1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * EnsembleSelection.java |
---|
19 | * Copyright (C) 2006 David Michael |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta.ensembleSelection; |
---|
24 | |
---|
25 | import weka.classifiers.Evaluation; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionHandler; |
---|
28 | import weka.core.RevisionUtils; |
---|
29 | |
---|
30 | import java.util.Random; |
---|
31 | |
---|
32 | /** |
---|
33 | * This class is responsible for the duties of a bag of models. It is designed |
---|
34 | * for use with the EnsembleSelection meta classifier. It handles shuffling the |
---|
35 | * models, doing sort initialization, performing forward selection/ backwards |
---|
36 | * elimination, etc. |
---|
37 | * <p/> |
---|
38 | * We utilize a simple "virtual indexing" scheme inside. If we shuffle and/or |
---|
39 | * sort the models, we change the "virtual" order around. The elements of the |
---|
40 | * bag are always those elements with virtual index 0..(m_bagSize-1). Each |
---|
41 | * "virtual" index maps to some real index in m_models. Not every model in |
---|
42 | * m_models gets a virtual index... the virtual indexing is what defines the |
---|
43 | * subset of models of which our Bag is composed. This makes it easy to refer to |
---|
44 | * models in the bag, by their virtual index, while maintaining the original |
---|
45 | * indexing for our clients. |
---|
46 | * |
---|
47 | * @author David Michael |
---|
48 | * @version $Revision: 1.2 $ |
---|
49 | */ |
---|
50 | public class ModelBag |
---|
51 | implements RevisionHandler { |
---|
52 | |
---|
53 | /** |
---|
54 | * The "models", as a multidimensional array of predictions for the |
---|
55 | * validation set. The first index is the model index, the second index is |
---|
56 | * the index of the instance, and the third is the typical "class" index for |
---|
57 | * a prediction's distribution. This is given to us in the constructor, and |
---|
58 | * we never change it. |
---|
59 | */ |
---|
60 | private double m_models[][][]; |
---|
61 | |
---|
62 | /** |
---|
63 | * Maps each model in our virtual indexing scheme to its original index as |
---|
64 | * it is in m_models. The first m_bag_size elements here are considered our |
---|
65 | * bag. Throughout the code, we use the index in to this array to refer to a |
---|
66 | * model. When we shuffle the models, we really simply shuffle this array. |
---|
67 | * When we want to refer back to the original model, it is easily looked up |
---|
68 | * in this array. That is, if j = m_model_index[i], then m_models[j] is the |
---|
69 | * model referred to by "virtual index" i. Models can easily be accessed by |
---|
70 | * their virtual index using the "model()" method. |
---|
71 | */ |
---|
72 | private int m_modelIndex[]; |
---|
73 | |
---|
74 | /** |
---|
75 | * The number of models in our bag. 1 <= m_bag_size <= m_models.length |
---|
76 | */ |
---|
77 | private int m_bagSize; |
---|
78 | |
---|
79 | /** |
---|
80 | * The total number of models chosen thus far for this bag. This value is |
---|
81 | * important when calculating the predictions for the bag. (See |
---|
82 | * computePredictions). |
---|
83 | */ |
---|
84 | private int m_numChosen; |
---|
85 | |
---|
86 | /** |
---|
87 | * The number of times each model has been chosen. Also can be thought of as |
---|
88 | * the weight for each model. Indexed by the "virtual index". |
---|
89 | */ |
---|
90 | private int m_timesChosen[]; |
---|
91 | |
---|
92 | /** |
---|
93 | * If true, print out debug information. |
---|
94 | */ |
---|
95 | private boolean m_debug; |
---|
96 | |
---|
97 | /** |
---|
98 | * Double representing the best performance achieved thus far in this bag. |
---|
99 | * This Must be updated each time we make a change to the bag that improves |
---|
100 | * performance. This is so that after all hillclimbing is completed, we can |
