| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * EnsembleSelection.java |
|---|
| 19 | * Copyright (C) 2006 David Michael |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.meta.ensembleSelection; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.Evaluation; |
|---|
| 26 | import weka.core.Instances; |
|---|
| 27 | import weka.core.RevisionHandler; |
|---|
| 28 | import weka.core.RevisionUtils; |
|---|
| 29 | |
|---|
| 30 | import java.util.Random; |
|---|
| 31 | |
|---|
| 32 | /** |
|---|
| 33 | * This class is responsible for the duties of a bag of models. It is designed |
|---|
| 34 | * for use with the EnsembleSelection meta classifier. It handles shuffling the |
|---|
| 35 | * models, doing sort initialization, performing forward selection/ backwards |
|---|
| 36 | * elimination, etc. |
|---|
| 37 | * <p/> |
|---|
| 38 | * We utilize a simple "virtual indexing" scheme inside. If we shuffle and/or |
|---|
| 39 | * sort the models, we change the "virtual" order around. The elements of the |
|---|
| 40 | * bag are always those elements with virtual index 0..(m_bagSize-1). Each |
|---|
| 41 | * "virtual" index maps to some real index in m_models. Not every model in |
|---|
| 42 | * m_models gets a virtual index... the virtual indexing is what defines the |
|---|
| 43 | * subset of models of which our Bag is composed. This makes it easy to refer to |
|---|
| 44 | * models in the bag, by their virtual index, while maintaining the original |
|---|
| 45 | * indexing for our clients. |
|---|
| 46 | * |
|---|
| 47 | * @author David Michael |
|---|
| 48 | * @version $Revision: 1.2 $ |
|---|
| 49 | */ |
|---|
| 50 | public class ModelBag |
|---|
| 51 | implements RevisionHandler { |
|---|
| 52 | |
|---|
| 53 | /** |
|---|
| 54 | * The "models", as a multidimensional array of predictions for the |
|---|
| 55 | * validation set. The first index is the model index, the second index is |
|---|
| 56 | * the index of the instance, and the third is the typical "class" index for |
|---|
| 57 | * a prediction's distribution. This is given to us in the constructor, and |
|---|
| 58 | * we never change it. |
|---|
| 59 | */ |
|---|
| 60 | private double m_models[][][]; |
|---|
| 61 | |
|---|
| 62 | /** |
|---|
| 63 | * Maps each model in our virtual indexing scheme to its original index as |
|---|
| 64 | * it is in m_models. The first m_bag_size elements here are considered our |
|---|
| 65 | * bag. Throughout the code, we use the index in to this array to refer to a |
|---|
| 66 | * model. When we shuffle the models, we really simply shuffle this array. |
|---|
| 67 | * When we want to refer back to the original model, it is easily looked up |
|---|
| 68 | * in this array. That is, if j = m_model_index[i], then m_models[j] is the |
|---|
| 69 | * model referred to by "virtual index" i. Models can easily be accessed by |
|---|
| 70 | * their virtual index using the "model()" method. |
|---|
| 71 | */ |
|---|
| 72 | private int m_modelIndex[]; |
|---|
| 73 | |
|---|
| 74 | /** |
|---|
| 75 | * The number of models in our bag. 1 <= m_bag_size <= m_models.length |
|---|
| 76 | */ |
|---|
| 77 | private int m_bagSize; |
|---|
| 78 | |
|---|
| 79 | /** |
|---|
| 80 | * The total number of models chosen thus far for this bag. This value is |
|---|
| 81 | * important when calculating the predictions for the bag. (See |
|---|
| 82 | * computePredictions). |
|---|
| 83 | */ |
|---|
| 84 | private int m_numChosen; |
|---|
| 85 | |
|---|
| 86 | /** |
|---|
| 87 | * The number of times each model has been chosen. Also can be thought of as |
|---|
| 88 | * the weight for each model. Indexed by the "virtual index". |
