source: src/main/java/weka/classifiers/meta/ensembleSelection/EnsembleSelectionLibraryModel.java @ 14

Last change on this file since 14 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 24.1 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    EnsembleSelection.java
19 *    Copyright (C) 2006 David Michael
20 *
21 */
22
23package weka.classifiers.meta.ensembleSelection;
24
25import weka.classifiers.Classifier;
26import weka.classifiers.AbstractClassifier;
27import weka.classifiers.EnsembleLibraryModel;
28import weka.core.Instance;
29import weka.core.Instances;
30import weka.core.RevisionUtils;
31import weka.core.Utils;
32import weka.core.OptionHandler;
33
34import java.io.File;
35import java.io.FileInputStream;
36import java.io.FileOutputStream;
37import java.io.IOException;
38import java.io.ObjectInputStream;
39import java.io.ObjectOutput;
40import java.io.ObjectOutputStream;
41import java.io.Serializable;
42import java.io.UnsupportedEncodingException;
43import java.util.Date;
44import java.util.zip.Adler32;
45
46/**
47 * This class represents a library model that is used for EnsembleSelection. At
48 * this level the concept of cross validation is abstracted away. This class
49 * keeps track of the performance statistics and bookkeeping information for its
50 * "model type" accross all the CV folds. By "model type", I mean the
51 * combination of both the Classifier type (e.g. J48), and its set of parameters
52 * (e.g. -C 0.5 -X 1 -Y 5). So for example, if you are using 5 fold cross
53 * validaiton, this model will keep an array of classifiers[] of length 5 and
54 * will keep track of their performances accordingly. This class also has
55 * methods to deal with serializing all of this information into the .elm file
56 * that will represent this model.
57 * <p/>
58 * Also it is worth mentioning that another important function of this class is
59 * to track all of the dataset information that was used to create this model.
60 * This is because we want to protect users from doing foreseeably bad things.
61 * e.g., trying to build an ensemble for a dataset with models that were trained
62 * on the wrong partitioning of the dataset. This could lead to artificially high
63 * performance due to the fact that instances used for the test set to gauge
64 * performance could have accidentally been used to train the base classifiers.
65 * So in a nutshell, we are preventing people from unintentionally "cheating" by
66 * enforcing that the seed, #folds, validation ration, and the checksum of the
67 * Instances.toString() method ALL match exactly.  Otherwise we throw an
68 * exception.
69 *
70 * @author  Robert Jung (mrbobjung@gmail.com)
71 * @version $Revision: 5928 $
72 */
73public class EnsembleSelectionLibraryModel
74  extends EnsembleLibraryModel
75  implements Serializable {
76 
77  /**
78   * This is the serialVersionUID that SHOULD stay the same so that future
79   * modified versions of this class will be backwards compatible with older
80   * model versions.
81   */
82  private static final long serialVersionUID = -6426075459862947640L;
83 
84  /** The default file extension for ensemble library models */
85  public static final String FILE_EXTENSION = ".elm";
86 
87  /** the models */
88  private Classifier[] m_models = null;
89 
90  /** The seed that was used to create this model */
91  private int m_seed;
92 
93  /**
94   * The checksum of the instances.arff object that was used to create this
95   * model
96   */
97  private String m_checksum;
98 
99  /** The validation ratio that was used to create this model */
100  private double m_validationRatio;
101 
102  /**
103   * The number of folds, or number of CV models that was used to create this
104   * "model"
105   */
106  private int m_folds;
107 
108  /**
109   * The .elm file name that this model should be saved/loaded to/from
110   */
111  private String m_fileName;
112 
113  /**
114   * The debug flag as propagated from the main EnsembleSelection class.
115   */
116  public transient boolean m_Debug = true;
117 
118  /**
119   * the validation predictions of this model. First index for the instance.
120   * third is for the class (we use distributionForInstance).