---|
101 | * go back to the best ensemble that we encountered during hillclimbing. |
---|
102 | */ |
---|
103 | private double m_bestPerformance; |
---|
104 | |
---|
105 | /** |
---|
106 | * Array representing the weights for all the models which achieved the best |
---|
107 | * performance thus far for the bag (i.e., the weights that achieved |
---|
108 | * m_bestPerformance. This Must be updated each time we make a change to the |
---|
109 | * bag (that improves performance, by calling updateBestTimesChosen. This is |
---|
110 | * so that after all hillclimbing is completed, we can go back to the best |
---|
111 | * ensemble that we encountered during hillclimbing. This array, unlike |
---|
112 | * m_timesChosen, uses the original indexing as taken from m_models. That |
---|
113 | * way, any time getModelWeights is called (which returns this array), the |
---|
114 | * array is in the correct format for our client. |
---|
115 | */ |
---|
116 | private int m_bestTimesChosen[]; |
---|
117 | |
---|
118 | /** |
---|
119 | * Constructor for ModelBag. |
---|
120 | * |
---|
121 | * @param models |
---|
122 | * The complete set of models from which to draw our bag. First |
---|
123 | * index is for the model, second is for the instance. The last |
---|
124 | * is a prediction distribution for that instance. Models are |
---|
125 | * represented by this array of predictions for validation data, |
---|
126 | * since that's all ensemble selection needs to know. |
---|
127 | * @param bag_percent |
---|
128 | * The percentage of the set of given models that should be used |
---|
129 | * in the Model Bag. |
---|
130 | * @param debug |
---|
131 | * Whether the ModelBag should print debug information. |
---|
132 | * |
---|
133 | */ |
---|
134 | public ModelBag(double models[][][], double bag_percent, boolean debug) { |
---|
135 | m_debug = debug; |
---|
136 | if (models.length == 0) { |
---|
137 | throw new IllegalArgumentException( |
---|
138 | "ModelBag needs at least 1 model."); |
---|
139 | } |
---|
140 | m_bagSize = (int) ((double) models.length * bag_percent); |
---|
141 | m_models = models; |
---|
142 | m_modelIndex = new int[m_models.length]; |
---|
143 | m_timesChosen = new int[m_models.length]; |
---|
144 | m_bestTimesChosen = m_timesChosen; |
---|
145 | m_bestPerformance = 0.0; |
---|
146 | |
---|
147 | // Initially, no models are chosen. |
---|
148 | m_numChosen = 0; |
---|
149 | // Prepare our virtual indexing scheme. Initially, the indexes are |
---|
150 | // the same as the original. |
---|
151 | for (int i = 0; i < m_models.length; ++i) { |
---|
152 | m_modelIndex[i] = i; |
---|
153 | m_timesChosen[i] = 0; |
---|
154 | } |
---|
155 | } |
---|
156 | |
---|
157 | /** |
---|
158 | * Swap model at virtual index i with model at virtual index j. This is used |
---|
159 | * to shuffle the models. We do not change m_models, only the arrays which |
---|
160 | * use the virtual indexing; m_modelIndex and m_timesChosen. |
---|
161 | * |
---|
162 | * @param i first index |
---|
163 | * @param j second index |
---|
164 | */ |
---|
165 | private void swap(int i, int j) { |
---|
166 | if (i != j) { |
---|
167 | int temp_index = m_modelIndex[i]; |
---|
168 | m_modelIndex[i] = m_modelIndex[j]; |
---|
169 | m_modelIndex[j] = temp_index; |
---|
170 | |
---|
171 | int tempWeight = m_timesChosen[i]; |
---|
172 | m_timesChosen[i] = m_timesChosen[j]; |
---|
173 | m_timesChosen[j] = tempWeight; |
---|
174 | } |
---|
175 | } |
---|
176 | |
---|
177 | /** |
---|
178 | * Shuffle the models. The order in m_models is preserved, but we change our |
---|
179 | * virtual indexes around. |
---|
180 | * |
---|
181 | * @param rand the random number generator to use |
---|
182 | */ |
---|
183 | public void shuffle(Random rand) { |
---|
184 | if (m_models.length < 2) |
---|
185 | return; |
---|
186 | |
---|
187 | for (int i = 0; i < m_models.length; ++i) { |
---|
