1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * EnsembleSelectionLibrary.java |
---|
19 | * Copyright (C) 2006 Robert Jung |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta.ensembleSelection; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.EnsembleLibrary; |
---|
28 | import weka.classifiers.EnsembleLibraryModel; |
---|
29 | import weka.classifiers.meta.EnsembleSelection; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | |
---|
33 | import java.beans.PropertyChangeListener; |
---|
34 | import java.beans.PropertyChangeSupport; |
---|
35 | import java.io.File; |
---|
36 | import java.io.FileWriter; |
---|
37 | import java.io.InputStream; |
---|
38 | import java.io.Serializable; |
---|
39 | import java.io.UnsupportedEncodingException; |
---|
40 | import java.text.DateFormat; |
---|
41 | import java.text.SimpleDateFormat; |
---|
42 | import java.util.Date; |
---|
43 | import java.util.HashSet; |
---|
44 | import java.util.Iterator; |
---|
45 | import java.util.Set; |
---|
46 | import java.util.TreeSet; |
---|
47 | import java.util.zip.Adler32; |
---|
48 | |
---|
49 | /** |
---|
50 | * This class represents an ensemble library. That is a |
---|
51 | * collection of models that will be combined via the |
---|
52 | * ensemble selection algorithm. This class is responsible for |
---|
53 | * tracking all of the unique model specifications in the current |
---|
54 | * library and trainined them when asked. There are also methods |
---|
55 | * to save/load library model list files. |
---|
56 | * |
---|
57 | * @author Robert Jung |
---|
58 | * @author David Michael |
---|
59 | * @version $Revision: 5928 $ |
---|
60 | */ |
---|
61 | public class EnsembleSelectionLibrary |
---|
62 | extends EnsembleLibrary |
---|
63 | implements Serializable { |
---|
64 | |
---|
65 | /** for serialization */ |
---|
66 | private static final long serialVersionUID = -6444026512552917835L; |
---|
67 | |
---|
68 | /** the working ensemble library directory. */ |
---|
69 | private File m_workingDirectory; |
---|
70 | |
---|
71 | /** tha name of the model list file storing the list of |
---|
72 | * models currently being used by the model library */ |
---|
73 | private String m_modelListFile = null; |
---|
74 | |
---|
75 | /** the training data used to build the library. One per fold.*/ |
---|
76 | private Instances[] m_trainingData; |
---|
77 | |
---|
78 | /** the test data used for hillclimbing. One per fold. */ |
---|
79 | private Instances[] m_hillclimbData; |
---|
80 | |
---|
81 | /** the predictions of each model. Built by trainAll. First index is |
---|
82 | * for the model. Second is for the instance. third is for the class |
---|
83 | * (we use distributionForInstance). |
---|
84 | */ |
---|
85 | private double[][][] m_predictions; |
---|
86 | |
---|
87 | /** the random seed used to partition the training data into |
---|
88 | * validation and training folds */ |
---|
89 | private int m_seed; |
---|
90 | |
---|
91 | /** the number of folds */ |
---|
92 | private int m_folds; |
---|
93 | |
---|
94 | /** the ratio of validation data used to train the model */ |
---|
95 | private double m_validationRatio; |
---|
96 | |
---|
97 | /** A helper class for notifying listeners when working directory changes */ |
---|
98 | private transient PropertyChangeSupport m_workingDirectoryPropertySupport = new PropertyChangeSupport(this); |
---|
99 | |
---|
100 | /** Whether we should print debug messages. */ |
---|
101 | public transient boolean m_Debug = true; |
---|
102 | |
---|
103 | /** |
---|
104 | * Creates a default libary. Library should be associated with |
---|
105 | * |
---|
106 | */ |
---|
107 | public EnsembleSelectionLibrary() { |
---|
108 | super(); |
---|
109 | |
---|
110 | m_workingDirectory = new File(EnsembleSelection.getDefaultWorkingDirectory()); |
---|
111 | } |
---|
112 | |
---|
113 | /** |
---|
114 | * Creates a default libary. Library should be associated with |
---|
115 | * a working directory |
---|
116 | * |
---|