|---|
| 89 | */ |
|---|
| 90 | private int m_timesChosen[]; |
|---|
| 91 | |
|---|
| 92 | /** |
|---|
| 93 | * If true, print out debug information. |
|---|
| 94 | */ |
|---|
| 95 | private boolean m_debug; |
|---|
| 96 | |
|---|
| 97 | /** |
|---|
| 98 | * Double representing the best performance achieved thus far in this bag. |
|---|
| 99 | * This Must be updated each time we make a change to the bag that improves |
|---|
| 100 | * performance. This is so that after all hillclimbing is completed, we can |
|---|
| 101 | * go back to the best ensemble that we encountered during hillclimbing. |
|---|
| 102 | */ |
|---|
| 103 | private double m_bestPerformance; |
|---|
| 104 | |
|---|
| 105 | /** |
|---|
| 106 | * Array representing the weights for all the models which achieved the best |
|---|
| 107 | * performance thus far for the bag (i.e., the weights that achieved |
|---|
| 108 | * m_bestPerformance. This Must be updated each time we make a change to the |
|---|
| 109 | * bag (that improves performance, by calling updateBestTimesChosen. This is |
|---|
| 110 | * so that after all hillclimbing is completed, we can go back to the best |
|---|
| 111 | * ensemble that we encountered during hillclimbing. This array, unlike |
|---|
| 112 | * m_timesChosen, uses the original indexing as taken from m_models. That |
|---|
| 113 | * way, any time getModelWeights is called (which returns this array), the |
|---|
| 114 | * array is in the correct format for our client. |
|---|
| 115 | */ |
|---|
| 116 | private int m_bestTimesChosen[]; |
|---|
| 117 | |
|---|
| 118 | /** |
|---|
| 119 | * Constructor for ModelBag. |
|---|
| 120 | * |
|---|
| 121 | * @param models |
|---|
| 122 | * The complete set of models from which to draw our bag. First |
|---|
| 123 | * index is for the model, second is for the instance. The last |
|---|
| 124 | * is a prediction distribution for that instance. Models are |
|---|
| 125 | * represented by this array of predictions for validation data, |
|---|
| 126 | * since that's all ensemble selection needs to know. |
|---|
| 127 | * @param bag_percent |
|---|
| 128 | * The percentage of the set of given models that should be used |
|---|
| 129 | * in the Model Bag. |
|---|
| 130 | * @param debug |
|---|
| 131 | * Whether the ModelBag should print debug information. |
|---|
| 132 | * |
|---|
| 133 | */ |
|---|
| 134 | public ModelBag(double models[][][], double bag_percent, boolean debug) { |
|---|
| 135 | m_debug = debug; |
|---|
| 136 | if (models.length == 0) { |
|---|
| 137 | throw new IllegalArgumentException( |
|---|
| 138 | "ModelBag needs at least 1 model."); |
|---|
| 139 | } |
|---|
| 140 | m_bagSize = (int) ((double) models.length * bag_percent); |
|---|
| 141 | m_models = models; |
|---|
| 142 | m_modelIndex = new int[m_models.length]; |
|---|
| 143 | m_timesChosen = new int[m_models.length]; |
|---|
| 144 | m_bestTimesChosen = m_timesChosen; |
|---|
| 145 | m_bestPerformance = 0.0; |
|---|
| 146 | |
|---|
| 147 | // Initially, no models are chosen. |
|---|
| 148 | m_numChosen = 0; |
|---|
| 149 | // Prepare our virtual indexing scheme. Initially, the indexes are |
|---|
| 150 | // the same as the original. |
|---|
| 151 | for (int i = 0; i < m_models.length; ++i) { |
|---|
| 152 | m_modelIndex[i] = i; |
|---|
| 153 | m_timesChosen[i] = 0; |
|---|
| 154 | } |
|---|
| 155 | } |
|---|
| 156 | |
|---|
| 157 | /** |
|---|
| 158 | * Swap model at virtual index i with model at virtual index j. This is used |
|---|
| 159 | * to shuffle the models. We do not change m_models, only the arrays which |
|---|
| 160 | * use the virtual indexing; m_modelIndex and m_timesChosen. |
|---|