188 | int swap_index = rand.nextInt(m_models.length - 1); |
---|
189 | if (swap_index >= i) |
---|
190 | ++swap_index; // don't swap with itself |
---|
191 | swap(i, swap_index); |
---|
192 | } |
---|
193 | } |
---|
194 | |
---|
195 | /** |
---|
196 | * Convert an array of weights using virtual indices to an array of weights |
---|
197 | * using real indices. |
---|
198 | * |
---|
199 | * @param virtual_weights the virtual indices |
---|
200 | * @return the real indices |
---|
201 | */ |
---|
202 | private int[] virtualToRealWeights(int virtual_weights[]) { |
---|
203 | int real_weights[] = new int[virtual_weights.length]; |
---|
204 | for (int i = 0; i < real_weights.length; ++i) { |
---|
205 | real_weights[m_modelIndex[i]] = virtual_weights[i]; |
---|
206 | } |
---|
207 | return real_weights; |
---|
208 | } |
---|
209 | |
---|
210 | /** |
---|
211 | * |
---|
212 | */ |
---|
213 | private void updateBestTimesChosen() { |
---|
214 | m_bestTimesChosen = virtualToRealWeights(m_timesChosen); |
---|
215 | } |
---|
216 | |
---|
217 | /** |
---|
218 | * Sort initialize the bag. |
---|
219 | * |
---|
220 | * @param num |
---|
221 | * the Maximum number of models to initialize with |
---|
222 | * @param greedy |
---|
223 | * True if we do greedy addition, up to num. Greedy sort |
---|
224 | * initialization adds models (up to num) in order of best to |
---|
225 | * worst performance until performance no longer improves. |
---|
226 | * @param instances |
---|
227 | * the data set (needed for performance evaluation) |
---|
228 | * @param metric |
---|
229 | * metric for which to optimize. See EnsembleMetricHelper |
---|
230 | * @return returns an array of indexes which were selected, in order |
---|
231 | * starting from the model with best performance. |
---|
232 | * @throws Exception if something goes wrong |
---|
233 | */ |
---|
234 | public int[] sortInitialize(int num, boolean greedy, Instances instances, |
---|
235 | int metric) throws Exception { |
---|
236 | |
---|
237 | // First, get the performance of each model |
---|
238 | double performance[] = new double[m_bagSize]; |
---|
239 | for (int i = 0; i < m_bagSize; ++i) { |
---|
240 | performance[i] = evaluatePredictions(instances, model(i), metric); |
---|
241 | } |
---|
242 | int bestModels[] = new int[num]; // we'll use this to save model info |
---|
243 | // Now sort the models by their performance... note we only need the |
---|
244 | // first "num", |
---|
245 | // so we don't actually bother to sort the whole thing... instead, we |
---|
246 | // pick the num best |
---|
247 | // by running num iterations of selection sort. |
---|
248 | for (int i = 0; i < num; ++i) { |
---|
249 | int max_index = i; |
---|
250 | double max_value = performance[i]; |
---|
251 | for (int j = i + 1; j < m_bagSize; ++j) { |
---|
252 | // Find the best model which we haven't already selected |
---|
253 | if (performance[j] > max_value) { |
---|
254 | max_value = performance[j]; |
---|
255 | max_index = j; |
---|
256 | } |
---|
257 | } |
---|
258 | // Swap ith model in to the ith position (selection sort) |
---|
259 | this.swap(i, max_index); |
---|
260 | // swap performance numbers, too |
---|
261 | double temp_perf = performance[i]; |
---|
262 | performance[i] = performance[max_index]; |
---|
263 | performance[max_index] = temp_perf; |
---|
264 | |
---|
265 | bestModels[i] = m_modelIndex[i]; |
---|
266 | if (!greedy) { |
---|
267 | // If we're not being greedy, we just throw the model in |
---|
268 | // no matter what |
---|
269 | ++m_timesChosen[i]; |
---|
270 | ++m_numChosen; |
---|
271 | } |
---|
272 | } |
---|
273 | // Now the best "num" models are all sorted and in position. |
---|
274 | if (greedy) { |
---|
275 | // If the "greedy" option was specified, do a smart sort |
---|
276 | // initialization |
---|
277 | // that adds models only so long as they help overall performance. |
---|
278 | // This is what was done in the original Caruana paper. |