117 | * @param dir the working directory form the ensemble library |
---|
118 | * @param seed the seed value |
---|
119 | * @param folds the number of folds |
---|
120 | * @param validationRatio the ratio to use |
---|
121 | */ |
---|
122 | public EnsembleSelectionLibrary(String dir, int seed, |
---|
123 | int folds, double validationRatio) { |
---|
124 | |
---|
125 | super(); |
---|
126 | |
---|
127 | if (dir != null) |
---|
128 | m_workingDirectory = new File(dir); |
---|
129 | m_seed = seed; |
---|
130 | m_folds = folds; |
---|
131 | m_validationRatio = validationRatio; |
---|
132 | |
---|
133 | } |
---|
134 | |
---|
135 | /** |
---|
136 | * This constructor will create a library from a model |
---|
137 | * list file given by the file name argument |
---|
138 | * |
---|
139 | * @param libraryFileName the library filename |
---|
140 | */ |
---|
141 | public EnsembleSelectionLibrary(String libraryFileName) { |
---|
142 | super(); |
---|
143 | |
---|
144 | File libraryFile = new File(libraryFileName); |
---|
145 | try { |
---|
146 | EnsembleLibrary.loadLibrary(libraryFile, this); |
---|
147 | } catch (Exception e) { |
---|
148 | System.err.println("Could not load specified library file: "+libraryFileName); |
---|
149 | } |
---|
150 | } |
---|
151 | |
---|
152 | /** |
---|
153 | * This constructor will create a library from the given XML stream. |
---|
154 | * |
---|
155 | * @param stream the XML library stream |
---|
156 | */ |
---|
157 | public EnsembleSelectionLibrary(InputStream stream) { |
---|
158 | super(); |
---|
159 | |
---|
160 | try { |
---|
161 | EnsembleLibrary.loadLibrary(stream, this); |
---|
162 | } |
---|
163 | catch (Exception e) { |
---|
164 | System.err.println("Could not load library from XML stream: " + e); |
---|
165 | } |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | * Set debug flag for the library and all its models. The debug flag |
---|
170 | * determines whether we print debugging information to stdout. |
---|
171 | * |
---|
172 | * @param debug if true debug mode is on |
---|
173 | */ |
---|
174 | public void setDebug(boolean debug) { |
---|
175 | m_Debug = debug; |
---|
176 | |
---|
177 | Iterator it = getModels().iterator(); |
---|
178 | while (it.hasNext()) { |
---|
179 | ((EnsembleSelectionLibraryModel)it.next()).setDebug(m_Debug); |
---|
180 | } |
---|
181 | } |
---|
182 | |
---|
183 | /** |
---|
184 | * Sets the validation-set ratio. This is the portion of the |
---|
185 | * training set that is set aside for hillclimbing. Note that |
---|
186 | * this value is ignored if we are doing cross-validation |
---|
187 | * (indicated by the number of folds being > 1). |
---|
188 | * |
---|
189 | * @param validationRatio the new ratio |
---|
190 | */ |
---|
191 | public void setValidationRatio(double validationRatio) { |
---|
192 | m_validationRatio = validationRatio; |
---|
193 | } |
---|
194 | |
---|
195 | /** |
---|
196 | * Set the number of folds for cross validation. If the number |
---|
197 | * of folds is > 1, the validation ratio is ignored. |
---|
198 | * |
---|
199 | * @param numFolds the number of folds to use |
---|
200 | */ |
---|
201 | public void setNumFolds(int numFolds) { |
---|
202 | m_folds = numFolds; |
---|
203 | } |
---|
204 | |
---|
205 | /** |
---|
206 | * This method will iterate through the TreeMap of models and |
---|
207 | * train all models that do not currently exist (are not |
---|
208 | * yet trained). |
---|
209 | * <p/> |
---|
210 | * Returns the data set which should be used for hillclimbing. |
---|
211 | * <p/> |
---|
212 | * If training a model fails then an error will |
---|
213 | * be sent to stdout and that model will be removed from the |
---|
214 | * TreeMap. FIXME Should we maybe raise an exception instead? |
---|
215 | * |
---|
216 | * @param data the data to work on |
---|
217 | * @param directory the working directory |
---|
218 | * @param algorithm the type of algorithm |
---|
219 | * @return the data that should be used for hillclimbing |
---|
220 | * @throws Exception if something goes wrong |