| 161 | * |
|---|
| 162 | * @param i first index |
|---|
| 163 | * @param j second index |
|---|
| 164 | */ |
|---|
| 165 | private void swap(int i, int j) { |
|---|
| 166 | if (i != j) { |
|---|
| 167 | int temp_index = m_modelIndex[i]; |
|---|
| 168 | m_modelIndex[i] = m_modelIndex[j]; |
|---|
| 169 | m_modelIndex[j] = temp_index; |
|---|
| 170 | |
|---|
| 171 | int tempWeight = m_timesChosen[i]; |
|---|
| 172 | m_timesChosen[i] = m_timesChosen[j]; |
|---|
| 173 | m_timesChosen[j] = tempWeight; |
|---|
| 174 | } |
|---|
| 175 | } |
|---|
| 176 | |
|---|
| 177 | /** |
|---|
| 178 | * Shuffle the models. The order in m_models is preserved, but we change our |
|---|
| 179 | * virtual indexes around. |
|---|
| 180 | * |
|---|
| 181 | * @param rand the random number generator to use |
|---|
| 182 | */ |
|---|
| 183 | public void shuffle(Random rand) { |
|---|
| 184 | if (m_models.length < 2) |
|---|
| 185 | return; |
|---|
| 186 | |
|---|
| 187 | for (int i = 0; i < m_models.length; ++i) { |
|---|
| 188 | int swap_index = rand.nextInt(m_models.length - 1); |
|---|
| 189 | if (swap_index >= i) |
|---|
| 190 | ++swap_index; // don't swap with itself |
|---|
| 191 | swap(i, swap_index); |
|---|
| 192 | } |
|---|
| 193 | } |
|---|
| 194 | |
|---|
| 195 | /** |
|---|
| 196 | * Convert an array of weights using virtual indices to an array of weights |
|---|
| 197 | * using real indices. |
|---|
| 198 | * |
|---|
| 199 | * @param virtual_weights the virtual indices |
|---|
| 200 | * @return the real indices |
|---|
| 201 | */ |
|---|
| 202 | private int[] virtualToRealWeights(int virtual_weights[]) { |
|---|
| 203 | int real_weights[] = new int[virtual_weights.length]; |
|---|
| 204 | for (int i = 0; i < real_weights.length; ++i) { |
|---|
| 205 | real_weights[m_modelIndex[i]] = virtual_weights[i]; |
|---|
| 206 | } |
|---|
| 207 | return real_weights; |
|---|
| 208 | } |
|---|
| 209 | |
|---|
| 210 | /** |
|---|
| 211 | * |
|---|
| 212 | */ |
|---|
| 213 | private void updateBestTimesChosen() { |
|---|
| 214 | m_bestTimesChosen = virtualToRealWeights(m_timesChosen); |
|---|
| 215 | } |
|---|
| 216 | |
|---|
| 217 | /** |
|---|
| 218 | * Sort initialize the bag. |
|---|
| 219 | * |
|---|
| 220 | * @param num |
|---|
| 221 | * the Maximum number of models to initialize with |
|---|
| 222 | * @param greedy |
|---|
| 223 | * True if we do greedy addition, up to num. Greedy sort |
|---|
| 224 | * initialization adds models (up to num) in order of best to |
|---|
| 225 | * worst performance until performance no longer improves. |
|---|
| 226 | * @param instances |
|---|
| 227 | * the data set (needed for performance evaluation) |
|---|
| 228 | * @param metric |
|---|
| 229 | * metric for which to optimize. See EnsembleMetricHelper |
|---|
| 230 | * @return returns an array of indexes which were selected, in order |
|---|
| 231 | * starting from the model with best performance. |
|---|
| 232 | * @throws Exception if something goes wrong |
|---|
| 233 | */ |
|---|
| 234 | public int[] sortInitialize(int num, boolean greedy, Instances instances, |
|---|
| 235 | int metric) throws Exception { |
|---|
| 236 | |
|---|
| 237 | // First, get the performance of each model |
|---|
| 238 | double performance[] = new double[m_bagSize]; |
|---|
| 239 | for (int i = 0; i < m_bagSize; ++i) { |
|---|
| 240 | performance[i] = evaluatePredictions(instances, model(i), metric); |
|---|
| 241 | } |
|---|
| 242 | int bestModels[] = new int[num]; // we'll use this to save model info |
|---|
| 243 | // Now sort the models by their performance... note we only need the |
|---|
| 244 | // first "num", |
|---|