---|
279 | double[][] tempPredictions = null; |
---|
280 | double bestPerformance = 0.0; |
---|
281 | if (num > 0) { |
---|
282 | ++m_timesChosen[0]; |
---|
283 | ++m_numChosen; |
---|
284 | updateBestTimesChosen(); |
---|
285 | } |
---|
286 | for (int i = 1; i < num; ++i) { |
---|
287 | tempPredictions = computePredictions(i, true); |
---|
288 | double metric_value = evaluatePredictions(instances, |
---|
289 | tempPredictions, metric); |
---|
290 | if (metric_value > bestPerformance) { |
---|
291 | // If performance improved, update the appropriate info. |
---|
292 | bestPerformance = metric_value; |
---|
293 | ++m_timesChosen[i]; |
---|
294 | ++m_numChosen; |
---|
295 | updateBestTimesChosen(); |
---|
296 | } else { |
---|
297 | // We found a model that doesn't help performance, so we |
---|
298 | // stop adding models. |
---|
299 | break; |
---|
300 | } |
---|
301 | } |
---|
302 | } |
---|
303 | updateBestTimesChosen(); |
---|
304 | if (m_debug) { |
---|
305 | System.out.println("Sort Initialization added best " + m_numChosen |
---|
306 | + " models to the bag."); |
---|
307 | } |
---|
308 | return bestModels; |
---|
309 | } |
---|
310 | |
---|
311 | /** |
---|
312 | * Add "weight" to the number of times each model in the bag was chosen. |
---|
313 | * Typically for use with backward elimination. |
---|
314 | * |
---|
315 | * @param weight the weight to add |
---|
316 | */ |
---|
317 | public void weightAll(int weight) { |
---|
318 | for (int i = 0; i < m_bagSize; ++i) { |
---|
319 | m_timesChosen[i] += weight; |
---|
320 | m_numChosen += weight; |
---|
321 | } |
---|
322 | updateBestTimesChosen(); |
---|
323 | } |
---|
324 | |
---|
325 | /** |
---|
326 | * Forward select one model. Will add the model which has the best effect on |
---|
327 | * performance. If replacement is false, and all models are chosen, no |
---|
328 | * action is taken. If a model can be added, one always is (even if it hurts |
---|
329 | * performance). |
---|
330 | * |
---|
331 | * @param withReplacement |
---|
332 | * whether a model can be added more than once. |
---|
333 | * @param instances |
---|
334 | * The dataset, for calculating performance. |
---|
335 | * @param metric |
---|
336 | * The metric to which we will optimize. See EnsembleMetricHelper |
---|
337 | * @throws Exception if something goes wrong |
---|
338 | */ |
---|
339 | public void forwardSelect(boolean withReplacement, Instances instances, |
---|
340 | int metric) throws Exception { |
---|
341 | |
---|
342 | double bestPerformance = -1.0; |
---|
343 | int bestIndex = -1; |
---|
344 | double tempPredictions[][]; |
---|
345 | for (int i = 0; i < m_bagSize; ++i) { |
---|
346 | // For each model in the bag |
---|
347 | if ((m_timesChosen[i] == 0) || withReplacement) { |
---|
348 | // If the model has not been chosen, or we're allowing |
---|
349 | // replacement |
---|
350 | // Get the predictions we would have if we add this model to the |
---|
351 | // ensemble |
---|
352 | tempPredictions = computePredictions(i, true); |
---|
353 | // And find out how the hypothetical ensemble would perform. |
---|
354 | double metric_value = evaluatePredictions(instances, |
---|
355 | tempPredictions, metric); |
---|
356 | if (metric_value > bestPerformance) { |
---|
357 | // If it's better than our current best, make it our NEW |
---|
358 | // best. |
---|
359 | bestIndex = i; |
---|
360 | bestPerformance = metric_value; |
---|
361 | } |
---|
362 | } |
---|
363 | } |
---|
364 | if (bestIndex == -1) { |
---|
365 | // Replacement must be false, with more hillclimb iterations than |
---|
366 | // models. Do nothing and return. |
---|
367 | if (m_debug) { |
---|
368 | System.out.println("Couldn't add model. No action performed."); |
---|
369 | } |
---|
370 | return; |
---|
371 | } |
---|
372 | // We picked bestIndex as our best model. Update appropriate info. |
---|
373 | m_timesChosen[bestIndex]++; |
