ZeroR()); |
---|
297 | } |
---|
298 | m_FilteredClassifier.setFilter(filter); |
---|
299 | |
---|
300 | // Save reference to hash table at current node |
---|
301 | m_classifiers=table; |
---|
302 | |
---|
303 | if (!m_classifiers.containsKey( getString(firstInds) + "|" + getString(secondInds))) { |
---|
304 | m_FilteredClassifier.buildClassifier(data); |
---|
305 | m_classifiers.put(getString(firstInds) + "|" + getString(secondInds), m_FilteredClassifier); |
---|
306 | } else { |
---|
307 | m_FilteredClassifier=(FilteredClassifier)m_classifiers.get(getString(firstInds) + "|" + |
---|
308 | getString(secondInds)); |
---|
309 | } |
---|
310 | |
---|
311 | // Create two successors if necessary |
---|
312 | m_FirstSuccessor = new ClassBalancedND(); |
---|
313 | if (first == 1) { |
---|
314 | m_FirstSuccessor.m_Range = m_Range; |
---|
315 | } else { |
---|
316 | RemoveWithValues rwv = new RemoveWithValues(); |
---|
317 | rwv.setInvertSelection(true); |
---|
318 | rwv.setNominalIndices(m_Range.getRanges()); |
---|
319 | rwv.setAttributeIndex("" + (data.classIndex() + 1)); |
---|
320 | rwv.setInputFormat(data); |
---|
321 | Instances firstSubset = Filter.useFilter(data, rwv); |
---|
322 | m_FirstSuccessor.generateClassifierForNode(firstSubset, m_Range, |
---|
323 | rand, classifier, m_classifiers); |
---|
324 | } |
---|
325 | m_SecondSuccessor = new ClassBalancedND(); |
---|
326 | if (second == 1) { |
---|
327 | m_SecondSuccessor.m_Range = secondRange; |
---|
328 | } else { |
---|
329 | RemoveWithValues rwv = new RemoveWithValues(); |
---|
330 | rwv.setInvertSelection(true); |
---|
331 | rwv.setNominalIndices(secondRange.getRanges()); |
---|
332 | rwv.setAttributeIndex("" + (data.classIndex() + 1)); |
---|
333 | rwv.setInputFormat(data); |
---|
334 | Instances secondSubset = Filter.useFilter(data, rwv); |
---|
335 | m_SecondSuccessor = new ClassBalancedND(); |
---|
336 | |
---|
337 | m_SecondSuccessor.generateClassifierForNode(secondSubset, secondRange, |
---|
338 | rand, classifier, m_classifiers); |
---|
339 | } |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * Returns default capabilities of the classifier. |
---|
344 | * |
---|
345 | * @return the capabilities of this classifier |
---|
346 | */ |
---|
347 | public Capabilities getCapabilities() { |
---|
348 | Capabilities result = super.getCapabilities(); |
---|
349 | |
---|
350 | // class |
---|
351 | result.disableAllClasses(); |
---|
352 | result.enable(Capability.NOMINAL_CLASS); |
---|
353 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
354 | |
---|
355 | // instances |
---|
356 | result.setMinimumNumberInstances(1); |
---|
357 | |
---|
358 | return result; |
---|
359 | } |
---|
360 | |
---|
361 | /** |
---|
362 | * Builds tree recursively. |
---|
363 | * |
---|
364 | * @param data contains the (multi-class) instances |
---|
365 | * @throws Exception if the building fails |
---|
366 | */ |
---|
367 | public void buildClassifier(Instances data) throws Exception { |
---|
368 | |
---|
369 | // can classifier handle the data? |
---|
370 | getCapabilities().testWithFail(data); |
---|
371 | |
---|
372 | // remove instances with missing class |
---|
373 | data = new Instances(data); |
---|
374 | data.deleteWithMissingClass(); |
---|
375 | |
---|
376 | Random random = data.getRandomNumberGenerator(m_Seed); |
---|
377 | |
---|
378 | if (!m_hashtablegiven) { |
---|
379 | m_classifiers = new Hashtable(); |
---|
380 | } |
---|
381 | |
---|
382 | // Check which classes are present in the |
---|
383 | // data and construct initial list of classes |
---|
384 | boolean[] present = new boolean[data.numClasses()]; |
---|
385 | for (int i = 0; i < data.numInstances(); i++) { |
---|
386 | present[(int)data.instance(i).classValue()] = true; |
---|
387 | } |
---|
388 | StringBuffer list = new StringBuffer(); |
---|
389 | for (int i = 0; i < present.length; i++) { |
---|
390 | if (present[i]) { |
---|
391 | if (list.length() > 0) { |
---|
392 | list.append(","); |
---|
393 | } |
---|
394 | list.append(i + 1); |
---|
395 | } |
---|
396 | } |
---|
397 | |
---|
398 | Range newRange = new Range(list.toString()); |
---|
399 | newRange.setUpper(data.numClasses() - 1); |
---|
400 | |
---|
401 | generateClassifierForNode(data, newRange, random, m_Classifier, m_classifiers); |
---|
402 | } |
---|
403 | |
---|
404 | /** |
---|