121   */
122  private double[][] m_validationPredictions = null; // = new double[0][0];
123 
124  /**
125   * Default Constructor
126   */
127  public EnsembleSelectionLibraryModel() {
128  }
129 
130  /**
131   * Constructor for LibaryModel
132   *
133   * @param classifier          the classifier to use
134   * @param seed                the random seed value
135   * @param checksum            the checksum
136   * @param validationRatio     the ration to use
137   * @param folds               the number of folds to use
138   */
139  public EnsembleSelectionLibraryModel(Classifier classifier, int seed,
140      String checksum, double validationRatio, int folds) {
141   
142    super(classifier);
143   
144    m_seed = seed;
145    m_checksum = checksum;
146    m_validationRatio = validationRatio;
147    m_models = null;
148    m_folds = folds;
149  }
150 
151  /**
152   * This is used to propagate the m_Debug flag of the EnsembleSelection
153   * classifier to this class. There are things we would want to print out
154   * here also.
155   *
156   * @param debug       if true additional information is output
157   */
158  public void setDebug(boolean debug) {
159    m_Debug = debug;
160  }
161 
162  /**
163   * Returns the average of the prediction of the models across all folds.
164   *
165   * @param instance    the instance to get predictions for
166   * @return            the average prediction
167   * @throws Exception  if something goes wrong
168   */
169  public double[] getAveragePrediction(Instance instance) throws Exception {
170   
171    // Return the average prediction from all classifiers that make up
172    // this model.
173    double average[] = new double[instance.numClasses()];
174    for (int i = 0; i < m_folds; ++i) {
175      // Some models alter the instance (MultiLayerPerceptron), so we need
176      // to copy it.
177      Instance temp_instance = (Instance) instance.copy();
178      double[] pred = getFoldPrediction(temp_instance, i);
179      if (pred == null) {
180        // Some models have bugs whereby they can return a null
181        // prediction
182        // array (again, MultiLayerPerceptron). We return null, and this
183        // should be handled above in EnsembleSelection.
184        System.err.println("Null validation predictions given: "
185            + getStringRepresentation());
186        return null;
187      }
188      if (i == 0) {
189        // The first time through the loop, just use the first returned
190        // prediction array. Just a simple optimization.
191        average = pred;
192      } else {
193        // For the rest, add the prediction to the average array.
194        for (int j = 0; j < pred.length; ++j) {
195          average[j] += pred[j];
196        }
197      }
198    }
199    if (instance.classAttribute().isNominal()) {
200      // Normalize predictions for classes to add up to 1.
201      Utils.normalize(average);
202    } else {
203      average[0] /= m_folds;
204    }
205    return average;
206  }
207 
208  /**
209   * Basic Constructor
210   *
211   * @param classifier  the classifier to use
212   */
213  public EnsembleSelectionLibraryModel(Classifier classifier) {
214    super(classifier);
215  }
216 
217  /**
218   * Returns prediction of the classifier for the specified fold.
219   *
220   * @param instance
221   *            instance for which to make a prediction.
222   * @param fold
223   *            fold number of the classifier to use.
224   * @return the prediction for the classes
225   * @throws Exception if prediction fails
226   */
227  public double[] getFoldPrediction(Instance instance, int fold)
228    throws Exception {
229   
230    return m_models[fold].distributionForInstance(instance);
231  }
232 
233  /**
234   * Creates the model. If there are n folds, it constructs n classifiers
235   * using the current Classifier class and options. If the model has already
236   * been created or loaded, starts fresh.
237   *
238   * @param data                the data to work with
239   * @param hillclimbData       the data for hillclimbing
240   * @param dataDirectoryName   the directory to use
241   * @param algorithm           the type of algorithm
242   * @throws Exception          if something goeds wrong
243   */
244  public void createModel(Instances[] data, Instances[] hillclimbData,
245      String dataDirectoryName, int algorithm) throws Exception {
246   
247    String modelFileName = getFileName(getStringRepresentation());
248   
249    File modelFile = new File(dataDirectoryName, modelFileName);
250   
251    String relativePath = (new File(dataDirectoryName)).getName()
252    + File.separatorChar + modelFileName;
253    // if (m_Debug) System.out.println("setting relative path to:
254    // "+relativePath);
255    setFileName(relativePath);
256   
257    if (!modelFile.exists()) {
258     
259      Date startTime = new Date();
260     
261      String lockFileName = EnsembleSelectionLibraryModel
262      .getFileName(getStringRepresentation());
263      lockFileName = lockFileName.substring(0, lockFileName.length() - 3)
264      + "LCK";
265      File lockFile = new File(dataDirectoryName, lockFileName);
266     
267      if (lockFile.exists()) {
268        if (m_Debug)
269          System.out.println("Detected lock file.  Skipping: "
270              + lockFileName);
271        throw new Exception("Lock File Detected: " + lockFile.getName());
272       
273      } else { // if (algorithm ==
274        // EnsembleSelection.ALGORITHM_BUILD_LIBRARY) {
275        // This lock file lets other computers that might be sharing the
276        // same file
277        // system that this model is already being trained so they know
278        // to move ahead
279        // and train other models.