---|
221 | */ |
---|
222 | public Instances trainAll(Instances data, String directory, int algorithm) throws Exception { |
---|
223 | |
---|
224 | createWorkingDirectory(directory); |
---|
225 | |
---|
226 | //craete the directory if it doesn't already exist |
---|
227 | String dataDirectoryName = getDataDirectoryName(data); |
---|
228 | File dataDirectory = new File(directory, dataDirectoryName); |
---|
229 | |
---|
230 | if (!dataDirectory.exists()) { |
---|
231 | dataDirectory.mkdirs(); |
---|
232 | } |
---|
233 | |
---|
234 | //Now create a record of all the models trained. This will be a .mlf |
---|
235 | //flat file with a file name based on the time/date of training |
---|
236 | //DateFormat formatter = new SimpleDateFormat("yyyy.MM.dd.HH.mm"); |
---|
237 | //String dateString = formatter.format(new Date()); |
---|
238 | |
---|
239 | //Go ahead and save in both formats just in case: |
---|
240 | DateFormat formatter = new SimpleDateFormat("yyyy.MM.dd.HH.mm"); |
---|
241 | String modelListFileName = formatter.format(new Date())+"_"+size()+"_models.mlf"; |
---|
242 | //String modelListFileName = dataDirectory.getName()+".mlf"; |
---|
243 | File modelListFile = new File(dataDirectory.getPath(), modelListFileName); |
---|
244 | EnsembleLibrary.saveLibrary(modelListFile, this, null); |
---|
245 | |
---|
246 | //modelListFileName = dataDirectory.getName()+".model.xml"; |
---|
247 | modelListFileName = formatter.format(new Date())+"_"+size()+"_models.model.xml"; |
---|
248 | modelListFile = new File(dataDirectory.getPath(), modelListFileName); |
---|
249 | EnsembleLibrary.saveLibrary(modelListFile, this, null); |
---|
250 | |
---|
251 | |
---|
252 | //log the instances used just in case we need to know... |
---|
253 | String arf = data.toString(); |
---|
254 | FileWriter f = new FileWriter(new File(dataDirectory.getPath(), dataDirectory.getName()+".arff")); |
---|
255 | f.write(arf); |
---|
256 | f.close(); |
---|
257 | |
---|
258 | // m_trainingData will contain the datasets used for training models for each fold. |
---|
259 | m_trainingData = new Instances[m_folds]; |
---|
260 | // m_hillclimbData will contain the dataset which we will use for hillclimbing - |
---|
261 | // m_hillclimbData[i] should be disjoint from m_trainingData[i]. |
---|
262 | m_hillclimbData = new Instances[m_folds]; |
---|
263 | // validationSet is all of the hillclimbing data from all folds, in the same |
---|
264 | // order as it is in m_hillclimbData |
---|
265 | Instances validationSet; |
---|
266 | if (m_folds > 1) { |
---|
267 | validationSet = new Instances(data, data.numInstances()); //make a new set |
---|
268 | //with the same capacity and header as data. |
---|
269 | //instances may come from CV functions in |
---|
270 | //different order, so we'll make sure the |
---|
271 | //validation set's order matches that of |
---|
272 | //the concatenated testCV sets |
---|
273 | for (int i=0; i < m_folds; ++i) { |
---|
274 | m_trainingData[i] = data.trainCV(m_folds, i); |
---|
275 | m_hillclimbData[i] = data.testCV(m_folds, i); |
---|
276 | } |
---|
277 | // If we're doing "embedded CV" we can hillclimb on |
---|
278 | // the entire training set, so we just put all of the hillclimbData |
---|
279 | // from all folds in to validationSet (making sure it's in the appropriate |
---|
280 | // order). |
---|
281 | for (int i=0; i < m_folds; ++i) { |
---|
282 | for (int j=0; j < m_hillclimbData[i].numInstances(); ++j) { |
---|
283 | validationSet.add(m_hillclimbData[i].instance(j)); |
---|
284 | } |
---|
285 | } |
---|
286 | } |
---|
287 | else { |
---|
288 | // Otherwise, we're not doing CV, we're just using a validation set. |
---|
289 | // Partition the data set in to a training set and a hillclimb set |
---|
290 | // based on the m_validationRatio. |
---|
291 | int validation_size = (int)(data.numInstances() * m_validationRatio); |
---|
292 | m_trainingData[0] = new Instances(data, 0, data.numInstances() - validation_size); |
---|