| 245 | // so we don't actually bother to sort the whole thing... instead, we |
|---|
| 246 | // pick the num best |
|---|
| 247 | // by running num iterations of selection sort. |
|---|
| 248 | for (int i = 0; i < num; ++i) { |
|---|
| 249 | int max_index = i; |
|---|
| 250 | double max_value = performance[i]; |
|---|
| 251 | for (int j = i + 1; j < m_bagSize; ++j) { |
|---|
| 252 | // Find the best model which we haven't already selected |
|---|
| 253 | if (performance[j] > max_value) { |
|---|
| 254 | max_value = performance[j]; |
|---|
| 255 | max_index = j; |
|---|
| 256 | } |
|---|
| 257 | } |
|---|
| 258 | // Swap ith model in to the ith position (selection sort) |
|---|
| 259 | this.swap(i, max_index); |
|---|
| 260 | // swap performance numbers, too |
|---|
| 261 | double temp_perf = performance[i]; |
|---|
| 262 | performance[i] = performance[max_index]; |
|---|
| 263 | performance[max_index] = temp_perf; |
|---|
| 264 | |
|---|
| 265 | bestModels[i] = m_modelIndex[i]; |
|---|
| 266 | if (!greedy) { |
|---|
| 267 | // If we're not being greedy, we just throw the model in |
|---|
| 268 | // no matter what |
|---|
| 269 | ++m_timesChosen[i]; |
|---|
| 270 | ++m_numChosen; |
|---|
| 271 | } |
|---|
| 272 | } |
|---|
| 273 | // Now the best "num" models are all sorted and in position. |
|---|
| 274 | if (greedy) { |
|---|
| 275 | // If the "greedy" option was specified, do a smart sort |
|---|
| 276 | // initialization |
|---|
| 277 | // that adds models only so long as they help overall performance. |
|---|
| 278 | // This is what was done in the original Caruana paper. |
|---|
| 279 | double[][] tempPredictions = null; |
|---|
| 280 | double bestPerformance = 0.0; |
|---|
| 281 | if (num > 0) { |
|---|
| 282 | ++m_timesChosen[0]; |
|---|
| 283 | ++m_numChosen; |
|---|
| 284 | updateBestTimesChosen(); |
|---|
| 285 | } |
|---|
| 286 | for (int i = 1; i < num; ++i) { |
|---|
| 287 | tempPredictions = computePredictions(i, true); |
|---|
| 288 | double metric_value = evaluatePredictions(instances, |
|---|
| 289 | tempPredictions, metric); |
|---|
| 290 | if (metric_value > bestPerformance) { |
|---|
| 291 | // If performance improved, update the appropriate info. |
|---|
| 292 | bestPerformance = metric_value; |
|---|
| 293 | ++m_timesChosen[i]; |
|---|
| 294 | ++m_numChosen; |
|---|
| 295 | updateBestTimesChosen(); |
|---|
| 296 | } else { |
|---|
| 297 | // We found a model that doesn't help performance, so we |
|---|
| 298 | // stop adding models. |
|---|
| 299 | break; |
|---|
| 300 | } |
|---|
| 301 | } |
|---|
| 302 | } |
|---|
| 303 | updateBestTimesChosen(); |
|---|
| 304 | if (m_debug) { |
|---|
| 305 | System.out.println("Sort Initialization added best " + m_numChosen |
|---|
| 306 | + " models to the bag."); |
|---|
| 307 | } |
|---|
| 308 | return bestModels; |
|---|
| 309 | } |
|---|
| 310 | |
|---|
| 311 | /** |
|---|
| 312 | * Add "weight" to the number of times each model in the bag was chosen. |
|---|
| 313 | * Typically for use with backward elimination. |
|---|
| 314 | * |
|---|
| 315 | * @param weight the weight to add |
|---|
| 316 | */ |
|---|
| 317 | public void weightAll(int weight) { |
|---|
| 318 | for (int i = 0; i < m_bagSize; ++i) { |
|---|
| 319 | m_timesChosen[i] += weight; |
|---|
| 320 | m_numChosen += weight; |
|---|
| 321 | } |
|---|
| 322 | updateBestTimesChosen(); |
|---|
| 323 | } |
|---|
| 324 | |
|---|
| 325 | /** |
|---|
| 326 | * Forward select one model. Will add the model which has the best effect on |
|---|
| 327 | * performance. If replacement is false, and all models are chosen, no |
|---|
| 328 | * action is taken. If a model can be added, one always is (even if it hurts |
|---|