---|
374 | m_numChosen++; |
---|
375 | if (bestPerformance > m_bestPerformance) { |
---|
376 | // We find the peak of our performance over all hillclimb |
---|
377 | // iterations. |
---|
378 | // If this forwardSelect step improved our overall performance, |
---|
379 | // update |
---|
380 | // our best ensemble info. |
---|
381 | updateBestTimesChosen(); |
---|
382 | m_bestPerformance = bestPerformance; |
---|
383 | } |
---|
384 | } |
---|
385 | |
---|
386 | /** |
---|
387 | * Find the model whose removal will help the ensemble's performance the |
---|
388 | * most, and remove it. If there is only one model left, we leave it in. If |
---|
389 | * we can remove a model, we always do, even if it hurts performance. |
---|
390 | * |
---|
391 | * @param instances |
---|
392 | * The data set, for calculating performance |
---|
393 | * @param metric |
---|
394 | * Metric to optimize for. See EnsembleMetricHelper. |
---|
395 | * @throws Exception if something goes wrong |
---|
396 | */ |
---|
397 | public void backwardEliminate(Instances instances, int metric) |
---|
398 | throws Exception { |
---|
399 | |
---|
400 | // Find the best model to remove. I.e., model for which removal improves |
---|
401 | // performance the most (or hurts it least), and remove it. |
---|
402 | if (m_numChosen <= 1) { |
---|
403 | // If we only have one model left, keep it, as a bag |
---|
404 | // which chooses no models doesn't make much sense. |
---|
405 | return; |
---|
406 | } |
---|
407 | double bestPerformance = -1.0; |
---|
408 | int bestIndex = -1; |
---|
409 | double tempPredictions[][]; |
---|
410 | for (int i = 0; i < m_bagSize; ++i) { |
---|
411 | // For each model in the bag |
---|
412 | if (m_timesChosen[i] > 0) { |
---|
413 | // If the model has been chosen at least once, |
---|
414 | // Get the predictions we would have if we remove this model |
---|
415 | tempPredictions = computePredictions(i, false); |
---|
416 | // And find out how the hypothetical ensemble would perform. |
---|
417 | double metric_value = evaluatePredictions(instances, |
---|
418 | tempPredictions, metric); |
---|
419 | if (metric_value > bestPerformance) { |
---|
420 | // If it's better than our current best, make it our NEW |
---|
421 | // best. |
---|
422 | bestIndex = i; |
---|
423 | bestPerformance = metric_value; |
---|
424 | } |
---|
425 | } |
---|
426 | } |
---|
427 | if (bestIndex == -1) { |
---|
428 | // The most likely cause of this is that we didn't have any models |
---|
429 | // we could |
---|
430 | // remove. Do nothing & return. |
---|
431 | if (m_debug) { |
---|
432 | System.out |
---|
433 | .println("Couldn't remove model. No action performed."); |
---|
434 | } |
---|
435 | return; |
---|
436 | } |
---|
437 | // We picked bestIndex as our best model. Update appropriate info. |
---|
438 | m_timesChosen[bestIndex]--; |
---|
439 | m_numChosen--; |
---|
440 | if (m_debug) { |
---|
441 | System.out.println("Removing model " + m_modelIndex[bestIndex] |
---|
442 | + " (" + bestIndex + ") " + bestPerformance); |
---|
443 | } |
---|
444 | if (bestPerformance > m_bestPerformance) { |
---|
445 | // We find the peak of our performance over all hillclimb |
---|
446 | // iterations. |
---|
447 | // If this forwardSelect step improved our overall performance, |
---|
448 | // update |
---|
449 | // our best ensemble info. |
---|
450 | updateBestTimesChosen(); |
---|
451 | m_bestPerformance = bestPerformance; |
---|
452 | } |
---|
453 | // return m_model_index[best_index]; //translate to original indexing |
---|
454 | // and return |
---|
455 | } |
---|
456 | |
---|
457 | /** |
---|
458 | * Find the best action to perform, be it adding a model or removing a |
---|
459 | * model, and perform it. Some action is always performed, even if it hurts |
---|
460 | * performance. |
---|
461 | * |
---|
462 | * @param with_replacement |
---|
463 | * whether we can add a model more than once |