280       
281        if (lockFile.createNewFile()) {
282         
283          if (m_Debug)
284            System.out
285            .println("lock file created: " + lockFileName);
286         
287          if (m_Debug)
288            System.out.println("Creating model in locked mode: "
289                + modelFile.getPath());
290         
291          m_models = new Classifier[m_folds];
292          for (int i = 0; i < m_folds; ++i) {
293           
294            try {
295              m_models[i] = AbstractClassifier.forName(getModelClass()
296                  .getName(), null);
297              ((OptionHandler)m_models[i]).setOptions(getOptions());
298            } catch (Exception e) {
299              throw new Exception("Invalid Options: "
300                  + e.getMessage());
301            }
302          }
303         
304          try {
305            for (int i = 0; i < m_folds; ++i) {
306              train(data[i], i);
307            }
308          } catch (Exception e) {
309            throw new Exception("Could not Train: "
310                + e.getMessage());
311          }
312         
313          Date endTime = new Date();
314          int diff = (int) (endTime.getTime() - startTime.getTime());
315         
316          // We don't need the actual model for hillclimbing. To save
317          // memory, release
318          // it.
319         
320          // if (!invalidModels.contains(model)) {
321          // EnsembleLibraryModel.saveModel(dataDirectory.getPath(),
322          // model);
323          // model.releaseModel();
324          // }
325          if (m_Debug)
326            System.out.println("Train time for " + modelFileName
327                + " was: " + diff);
328         
329          if (m_Debug)
330            System.out
331            .println("Generating validation set predictions");
332         
333          startTime = new Date();
334         
335          int total = 0;
336          for (int i = 0; i < m_folds; ++i) {
337            total += hillclimbData[i].numInstances();
338          }
339         
340          m_validationPredictions = new double[total][];
341         
342          int preds_index = 0;
343          for (int i = 0; i < m_folds; ++i) {
344            for (int j = 0; j < hillclimbData[i].numInstances(); ++j) {
345              Instance temp = (Instance) hillclimbData[i]
346                                                       .instance(j).copy();// new
347              // Instance(m_hillclimbData[i].instance(j));
348              // must copy the instance because SOME classifiers
349              // (I'm not pointing fingers...
350              // MULTILAYERPERCEPTRON)
351              // change the instance!
352             
353              m_validationPredictions[preds_index] = getFoldPrediction(
354                  temp, i);
355             
356              if (m_validationPredictions[preds_index] == null) {
357                throw new Exception(
358                    "Null validation predictions given: "
359                    + getStringRepresentation());
360              }
361             
362              ++preds_index;
363            }
364          }
365         
366          endTime = new Date();
367          diff = (int) (endTime.getTime() - startTime.getTime());
368         
369          // if (m_Debug) System.out.println("Generated a validation
370          // set array of size: "+m_validationPredictions.length);
371          if (m_Debug)
372            System.out
373            .println("Time to create validation predictions was: "
374                + diff);
375         
376          EnsembleSelectionLibraryModel.saveModel(dataDirectoryName,
377              this);
378         
379          if (m_Debug)
380            System.out.println("deleting lock file: "
381                + lockFileName);
382          lockFile.delete();
383         
384        } else {
385         
386          if (m_Debug)
387            System.out
388            .println("Could not create lock file.  Skipping: "
389                + lockFileName);
390          throw new Exception(
391              "Could not create lock file.  Skipping: "
392              + lockFile.getName());
393         
394        }
395       
396      }
397     
398    } else {
399      // This branch is responsible for loading a model from a .elm file
400     
401      if (m_Debug)
402        System.out.println("Loading model: " + modelFile.getPath());
403      // now we need to check to see if the model is valid, if so then
404      // load it