| 329 | * performance). |
|---|
| 330 | * |
|---|
| 331 | * @param withReplacement |
|---|
| 332 | * whether a model can be added more than once. |
|---|
| 333 | * @param instances |
|---|
| 334 | * The dataset, for calculating performance. |
|---|
| 335 | * @param metric |
|---|
| 336 | * The metric to which we will optimize. See EnsembleMetricHelper |
|---|
| 337 | * @throws Exception if something goes wrong |
|---|
| 338 | */ |
|---|
| 339 | public void forwardSelect(boolean withReplacement, Instances instances, |
|---|
| 340 | int metric) throws Exception { |
|---|
| 341 | |
|---|
| 342 | double bestPerformance = -1.0; |
|---|
| 343 | int bestIndex = -1; |
|---|
| 344 | double tempPredictions[][]; |
|---|
| 345 | for (int i = 0; i < m_bagSize; ++i) { |
|---|
| 346 | // For each model in the bag |
|---|
| 347 | if ((m_timesChosen[i] == 0) || withReplacement) { |
|---|
| 348 | // If the model has not been chosen, or we're allowing |
|---|
| 349 | // replacement |
|---|
| 350 | // Get the predictions we would have if we add this model to the |
|---|
| 351 | // ensemble |
|---|
| 352 | tempPredictions = computePredictions(i, true); |
|---|
| 353 | // And find out how the hypothetical ensemble would perform. |
|---|
| 354 | double metric_value = evaluatePredictions(instances, |
|---|
| 355 | tempPredictions, metric); |
|---|
| 356 | if (metric_value > bestPerformance) { |
|---|
| 357 | // If it's better than our current best, make it our NEW |
|---|
| 358 | // best. |
|---|
| 359 | bestIndex = i; |
|---|
| 360 | bestPerformance = metric_value; |
|---|
| 361 | } |
|---|
| 362 | } |
|---|
| 363 | } |
|---|
| 364 | if (bestIndex == -1) { |
|---|
| 365 | // Replacement must be false, with more hillclimb iterations than |
|---|
| 366 | // models. Do nothing and return. |
|---|
| 367 | if (m_debug) { |
|---|
| 368 | System.out.println("Couldn't add model. No action performed."); |
|---|
| 369 | } |
|---|
| 370 | return; |
|---|
| 371 | } |
|---|
| 372 | // We picked bestIndex as our best model. Update appropriate info. |
|---|
| 373 | m_timesChosen[bestIndex]++; |
|---|
| 374 | m_numChosen++; |
|---|
| 375 | if (bestPerformance > m_bestPerformance) { |
|---|
| 376 | // We find the peak of our performance over all hillclimb |
|---|
| 377 | // iterations. |
|---|
| 378 | // If this forwardSelect step improved our overall performance, |
|---|
| 379 | // update |
|---|
| 380 | // our best ensemble info. |
|---|
| 381 | updateBestTimesChosen(); |
|---|
| 382 | m_bestPerformance = bestPerformance; |
|---|
| 383 | } |
|---|
| 384 | } |
|---|
| 385 | |
|---|
| 386 | /** |
|---|
| 387 | * Find the model whose removal will help the ensemble's performance the |
|---|
| 388 | * most, and remove it. If there is only one model left, we leave it in. If |
|---|
| 389 | * we can remove a model, we always do, even if it hurts performance. |
|---|
| 390 | * |
|---|
| 391 | * @param instances |
|---|
| 392 | * The data set, for calculating performance |
|---|
| 393 | * @param metric |
|---|
| 394 | * Metric to optimize for. See EnsembleMetricHelper. |
|---|
| 395 | * @throws Exception if something goes wrong |
|---|
| 396 | */ |
|---|
| 397 | public void backwardEliminate(Instances instances, int metric) |
|---|
| 398 | throws Exception { |
|---|
| 399 | |
|---|
| 400 | // Find the best model to remove. I.e., model for which removal improves |
|---|
| 401 | // performance the most (or hurts it least), and remove it. |
|---|
| 402 | if (m_numChosen <= 1) { |
|---|
| 403 | // If we only have one model left, keep it, as a bag |
|---|
| 404 | // which chooses no models doesn't make much sense. |
|---|
| 405 | return; |
|---|