---|
464 | * @param instances |
---|
465 | * The dataset, for determining performance. |
---|
466 | * @param metric |
---|
467 | * The metric for which to optimize. See EnsembleMetricHelper. |
---|
468 | * @throws Exception if something goes wrong |
---|
469 | */ |
---|
470 | public void forwardSelectOrBackwardEliminate(boolean with_replacement, |
---|
471 | Instances instances, int metric) throws Exception { |
---|
472 | |
---|
473 | // Find the best action to perform, be it adding a model or removing a |
---|
474 | // model, |
---|
475 | // and do it. |
---|
476 | double bestPerformance = -1.0; |
---|
477 | int bestIndex = -1; |
---|
478 | boolean added = true; |
---|
479 | double tempPredictions[][]; |
---|
480 | for (int i = 0; i < m_bagSize; ++i) { |
---|
481 | // For each model in the bag: |
---|
482 | // Try removing the model |
---|
483 | if (m_timesChosen[i] > 0) { |
---|
484 | // If the model has been chosen at least once, |
---|
485 | // Get the predictions we would have if we remove this model |
---|
486 | tempPredictions = computePredictions(i, false); |
---|
487 | // And find out how the hypothetical ensemble would perform. |
---|
488 | double metric_value = evaluatePredictions(instances, |
---|
489 | tempPredictions, metric); |
---|
490 | if (metric_value > bestPerformance) { |
---|
491 | // If it's better than our current best, make it our NEW |
---|
492 | // best. |
---|
493 | bestIndex = i; |
---|
494 | bestPerformance = metric_value; |
---|
495 | added = false; |
---|
496 | } |
---|
497 | } |
---|
498 | if ((m_timesChosen[i] == 0) || with_replacement) { |
---|
499 | // If the model hasn't been chosen, or if we can choose it more |
---|
500 | // than once, try adding it: |
---|
501 | // Get the predictions we would have if we added the model |
---|
502 | tempPredictions = computePredictions(i, true); |
---|
503 | // And find out how the hypothetical ensemble would perform. |
---|
504 | double metric_value = evaluatePredictions(instances, |
---|
505 | tempPredictions, metric); |
---|
506 | if (metric_value > bestPerformance) { |
---|
507 | // If it's better than our current best, make it our NEW |
---|
508 | // best. |
---|
509 | bestIndex = i; |
---|
510 | bestPerformance = metric_value; |
---|
511 | added = true; |
---|
512 | } |
---|
513 | } |
---|
514 | } |
---|
515 | if (bestIndex == -1) { |
---|
516 | // Shouldn't really happen. Possible (I think) if the model bag is |
---|
517 | // empty. Just return. |
---|
518 | if (m_debug) { |
---|
519 | System.out.println("Couldn't add or remove model. No action performed."); |
---|
520 | } |
---|
521 | return; |
---|
522 | } |
---|
523 | // Now we've found the best change to make: |
---|
524 | // * bestIndex is the (virtual) index of the model we should change |
---|
525 | // * added is true if the model should be added (false if should be |
---|
526 | // removed) |
---|
527 | int changeInWeight = added ? 1 : -1; |
---|
528 | m_timesChosen[bestIndex] += changeInWeight; |
---|
529 | m_numChosen += changeInWeight; |
---|
530 | if (bestPerformance > m_bestPerformance) { |
---|
531 | // We find the peak of our performance over all hillclimb |
---|
532 | // iterations. |
---|
533 | // If this forwardSelect step improved our overall performance, |
---|
534 | // update |
---|
535 | // our best ensemble info. |
---|
536 | updateBestTimesChosen(); |
---|
537 | m_bestPerformance = bestPerformance; |
---|
538 | } |
---|
539 | } |
---|
540 | |
---|
541 | /** |
---|
542 | * returns the model weights |
---|
543 | * |
---|
544 | * @return the model weights |
---|
545 | */ |
---|
546 | public int[] getModelWeights() { |
---|
547 | return m_bestTimesChosen; |
---|
548 | } |
---|
549 | |
---|
550 | /** |
---|
551 | * Returns the "model" at the given virtual index. Here, by "model" we mean |
---|
552 | * its predictions with respect to the validation set. This is just a |
---|