405      Date startTime = new Date();
406     
407      EnsembleSelectionLibraryModel newModel = loadModel(modelFile
408          .getPath());
409     
410      if (!newModel.getStringRepresentation().equals(
411          getStringRepresentation()))
412        throw new EnsembleModelMismatchException(
413            "String representations "
414            + newModel.getStringRepresentation() + " and "
415            + getStringRepresentation() + " not equal");
416     
417      if (!newModel.getChecksum().equals(getChecksum()))
418        throw new EnsembleModelMismatchException("Checksums "
419            + newModel.getChecksum() + " and " + getChecksum()
420            + " not equal");
421     
422      if (newModel.getSeed() != getSeed())
423        throw new EnsembleModelMismatchException("Seeds "
424            + newModel.getSeed() + " and " + getSeed()
425            + " not equal");
426     
427      if (newModel.getFolds() != getFolds())
428        throw new EnsembleModelMismatchException("Folds "
429            + newModel.getFolds() + " and " + getFolds()
430            + " not equal");
431     
432      if (newModel.getValidationRatio() != getValidationRatio())
433        throw new EnsembleModelMismatchException("Validation Ratios "
434            + newModel.getValidationRatio() + " and "
435            + getValidationRatio() + " not equal");
436     
437      // setFileName(modelFileName);
438     
439      m_models = newModel.getModels();
440      m_validationPredictions = newModel.getValidationPredictions();
441     
442      Date endTime = new Date();
443      int diff = (int) (endTime.getTime() - startTime.getTime());
444      if (m_Debug)
445        System.out.println("Time to load " + modelFileName + " was: "
446            + diff);
447    }
448  }
449 
450  /**
451   * The purpose of this method is to "rehydrate" the classifier object fot
452   * this library model from the filesystem.
453   *
454   * @param workingDirectory    the working directory to use
455   */
456  public void rehydrateModel(String workingDirectory) {
457   
458    if (m_models == null) {
459     
460      File file = new File(workingDirectory, m_fileName);
461     
462      if (m_Debug)
463        System.out.println("Rehydrating Model: " + file.getPath());
464      EnsembleSelectionLibraryModel model = EnsembleSelectionLibraryModel
465      .loadModel(file.getPath());
466     
467      m_models = model.getModels();
468     
469    }
470  }
471 
472  /**
473   * Releases the model from memory. TODO - need to be saving these so we can
474   * retrieve them later!!
475   */
476  public void releaseModel() {
477    /*
478     * if (m_unsaved) { saveModel(); }
479     */
480    m_models = null;
481  }
482 
483  /**
484   * Train the classifier for the specified fold on the given data
485   *
486   * @param trainData   the data to train with
487   * @param fold        the fold number
488   * @throws Exception  if something goes wrong, e.g., out of memory
489   */
490  public void train(Instances trainData, int fold) throws Exception {
491    if (m_models != null) {
492     
493      try {
494        // OK, this is it... this is the point where our code surrenders
495        // to the weka classifiers.
496        m_models[fold].buildClassifier(trainData);
497      } catch (Throwable t) {
498        m_models[fold] = null;
499        throw new Exception(
500            "Exception caught while training: (null could mean out of memory)"
501            + t.getMessage());
502      }
503     
504    } else {
505      throw new Exception("Cannot train: model was null");
506      // TODO: throw Exception?
507    }
508  }
509 
510  /**
511   * Set the seed
512   *
513   * @param seed        the seed value
514   */
515  public void setSeed(int seed) {
516    m_seed = seed;
517  }
518 
519  /**
520   * Get the seed
521   *
522   * @return the seed value
523   */
524  public int getSeed() {
525    return m_seed;
526  }
527 
528  /**
529   * Sets the validation set ratio (only meaningful if folds == 1)
530   *
531   * @param validationRatio     the new ration
532   */
533  public void setValidationRatio(double validationRatio) {
534    m_validationRatio = validationRatio;
535  }
536 
537  /**
538   * get validationRatio
539   *
540   * @return            the current ratio
541   */
542  public double getValidationRatio() {
543    return m_validationRatio;
544  }
545 
546  /**
547   * Set the number of folds for cross validation. The number of folds also
548   * indicates how many classifiers will be built to represent this model.