| 406 | } |
|---|
| 407 | double bestPerformance = -1.0; |
|---|
| 408 | int bestIndex = -1; |
|---|
| 409 | double tempPredictions[][]; |
|---|
| 410 | for (int i = 0; i < m_bagSize; ++i) { |
|---|
| 411 | // For each model in the bag |
|---|
| 412 | if (m_timesChosen[i] > 0) { |
|---|
| 413 | // If the model has been chosen at least once, |
|---|
| 414 | // Get the predictions we would have if we remove this model |
|---|
| 415 | tempPredictions = computePredictions(i, false); |
|---|
| 416 | // And find out how the hypothetical ensemble would perform. |
|---|
| 417 | double metric_value = evaluatePredictions(instances, |
|---|
| 418 | tempPredictions, metric); |
|---|
| 419 | if (metric_value > bestPerformance) { |
|---|
| 420 | // If it's better than our current best, make it our NEW |
|---|
| 421 | // best. |
|---|
| 422 | bestIndex = i; |
|---|
| 423 | bestPerformance = metric_value; |
|---|
| 424 | } |
|---|
| 425 | } |
|---|
| 426 | } |
|---|
| 427 | if (bestIndex == -1) { |
|---|
| 428 | // The most likely cause of this is that we didn't have any models |
|---|
| 429 | // we could |
|---|
| 430 | // remove. Do nothing & return. |
|---|
| 431 | if (m_debug) { |
|---|
| 432 | System.out |
|---|
| 433 | .println("Couldn't remove model. No action performed."); |
|---|
| 434 | } |
|---|
| 435 | return; |
|---|
| 436 | } |
|---|
| 437 | // We picked bestIndex as our best model. Update appropriate info. |
|---|
| 438 | m_timesChosen[bestIndex]--; |
|---|
| 439 | m_numChosen--; |
|---|
| 440 | if (m_debug) { |
|---|
| 441 | System.out.println("Removing model " + m_modelIndex[bestIndex] |
|---|
| 442 | + " (" + bestIndex + ") " + bestPerformance); |
|---|
| 443 | } |
|---|
| 444 | if (bestPerformance > m_bestPerformance) { |
|---|
| 445 | // We find the peak of our performance over all hillclimb |
|---|
| 446 | // iterations. |
|---|
| 447 | // If this forwardSelect step improved our overall performance, |
|---|
| 448 | // update |
|---|
| 449 | // our best ensemble info. |
|---|
| 450 | updateBestTimesChosen(); |
|---|
| 451 | m_bestPerformance = bestPerformance; |
|---|
| 452 | } |
|---|
| 453 | // return m_model_index[best_index]; //translate to original indexing |
|---|
| 454 | // and return |
|---|
| 455 | } |
|---|
| 456 | |
|---|
| 457 | /** |
|---|
| 458 | * Find the best action to perform, be it adding a model or removing a |
|---|
| 459 | * model, and perform it. Some action is always performed, even if it hurts |
|---|
| 460 | * performance. |
|---|
| 461 | * |
|---|
| 462 | * @param with_replacement |
|---|
| 463 | * whether we can add a model more than once |
|---|
| 464 | * @param instances |
|---|
| 465 | * The dataset, for determining performance. |
|---|
| 466 | * @param metric |
|---|
| 467 | * The metric for which to optimize. See EnsembleMetricHelper. |
|---|
| 468 | * @throws Exception if something goes wrong |
|---|
| 469 | */ |
|---|
| 470 | public void forwardSelectOrBackwardEliminate(boolean with_replacement, |
|---|
| 471 | Instances instances, int metric) throws Exception { |
|---|
| 472 | |
|---|
| 473 | // Find the best action to perform, be it adding a model or removing a |
|---|
| 474 | // model, |
|---|
| 475 | // and do it. |
|---|
| 476 | double bestPerformance = -1.0; |
|---|
| 477 | int bestIndex = -1; |
|---|
| 478 | boolean added = true; |
|---|
| 479 | double tempPredictions[][]; |
|---|
| 480 | for (int i = 0; i < m_bagSize; ++i) { |
|---|
| 481 | // For each model in the bag: |
|---|
| 482 | // Try removing the model |
|---|
| 483 | if (m_timesChosen[i] > 0) { |
|---|
| 484 | // If the model has been chosen at least once, |
|---|