553 | * convenience method, since we use the "virtual" index more than the real |
---|
554 | * one inside this class. |
---|
555 | * |
---|
556 | * @param index |
---|
557 | * the "virtual" index - the one for internal use |
---|
558 | * @return the predictions for the model for all validation instances. |
---|
559 | */ |
---|
560 | private double[][] model(int index) { |
---|
561 | return m_models[m_modelIndex[index]]; |
---|
562 | } |
---|
563 | |
---|
564 | /** |
---|
565 | * Compute predictions based on the current model, adding (or removing) the |
---|
566 | * model at the given (internal) index. |
---|
567 | * |
---|
568 | * @param index_to_change |
---|
569 | * index of model we're adding or removing |
---|
570 | * @param add |
---|
571 | * whether we add it. If false, we remove it. |
---|
572 | * @return the predictions for all validation instances |
---|
573 | */ |
---|
574 | private double[][] computePredictions(int index_to_change, boolean add) { |
---|
575 | double[][] predictions = new double[m_models[0].length][m_models[0][0].length]; |
---|
576 | for (int i = 0; i < m_bagSize; ++i) { |
---|
577 | if (m_timesChosen[i] > 0) { |
---|
578 | for (int j = 0; j < m_models[0].length; ++j) { |
---|
579 | for (int k = 0; k < m_models[0][j].length; ++k) { |
---|
580 | predictions[j][k] += model(i)[j][k] * m_timesChosen[i]; |
---|
581 | } |
---|
582 | } |
---|
583 | } |
---|
584 | } |
---|
585 | for (int j = 0; j < m_models[0].length; ++j) { |
---|
586 | int change = add ? 1 : -1; |
---|
587 | for (int k = 0; k < m_models[0][j].length; ++k) { |
---|
588 | predictions[j][k] += change * model(index_to_change)[j][k]; |
---|
589 | predictions[j][k] /= (m_numChosen + change); |
---|
590 | } |
---|
591 | } |
---|
592 | return predictions; |
---|
593 | } |
---|
594 | |
---|
595 | /** |
---|
596 | * Return the performance of the given predictions on the given instances |
---|
597 | * with respect to the given metric (see EnsembleMetricHelper). |
---|
598 | * |
---|
599 | * @param instances |
---|
600 | * the validation data |
---|
601 | * @param temp_predictions |
---|
602 | * the predictions to evaluate |
---|
603 | * @param metric |
---|
604 | * the metric for which to optimize (see EnsembleMetricHelper) |
---|
605 | * @return the performance |
---|
606 | * @throws Exception if something goes wrong |
---|
607 | */ |
---|
608 | private double evaluatePredictions(Instances instances, |
---|
609 | double[][] temp_predictions, int metric) throws Exception { |
---|
610 | |
---|
611 | Evaluation eval = new Evaluation(instances); |
---|
612 | for (int i = 0; i < instances.numInstances(); ++i) { |
---|
613 | eval.evaluateModelOnceAndRecordPrediction(temp_predictions[i], |
---|
614 | instances.instance(i)); |
---|
615 | } |
---|
616 | return EnsembleMetricHelper.getMetric(eval, metric); |
---|
617 | } |
---|
618 | |
---|
619 | /** |
---|
620 | * Gets the individual performances of all the models in the bag. |
---|
621 | * |
---|
622 | * @param instances |
---|
623 | * The validation data, for which we want performance. |
---|
624 | * @param metric |
---|
625 | * The desired metric (see EnsembleMetricHelper). |
---|
626 | * @return the performance |
---|
627 | * @throws Exception if something goes wrong |
---|
628 | */ |
---|
629 | public double[] getIndividualPerformance(Instances instances, int metric) |
---|
630 | throws Exception { |
---|
631 | |
---|
632 | double[] performance = new double[m_bagSize]; |
---|
633 | for (int i = 0; i < m_bagSize; ++i) { |
---|
634 | performance[i] = evaluatePredictions(instances, model(i), metric); |
---|
635 | } |
---|
636 | return performance; |
---|
637 | } |
---|
638 | |
---|
639 | /** |
---|
640 | * Returns the revision string. |
---|
641 | * |
---|
642 | * @return the revision |
---|
643 | */ |
---|
644 | public String getRevision() { |
---|
645 | return RevisionUtils.extract("$Revision: 1.2 $"); |
---|
646 | } |
---|
647 | } |
---|