405 | * Predicts the class distribution for a given instance |
---|
406 | * |
---|
407 | * @param inst the (multi-class) instance to be classified |
---|
408 | * @return the class distribution |
---|
409 | * @throws Exception if computing fails |
---|
410 | */ |
---|
411 | public double[] distributionForInstance(Instance inst) throws Exception { |
---|
412 | |
---|
413 | double[] newDist = new double[inst.numClasses()]; |
---|
414 | if (m_FirstSuccessor == null) { |
---|
415 | for (int i = 0; i < inst.numClasses(); i++) { |
---|
416 | if (m_Range.isInRange(i)) { |
---|
417 | newDist[i] = 1; |
---|
418 | } |
---|
419 | } |
---|
420 | return newDist; |
---|
421 | } else { |
---|
422 | double[] firstDist = m_FirstSuccessor.distributionForInstance(inst); |
---|
423 | double[] secondDist = m_SecondSuccessor.distributionForInstance(inst); |
---|
424 | double[] dist = m_FilteredClassifier.distributionForInstance(inst); |
---|
425 | for (int i = 0; i < inst.numClasses(); i++) { |
---|
426 | if ((firstDist[i] > 0) && (secondDist[i] > 0)) { |
---|
427 | System.err.println("Panik!!"); |
---|
428 | } |
---|
429 | if (m_Range.isInRange(i)) { |
---|
430 | newDist[i] = dist[1] * firstDist[i]; |
---|
431 | } else { |
---|
432 | newDist[i] = dist[0] * secondDist[i]; |
---|
433 | } |
---|
434 | } |
---|
435 | return newDist; |
---|
436 | } |
---|
437 | } |
---|
438 | |
---|
439 | /** |
---|
440 | * Returns the list of indices as a string. |
---|
441 | * |
---|
442 | * @param indices the indices to return as string |
---|
443 | * @return the indices as string |
---|
444 | */ |
---|
445 | public String getString(int [] indices) { |
---|
446 | |
---|
447 | StringBuffer string = new StringBuffer(); |
---|
448 | for (int i = 0; i < indices.length; i++) { |
---|
449 | if (i > 0) { |
---|
450 | string.append(','); |
---|
451 | } |
---|
452 | string.append(indices[i]); |
---|
453 | } |
---|
454 | return string.toString(); |
---|
455 | } |
---|
456 | |
---|
457 | /** |
---|
458 | * @return a description of the classifier suitable for |
---|
459 | * displaying in the explorer/experimenter gui |
---|
460 | */ |
---|
461 | public String globalInfo() { |
---|
462 | |
---|
463 | return |
---|
464 | "A meta classifier for handling multi-class datasets with 2-class " |
---|
465 | + "classifiers by building a random class-balanced tree structure.\n\n" |
---|
466 | + "For more info, check\n\n" |
---|
467 | + getTechnicalInformation().toString(); |
---|
468 | } |
---|
469 | |
---|
470 | /** |
---|
471 | * Outputs the classifier as a string. |
---|
472 | * |
---|
473 | * @return a string representation of the classifier |
---|
474 | */ |
---|
475 | public String toString() { |
---|
476 | |
---|
477 | if (m_classifiers == null) { |
---|
478 | return "ClassBalancedND: No model built yet."; |
---|
479 | } |
---|
480 | StringBuffer text = new StringBuffer(); |
---|
481 | text.append("ClassBalancedND"); |
---|
482 | treeToString(text, 0); |
---|
483 | |
---|
484 | return text.toString(); |
---|
485 | } |
---|
486 | |
---|
487 | /** |
---|
488 | * Returns string description of the tree. |
---|
489 | * |
---|
490 | * @param text the buffer to add the node to |
---|
491 | * @param nn the node number |
---|
492 | * @return the next node number |
---|
493 | */ |
---|
494 | private int treeToString(StringBuffer text, int nn) { |
---|
495 | |
---|
496 | nn++; |
---|
497 | text.append("\n\nNode number: " + nn + "\n\n"); |
---|
498 | if (m_FilteredClassifier != null) { |
---|
499 | text.append(m_FilteredClassifier); |
---|
500 | } else { |
---|
501 | text.append("null"); |
---|
502 | } |
---|
503 | if (m_FirstSuccessor != null) { |
---|
504 | nn = m_FirstSuccessor.treeToString(text, nn); |
---|
505 | nn = m_SecondSuccessor.treeToString(text, nn); |
---|
506 | } |
---|
507 | return nn; |
---|
508 | } |
---|
509 | |
---|
510 | /** |
---|
511 | * Returns the revision string. |
---|
512 | * |
---|
513 | * @return the revision |
---|
514 | */ |
---|
515 | public String getRevision() { |
---|
516 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
517 | } |
---|
518 | |
---|
519 | /** |
---|
520 | * Main method for testing this class. |
---|
521 | * |
---|
522 | * @param argv the options |
---|
523 | */ |
---|
524 | public static void main(String [] argv) { |
---|
525 | runClassifier(new ClassBalancedND(), argv); |
---|
526 | } |
---|
527 | } |
---|
528 | |
---|