| 485 | // Get the predictions we would have if we remove this model |
|---|
| 486 | tempPredictions = computePredictions(i, false); |
|---|
| 487 | // And find out how the hypothetical ensemble would perform. |
|---|
| 488 | double metric_value = evaluatePredictions(instances, |
|---|
| 489 | tempPredictions, metric); |
|---|
| 490 | if (metric_value > bestPerformance) { |
|---|
| 491 | // If it's better than our current best, make it our NEW |
|---|
| 492 | // best. |
|---|
| 493 | bestIndex = i; |
|---|
| 494 | bestPerformance = metric_value; |
|---|
| 495 | added = false; |
|---|
| 496 | } |
|---|
| 497 | } |
|---|
| 498 | if ((m_timesChosen[i] == 0) || with_replacement) { |
|---|
| 499 | // If the model hasn't been chosen, or if we can choose it more |
|---|
| 500 | // than once, try adding it: |
|---|
| 501 | // Get the predictions we would have if we added the model |
|---|
| 502 | tempPredictions = computePredictions(i, true); |
|---|
| 503 | // And find out how the hypothetical ensemble would perform. |
|---|
| 504 | double metric_value = evaluatePredictions(instances, |
|---|
| 505 | tempPredictions, metric); |
|---|
| 506 | if (metric_value > bestPerformance) { |
|---|
| 507 | // If it's better than our current best, make it our NEW |
|---|
| 508 | // best. |
|---|
| 509 | bestIndex = i; |
|---|
| 510 | bestPerformance = metric_value; |
|---|
| 511 | added = true; |
|---|
| 512 | } |
|---|
| 513 | } |
|---|
| 514 | } |
|---|
| 515 | if (bestIndex == -1) { |
|---|
| 516 | // Shouldn't really happen. Possible (I think) if the model bag is |
|---|
| 517 | // empty. Just return. |
|---|
| 518 | if (m_debug) { |
|---|
| 519 | System.out.println("Couldn't add or remove model. No action performed."); |
|---|
| 520 | } |
|---|
| 521 | return; |
|---|
| 522 | } |
|---|
| 523 | // Now we've found the best change to make: |
|---|
| 524 | // * bestIndex is the (virtual) index of the model we should change |
|---|
| 525 | // * added is true if the model should be added (false if should be |
|---|
| 526 | // removed) |
|---|
| 527 | int changeInWeight = added ? 1 : -1; |
|---|
| 528 | m_timesChosen[bestIndex] += changeInWeight; |
|---|
| 529 | m_numChosen += changeInWeight; |
|---|
| 530 | if (bestPerformance > m_bestPerformance) { |
|---|
| 531 | // We find the peak of our performance over all hillclimb |
|---|
| 532 | // iterations. |
|---|
| 533 | // If this forwardSelect step improved our overall performance, |
|---|
| 534 | // update |
|---|
| 535 | // our best ensemble info. |
|---|
| 536 | updateBestTimesChosen(); |
|---|
| 537 | m_bestPerformance = bestPerformance; |
|---|
| 538 | } |
|---|
| 539 | } |
|---|
| 540 | |
|---|
| 541 | /** |
|---|
| 542 | * returns the model weights |
|---|
| 543 | * |
|---|
| 544 | * @return the model weights |
|---|
| 545 | */ |
|---|
| 546 | public int[] getModelWeights() { |
|---|
| 547 | return m_bestTimesChosen; |
|---|
| 548 | } |
|---|
| 549 | |
|---|
| 550 | /** |
|---|
| 551 | * Returns the "model" at the given virtual index. Here, by "model" we mean |
|---|
| 552 | * its predictions with respect to the validation set. This is just a |
|---|
| 553 | * convenience method, since we use the "virtual" index more than the real |
|---|
| 554 | * one inside this class. |
|---|
| 555 | * |
|---|
| 556 | * @param index |
|---|
| 557 | * the "virtual" index - the one for internal use |
|---|
| 558 | * @return the predictions for the model for all validation instances. |
|---|
| 559 | */ |
|---|
| 560 | private double[][] model(int index) { |
|---|
| 561 | return m_models[m_modelIndex[index]]; |
|---|
| 562 | } |
|---|
| 563 | |
|---|
| 564 | /** |
|---|