549   *
550   * @param folds       the number of folds to use
551   */
552  public void setFolds(int folds) {
553    m_folds = folds;
554  }
555 
556  /**
557   * get the number of folds
558   *
559   * @return            the current number of folds
560   */
561  public int getFolds() {
562    return m_folds;
563  }
564 
565  /**
566   * set the checksum
567   *
568   * @param instancesChecksum   the new checksum
569   */
570  public void setChecksum(String instancesChecksum) {
571    m_checksum = instancesChecksum;
572  }
573 
574  /**
575   * get the checksum
576   *
577   * @return            the current checksum
578   */
579  public String getChecksum() {
580    return m_checksum;
581  }
582 
583  /**
584   * Returs the array of classifiers
585   *
586   * @return            the current models
587   */
588  public Classifier[] getModels() {
589    return m_models;
590  }
591 
592  /**
593   * Sets the .elm file name for this library model
594   *
595   * @param fileName    the new filename
596   */
597  public void setFileName(String fileName) {
598    m_fileName = fileName;
599  }
600 
601  /**
602   * Gets a checksum for the string defining this classifier. This is used to
603   * preserve uniqueness in the classifier names.
604   *
605   * @param string      the classifier definition
606   * @return            the checksum string
607   */
608  public static String getStringChecksum(String string) {
609   
610    String checksumString = null;
611   
612    try {
613     
614      Adler32 checkSummer = new Adler32();
615     
616      byte[] utf8 = string.toString().getBytes("UTF8");
617      ;
618     
619      checkSummer.update(utf8);
620      checksumString = Long.toHexString(checkSummer.getValue());
621     
622    } catch (UnsupportedEncodingException e) {
623      // TODO Auto-generated catch block
624      e.printStackTrace();
625    }
626   
627    return checksumString;
628  }
629 
630  /**
631   * The purpose of this method is to get an appropriate file name for a model
632   * based on its string representation of a model. All generated filenames
633   * are limited to less than 128 characters and all of them will end with a
634   * 64 bit checksum value of their string representation to try to maintain
635   * some uniqueness of file names.
636   *
637   * @param stringRepresentation        string representation of model
638   * @return                            unique filename
639   */
640  public static String getFileName(String stringRepresentation) {
641   
642    // Get rid of space and quote marks(windows doesn't lke them)
643    String fileName = stringRepresentation.trim().replace(' ', '_')
644    .replace('"', '_');
645   
646    if (fileName.length() > 115) {
647     
648      fileName = fileName.substring(0, 115);
649     
650    }
651   
652    fileName += getStringChecksum(stringRepresentation)
653    + EnsembleSelectionLibraryModel.FILE_EXTENSION;
654   
655    return fileName;
656  }
657 
658  /**
659   * Saves the given model to the specified file.
660   *
661   * @param directory   the directory to save the model to
662   * @param model       the model to save
663   */
664  public static void saveModel(String directory,
665      EnsembleSelectionLibraryModel model) {
666   
667    try {
668      String fileName = getFileName(model.getStringRepresentation());
669     
670      File file = new File(directory, fileName);
671     
672      // System.out.println("Saving model: "+file.getPath());
673     
674      // model.setFileName(new String(file.getPath()));
675     
676      // Serialize to a file
677      ObjectOutput out = new ObjectOutputStream(
678          new FileOutputStream(file));
679      out.writeObject(model);
680     
681      out.close();
682     
683    } catch (IOException e) {
684     
685      e.printStackTrace();
686    }
687  }
688 
689  /**
690   * loads the specified model
691   *
692   * @param modelFilePath       the path of the model
693   * @return                    the model
694   */
695  public static EnsembleSelectionLibraryModel loadModel(String modelFilePath) {
696   
697    EnsembleSelectionLibraryModel model = null;
698   
699    try {
700     
701      File file = new File(modelFilePath);
702     
703      ObjectInputStream in = new ObjectInputStream(new FileInputStream(
704          file));
705     
706      model = (EnsembleSelectionLibraryModel) in.readObject();
707     
708      in.close();
709     
710    } catch (ClassNotFoundException e) {
711     
712      e.printStackTrace();
713     
714    } catch (IOException e) {
715     
716      e.printStackTrace();
717     
718    }
719   
720    return model;
721  }
722 
723  /*
724   * Problems persist in this code so we left it commented out. The intent was
725   * to create the methods necessary for custom serialization to allow for
726   * forwards/backwards compatability of .elm files accross multiple versions
727   * of this classifier. The main problem however is that these methods do not
728   * appear to be called. I'm not sure what the problem is, but this would be
729   * a great feature. If anyone is a seasoned veteran of this serialization
730   * stuff, please help!