293 | m_hillclimbData[0] = new Instances(data, data.numInstances() - validation_size, validation_size); |
---|
294 | validationSet = m_hillclimbData[0]; |
---|
295 | } |
---|
296 | |
---|
297 | // Now we have all the data chopped up appropriately, and we can train all models |
---|
298 | Iterator it = m_Models.iterator(); |
---|
299 | int model_index = 0; |
---|
300 | m_predictions = new double[m_Models.size()][validationSet.numInstances()][data.numClasses()]; |
---|
301 | |
---|
302 | // We'll keep a set of all the models which fail so that we can remove them from |
---|
303 | // our library. |
---|
304 | Set invalidModels = new HashSet(); |
---|
305 | |
---|
306 | while (it.hasNext()) { |
---|
307 | // For each model, |
---|
308 | EnsembleSelectionLibraryModel model = (EnsembleSelectionLibraryModel)it.next(); |
---|
309 | |
---|
310 | // set the appropriate options |
---|
311 | model.setDebug(m_Debug); |
---|
312 | model.setFolds(m_folds); |
---|
313 | model.setSeed(m_seed); |
---|
314 | model.setValidationRatio(m_validationRatio); |
---|
315 | model.setChecksum(getInstancesChecksum(data)); |
---|
316 | |
---|
317 | try { |
---|
318 | // Create the model. This will attempt to load the model, if it |
---|
319 | // alreay exists. If it does not, it will train the model using |
---|
320 | // m_trainingData and cache the model's predictions for |
---|
321 | // m_hillclimbData. |
---|
322 | model.createModel(m_trainingData, m_hillclimbData, dataDirectory.getPath(), algorithm); |
---|
323 | } catch (Exception e) { |
---|
324 | // If the model failed, print a message and add it to our set of |
---|
325 | // invalid models. |
---|
326 | System.out.println("**Couldn't create model "+model.getStringRepresentation() |
---|
327 | +" because of following exception: "+e.getMessage()); |
---|
328 | |
---|
329 | invalidModels.add(model); |
---|
330 | continue; |
---|
331 | } |
---|
332 | |
---|
333 | if (!invalidModels.contains(model)) { |
---|
334 | // If the model succeeded, add its predictions to our array |
---|
335 | // of predictions. Note that the successful models' predictions |
---|
336 | // are packed in to the front of m_predictions. |
---|
337 | m_predictions[model_index] = model.getValidationPredictions(); |
---|
338 | ++model_index; |
---|
339 | // We no longer need it in memory, so release it. |
---|
340 | model.releaseModel(); |
---|
341 | } |
---|
342 | |
---|
343 | |
---|
344 | } |
---|
345 | |
---|
346 | // Remove all invalidModels from m_Models. |
---|
347 | it = invalidModels.iterator(); |
---|
348 | while (it.hasNext()) { |
---|
349 | EnsembleSelectionLibraryModel model = (EnsembleSelectionLibraryModel)it.next(); |
---|
350 | if (m_Debug) System.out.println("removing invalid library model: "+model.getStringRepresentation()); |
---|
351 | m_Models.remove(model); |
---|
352 | } |
---|
353 | |
---|
354 | if (m_Debug) System.out.println("model index: "+model_index+" tree set size: "+m_Models.size()); |
---|
355 | |
---|
356 | if (invalidModels.size() > 0) { |
---|
357 | // If we had any invalid models, we have some bad predictions in the back |
---|
358 | // of m_predictions, so we'll shrink it to the right size. |
---|
359 | double tmpPredictions[][][] = new double[m_Models.size()][][]; |
---|
360 | |
---|
361 | for (int i = 0; i < m_Models.size(); i++) { |
---|
362 | tmpPredictions[i] = m_predictions[i]; |
---|
363 | } |
---|
364 | m_predictions = tmpPredictions; |
---|
365 | } |
---|
366 | |
---|
367 | if (m_Debug) System.out.println("Finished remapping models"); |
---|
368 | |
---|
369 | return validationSet; //Give the appropriate "hillclimb" set back to ensemble |
---|
370 | //selection. |
---|
371 | } |
---|
372 | |
---|
373 | /** |
---|
374 | * Creates the working directory associated with this library |
---|
375 | * |
---|
376 | * @param dirName the new directory |
---|
377 | */ |
---|
378 | public void createWorkingDirectory(String dirName) { |
---|
379 | File directory = new File(dirName); |
---|
380 | |
---|
381 | if (!directory.exists()) |
---|