| 565 | * Compute predictions based on the current model, adding (or removing) the |
|---|
| 566 | * model at the given (internal) index. |
|---|
| 567 | * |
|---|
| 568 | * @param index_to_change |
|---|
| 569 | * index of model we're adding or removing |
|---|
| 570 | * @param add |
|---|
| 571 | * whether we add it. If false, we remove it. |
|---|
| 572 | * @return the predictions for all validation instances |
|---|
| 573 | */ |
|---|
| 574 | private double[][] computePredictions(int index_to_change, boolean add) { |
|---|
| 575 | double[][] predictions = new double[m_models[0].length][m_models[0][0].length]; |
|---|
| 576 | for (int i = 0; i < m_bagSize; ++i) { |
|---|
| 577 | if (m_timesChosen[i] > 0) { |
|---|
| 578 | for (int j = 0; j < m_models[0].length; ++j) { |
|---|
| 579 | for (int k = 0; k < m_models[0][j].length; ++k) { |
|---|
| 580 | predictions[j][k] += model(i)[j][k] * m_timesChosen[i]; |
|---|
| 581 | } |
|---|
| 582 | } |
|---|
| 583 | } |
|---|
| 584 | } |
|---|
| 585 | for (int j = 0; j < m_models[0].length; ++j) { |
|---|
| 586 | int change = add ? 1 : -1; |
|---|
| 587 | for (int k = 0; k < m_models[0][j].length; ++k) { |
|---|
| 588 | predictions[j][k] += change * model(index_to_change)[j][k]; |
|---|
| 589 | predictions[j][k] /= (m_numChosen + change); |
|---|
| 590 | } |
|---|
| 591 | } |
|---|
| 592 | return predictions; |
|---|
| 593 | } |
|---|
| 594 | |
|---|
| 595 | /** |
|---|
| 596 | * Return the performance of the given predictions on the given instances |
|---|
| 597 | * with respect to the given metric (see EnsembleMetricHelper). |
|---|
| 598 | * |
|---|
| 599 | * @param instances |
|---|
| 600 | * the validation data |
|---|
| 601 | * @param temp_predictions |
|---|
| 602 | * the predictions to evaluate |
|---|
| 603 | * @param metric |
|---|
| 604 | * the metric for which to optimize (see EnsembleMetricHelper) |
|---|
| 605 | * @return the performance |
|---|
| 606 | * @throws Exception if something goes wrong |
|---|
| 607 | */ |
|---|
| 608 | private double evaluatePredictions(Instances instances, |
|---|
| 609 | double[][] temp_predictions, int metric) throws Exception { |
|---|
| 610 | |
|---|
| 611 | Evaluation eval = new Evaluation(instances); |
|---|
| 612 | for (int i = 0; i < instances.numInstances(); ++i) { |
|---|
| 613 | eval.evaluateModelOnceAndRecordPrediction(temp_predictions[i], |
|---|
| 614 | instances.instance(i)); |
|---|
| 615 | } |
|---|
| 616 | return EnsembleMetricHelper.getMetric(eval, metric); |
|---|
| 617 | } |
|---|
| 618 | |
|---|
| 619 | /** |
|---|
| 620 | * Gets the individual performances of all the models in the bag. |
|---|
| 621 | * |
|---|
| 622 | * @param instances |
|---|
| 623 | * The validation data, for which we want performance. |
|---|
| 624 | * @param metric |
|---|
| 625 | * The desired metric (see EnsembleMetricHelper). |
|---|
| 626 | * @return the performance |
|---|
| 627 | * @throws Exception if something goes wrong |
|---|
| 628 | */ |
|---|
| 629 | public double[] getIndividualPerformance(Instances instances, int metric) |
|---|
| 630 | throws Exception { |
|---|
| 631 | |
|---|
| 632 | double[] performance = new double[m_bagSize]; |
|---|
| 633 | for (int i = 0; i < m_bagSize; ++i) { |
|---|
| 634 | performance[i] = evaluatePredictions(instances, model(i), metric); |
|---|
| 635 | } |
|---|
| 636 | return performance; |
|---|
| 637 | } |
|---|
| 638 | |
|---|
| 639 | /** |
|---|
| 640 | * Returns the revision string. |
|---|
| 641 | * |
|---|
| 642 | * @return the revision |
|---|
| 643 | */ |
|---|
| 644 | public String getRevision() { |
|---|
| 645 | return RevisionUtils.extract("$Revision: 1.2 $"); |
|---|
| 646 | } |
|---|
| 647 | } |
|---|