731   *
732   * private void writeObject(ObjectOutputStream stream) throws IOException {
733   * //stream.defaultWriteObject(); //stream.writeObject(b);
734   *
735   * //first serialize the LibraryModel fields
736   *
737   * //super.writeObject(stream);
738   *
739   * //now serialize the LibraryModel fields
740   *
741   * stream.writeObject(m_Classifier);
742   *
743   * stream.writeObject(m_DescriptionText);
744   *
745   * stream.writeObject(m_ErrorText);
746   *
747   * stream.writeObject(new Boolean(m_OptionsWereValid));
748   *
749   * stream.writeObject(m_StringRepresentation);
750   *
751   * stream.writeObject(m_models);
752   *
753   *
754   * //now serialize the EnsembleLibraryModel fields //stream.writeObject(new
755   * String("blah"));
756   *
757   * stream.writeObject(new Integer(m_seed));
758   *
759   * stream.writeObject(m_checksum);
760   *
761   * stream.writeObject(new Double(m_validationRatio));
762   *
763   * stream.writeObject(new Integer(m_folds));
764   *
765   * stream.writeObject(m_fileName);
766   *
767   * stream.writeObject(new Boolean(m_isTrained));
768   *
769   *
770   * if (m_validationPredictions == null) {
771   *  }
772   *
773   * if (m_Debug) System.out.println("Saving
774   * "+m_validationPredictions.length+" indexed array");
775   * stream.writeObject(m_validationPredictions);
776   *  }
777   *
778   * private void readObject(ObjectInputStream stream) throws IOException,
779   * ClassNotFoundException { //stream.defaultReadObject(); //b = (String)
780   * stream.readObject();
781   *
782   * //super.readObject(stream);
783   *
784   * //deserialize the LibraryModel fields m_Classifier =
785   * (Classifier)stream.readObject();
786   *
787   * m_DescriptionText = (String)stream.readObject();
788   *
789   * m_ErrorText = (String)stream.readObject();
790   *
791   * m_OptionsWereValid = ((Boolean)stream.readObject()).booleanValue();
792   *
793   * m_StringRepresentation = (String)stream.readObject();
794   *
795   *
796   *
797   * //now deserialize the EnsembleLibraryModel fields m_models =
798   * (Classifier[])stream.readObject();
799   *
800   * m_seed = ((Integer)stream.readObject()).intValue();
801   *
802   * m_checksum = (String)stream.readObject();
803   *
804   * m_validationRatio = ((Double)stream.readObject()).doubleValue();
805   *
806   * m_folds = ((Integer)stream.readObject()).intValue();
807   *
808   * m_fileName = (String)stream.readObject();
809   *
810   * m_isTrained = ((Boolean)stream.readObject()).booleanValue();
811   *
812   * m_validationPredictions = (double[][])stream.readObject();
813   *
814   * if (m_Debug) System.out.println("Loaded
815   * "+m_validationPredictions.length+" indexed array"); }
816   *
817   */
818 
819  /**
820   * getter for validation predictions
821   *
822   * @return            the current validation predictions
823   */
824  public double[][] getValidationPredictions() {
825    return m_validationPredictions;
826  }
827 
828  /**
829   * setter for validation predictions
830   *
831   * @param predictions the new validation predictions
832   */
833  public void setValidationPredictions(double[][] predictions) {
834    if (m_Debug)
835      System.out.println("Saving validation array of size "
836          + predictions.length);
837    m_validationPredictions = new double[predictions.length][];
838    System.arraycopy(predictions, 0, m_validationPredictions, 0,
839        predictions.length);
840  }
841 
842  /**
843   * Returns the revision string.
844   *
845   * @return            the revision
846   */
847  public String getRevision() {
848    return RevisionUtils.extract("$Revision: 5928 $");
849  }
850}
Note: See TracBrowser for help on using the repository browser.