382 | directory.mkdirs(); |
---|
383 | } |
---|
384 | |
---|
385 | /** |
---|
386 | * This will remove the model associated with the given String |
---|
387 | * from the model libraryHashMap |
---|
388 | * |
---|
389 | * @param modelKey the key of the model |
---|
390 | */ |
---|
391 | public void removeModel(String modelKey) { |
---|
392 | m_Models.remove(modelKey); //TODO - is this really all there is to it?? |
---|
393 | } |
---|
394 | |
---|
395 | /** |
---|
396 | * This method will return a Set object containing all the |
---|
397 | * String representations of the models. The iterator across |
---|
398 | * this Set object will return the model name in alphebetical |
---|
399 | * order. |
---|
400 | * |
---|
401 | * @return all model representations |
---|
402 | */ |
---|
403 | public Set getModelNames() { |
---|
404 | Set names = new TreeSet(); |
---|
405 | |
---|
406 | Iterator it = m_Models.iterator(); |
---|
407 | |
---|
408 | while (it.hasNext()) { |
---|
409 | names.add(((EnsembleLibraryModel)it.next()).getStringRepresentation()); |
---|
410 | } |
---|
411 | |
---|
412 | return names; |
---|
413 | } |
---|
414 | |
---|
415 | /** |
---|
416 | * This method will get the predictions for all the models in the |
---|
417 | * ensemble library. If cross validaiton is used, then predictions |
---|
418 | * will be returned for the entire training set. If cross validation |
---|
419 | * is not used, then predictions will only be returned for the ratio |
---|
420 | * of the training set reserved for validation. |
---|
421 | * |
---|
422 | * @return the predictions |
---|
423 | */ |
---|
424 | public double[][][] getHillclimbPredictions() { |
---|
425 | return m_predictions; |
---|
426 | } |
---|
427 | |
---|
428 | /** |
---|
429 | * Gets the working Directory of the ensemble library. |
---|
430 | * |
---|
431 | * @return the working directory. |
---|
432 | */ |
---|
433 | public File getWorkingDirectory() { |
---|
434 | return m_workingDirectory; |
---|
435 | } |
---|
436 | |
---|
437 | /** |
---|
438 | * Sets the working Directory of the ensemble library. |
---|
439 | * |
---|
440 | * @param workingDirectory the working directory to use. |
---|
441 | */ |
---|
442 | public void setWorkingDirectory(File workingDirectory) { |
---|
443 | m_workingDirectory = workingDirectory; |
---|
444 | if (m_workingDirectoryPropertySupport != null) { |
---|
445 | m_workingDirectoryPropertySupport.firePropertyChange(null, null, null); |
---|
446 | } |
---|
447 | } |
---|
448 | |
---|
449 | /** |
---|
450 | * Gets the model list file that holds the list of models |
---|
451 | * in the ensemble library. |
---|
452 | * |
---|
453 | * @return the working directory. |
---|
454 | */ |
---|
455 | public String getModelListFile() { |
---|
456 | return m_modelListFile; |
---|
457 | } |
---|
458 | |
---|
459 | /** |
---|
460 | * Sets the model list file that holds the list of models |
---|
461 | * in the ensemble library. |
---|
462 | * |
---|
463 | * @param modelListFile the model list file to use |
---|
464 | */ |
---|
465 | public void setModelListFile(String modelListFile) { |
---|
466 | m_modelListFile = modelListFile; |
---|
467 | } |
---|
468 | |
---|
469 | /** |
---|
470 | * creates a LibraryModel from a set of arguments |
---|
471 | * |
---|
472 | * @param classifier the classifier to use |
---|
473 | * @return the generated library model |
---|
474 | */ |
---|
475 | public EnsembleLibraryModel createModel(Classifier classifier) { |
---|
476 | EnsembleSelectionLibraryModel model = new EnsembleSelectionLibraryModel(classifier); |
---|
477 | model.setDebug(m_Debug); |
---|
478 | |
---|
479 | return model; |
---|
480 | } |
---|
481 | |
---|
482 | /** |
---|
483 | * This method takes a String argument defining a classifier and |
---|
484 | * uses it to create a base Classifier. |
---|
485 | * |
---|
486 | * WARNING! This method is only called when trying to craete models |
---|
487 | * from flat files (.mlf). This method is highly untested and |
---|
488 | * foreseeably will cause problems when trying to nest arguments |
---|
489 | * within multiplte meta classifiers. To avoid any problems we |
---|
490 | * recommend using only XML serialization, via saving to |
---|
491 | * .model.xml and using only the createModel(Classifier) method |
---|
492 | * above. |
---|
493 | * |
---|
494 | * @param modelString the classifier definition |
---|
495 | * @return the generated library model |
---|
496 | */ |
---|
497 | public EnsembleLibraryModel createModel(String modelString) { |
---|
498 | |
---|
499 | String[] splitString = modelString.split("\\s+"); |
---|
500 | String className = splitString[0]; |
---|
501 | |
---|
502 | String argString = modelString.replaceAll(splitString[0], ""); |
---|
503 | String[] optionStrings = argString.split("\\s+"); |
---|
504 | |
---|
505 | EnsembleSelectionLibraryModel model = null; |
---|
506 | try { |
---|
507 | model = new EnsembleSelectionLibraryModel(AbstractClassifier.forName(className, optionStrings)); |
---|
508 | model.setDebug(m_Debug); |
---|
509 | |
---|
510 | } catch (Exception e) { |
---|
511 | e.printStackTrace(); |
---|
512 | } |
---|
513 | |
---|
514 | return model; |
---|
515 | } |
---|
516 | |
---|
517 | |
---|
518 | /** |
---|
519 | * This method takes an Instances object and returns a checksum of its |
---|
520 | * toString method - that is the checksum of the .arff file that would |
---|
521 | * be created if the Instances object were transformed into an arff file |
---|
522 | * in the file system. |
---|
523 | * |
---|
524 | * @param instances the data to get the checksum for |
---|
525 | * @return the checksum |
---|
526 | */ |
---|
527 | public static String getInstancesChecksum(Instances instances) { |
---|
528 | |
---|
529 | String checksumString = null; |
---|
530 | |
---|
531 | try { |
---|
532 | |
---|
533 | Adler32 checkSummer = new Adler32(); |
---|
534 | |
---|
535 | byte[] utf8 = instances.toString().getBytes("UTF8");; |
---|
536 | |
---|
537 | checkSummer.update(utf8); |
---|
538 | checksumString = Long.toHexString(checkSummer.getValue()); |
---|
539 | |
---|
540 | } catch (UnsupportedEncodingException e) { |
---|
541 | // TODO Auto-generated catch block |
---|
542 | e.printStackTrace(); |
---|
543 | } |
---|
544 | |
---|
545 | |
---|
546 | return checksumString; |
---|
547 | } |
---|
548 | |
---|
549 | /** |
---|
550 | * Returns the unique name for the set of instances supplied. This is |
---|
551 | * used to create a directory for all of the models corresponding to that |
---|
552 | * set of instances. This was intended as a way to keep Working Directories |
---|
553 | * "organized" |
---|
554 | * |
---|
555 | * @param instances the data to get the directory for |
---|
556 | * @return the directory |
---|
557 | */ |
---|
558 | public static String getDataDirectoryName(Instances instances) { |
---|
559 | |
---|
560 | String directory = null; |
---|
561 | |
---|
562 | |
---|
563 | directory = new String(instances.numInstances()+ |
---|
564 | "_instances_"+getInstancesChecksum(instances)); |
---|
565 | |
---|
566 | //System.out.println("generated directory name: "+directory); |
---|
567 | |
---|
568 | return directory; |
---|
569 | |
---|
570 | } |
---|
571 | |
---|
572 | /** |
---|
573 | * Adds an object to the list of those that wish to be informed when the |
---|
574 | * eotking directory changes. |
---|
575 | * |
---|
576 | * @param listener a new listener to add to the list |
---|
577 | */ |
---|
578 | public void addWorkingDirectoryListener(PropertyChangeListener listener) { |
---|
579 | |
---|
580 | if (m_workingDirectoryPropertySupport != null) { |
---|
581 | m_workingDirectoryPropertySupport.addPropertyChangeListener(listener); |
---|
582 | |
---|
583 | } |
---|
584 | } |
---|
585 | |
---|
586 | /** |
---|
587 | * Returns the revision string. |
---|
588 | * |
---|
589 | * @return the revision |
---|
590 | */ |
---|
591 | public String getRevision() { |
---|
592 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
593 | } |
---|
594 | } |
---|