1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ThresholdSelector.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.RandomizableSingleClassifierEnhancer; |
---|
26 | import weka.classifiers.evaluation.EvaluationUtils; |
---|
27 | import weka.classifiers.evaluation.ThresholdCurve; |
---|
28 | import weka.core.Attribute; |
---|
29 | import weka.core.AttributeStats; |
---|
30 | import weka.core.Capabilities; |
---|
31 | import weka.core.Drawable; |
---|
32 | import weka.core.FastVector; |
---|
33 | import weka.core.Instance; |
---|
34 | import weka.core.Instances; |
---|
35 | import weka.core.Option; |
---|
36 | import weka.core.OptionHandler; |
---|
37 | import weka.core.RevisionUtils; |
---|
38 | import weka.core.SelectedTag; |
---|
39 | import weka.core.Tag; |
---|
40 | import weka.core.Utils; |
---|
41 | import weka.core.Capabilities.Capability; |
---|
42 | |
---|
43 | import java.util.Enumeration; |
---|
44 | import java.util.Random; |
---|
45 | import java.util.Vector; |
---|
46 | |
---|
47 | /** |
---|
48 | <!-- globalinfo-start --> |
---|
49 | * A metaclassifier that selecting a mid-point threshold on the probability output by a Classifier. The midpoint threshold is set so that a given performance measure is optimized. Currently this is the F-measure. Performance is measured either on the training data, a hold-out set or using cross-validation. In addition, the probabilities returned by the base learner can have their range expanded so that the output probabilities will reside between 0 and 1 (this is useful if the scheme normally produces probabilities in a very narrow range). |
---|
50 | * <p/> |
---|
51 | <!-- globalinfo-end --> |
---|
52 | * |
---|
53 | <!-- options-start --> |
---|
54 | * Valid options are: <p/> |
---|
55 | * |
---|
56 | * <pre> -C <integer> |
---|
57 | * The class for which threshold is determined. Valid values are: |
---|
58 | * 1, 2 (for first and second classes, respectively), 3 (for whichever |
---|
59 | * class is least frequent), and 4 (for whichever class value is most |
---|
60 | * frequent), and 5 (for the first class named any of "yes","pos(itive)" |
---|
61 | * "1", or method 3 if no matches). (default 5).</pre> |
---|
62 | * |
---|
63 | * <pre> -X <number of folds> |
---|
64 | * Number of folds used for cross validation. If just a |
---|
65 | * hold-out set is used, this determines the size of the hold-out set |
---|
66 | * (default 3).</pre> |
---|
67 | * |
---|
68 | * <pre> -R <integer> |
---|
69 | * Sets whether confidence range correction is applied. This |
---|
70 | * can be used to ensure the confidences range from 0 to 1. |
---|
71 | * Use 0 for no range correction, 1 for correction based on |
---|
72 | * the min/max values seen during threshold selection |
---|
73 | * (default 0).</pre> |
---|
74 | * |
---|
75 | * <pre> -E <integer> |
---|
76 | * Sets the evaluation mode. Use 0 for |
---|
77 | * evaluation using cross-validation, |
---|
78 | * 1 for evaluation using hold-out set, |
---|
79 | * and 2 for evaluation on the |
---|
80 | * training data (default 1).</pre> |
---|
81 | * |
---|
82 | * <pre> -M [FMEASURE|ACCURACY|TRUE_POS|TRUE_NEG|TP_RATE|PRECISION|RECALL] |
---|
83 | * Measure used for evaluation (default is FMEASURE). |
---|
84 | * </pre> |
---|
85 | * |
---|
86 | * <pre> -manual <real> |
---|
87 | * Set a manual threshold to use. This option overrides |
---|
88 | * automatic selection and options pertaining to |
---|
89 | * automatic selection will be ignored. |
---|
90 | * (default -1, i.e. do not use a manual threshold).</pre> |
---|
91 | * |
---|
92 | * <pre> -S <num> |
---|
93 | * Random number seed. |
---|
94 | * (default 1)</pre> |
---|
95 | * |
---|
96 | * <pre> -D |
---|
97 | * If set, classifier is run in debug mode and |
---|
98 | * may output additional info to the console</pre> |
---|
99 | * |
---|
100 | * <pre> -W |
---|
101 | * Full name of base classifier. |
---|
102 | * (default: weka.classifiers.functions.Logistic)</pre> |
---|
103 | * |
---|
104 | * <pre> |
---|
105 | * Options specific to classifier weka.classifiers.functions.Logistic: |
---|
106 | * </pre> |
---|
107 | * |
---|
108 | * <pre> -D |
---|
109 | * Turn on debugging output.</pre> |
---|
110 | * |
---|
111 | * <pre> -R <ridge> |
---|
112 | * Set the ridge in the log-likelihood.</pre> |
---|
113 | * |
---|
114 | * <pre> -M <number> |
---|
115 | * Set the maximum number of iterations (default -1, until convergence).</pre> |
---|
116 | * |
---|
117 | <!-- options-end --> |
---|
118 | * |
---|
119 | * Options after -- are passed to the designated sub-classifier. <p> |
---|
120 | * |
---|
121 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
122 | * @version $Revision: 1.43 $ |
---|
123 | */ |
---|
124 | public class ThresholdSelector |
---|
125 | extends RandomizableSingleClassifierEnhancer |
---|
126 | implements OptionHandler, Drawable { |
---|
127 | |
---|
128 | /** for serialization */ |
---|
129 | static final long serialVersionUID = -1795038053239867444L; |
---|
130 | |
---|
131 | /** no range correction */ |
---|
132 | public static final int RANGE_NONE = 0; |
---|
133 | /** Correct based on min/max observed */ |
---|
134 | public static final int RANGE_BOUNDS = 1; |
---|
135 | /** Type of correction applied to threshold range */ |
---|
136 | public static final Tag [] TAGS_RANGE = { |
---|
137 | new Tag(RANGE_NONE, "No range correction"), |
---|
138 | new Tag(RANGE_BOUNDS, "Correct based on min/max observed") |
---|
139 | }; |
---|
140 | |
---|
141 | /** entire training set */ |
---|
142 | public static final int EVAL_TRAINING_SET = 2; |
---|
143 | /** single tuned fold */ |
---|
144 | public static final int EVAL_TUNED_SPLIT = 1; |
---|
145 | /** n-fold cross-validation */ |
---|
146 | public static final int EVAL_CROSS_VALIDATION = 0; |
---|
147 | /** The evaluation modes */ |
---|
148 | public static final Tag [] TAGS_EVAL = { |
---|
149 | new Tag(EVAL_TRAINING_SET, "Entire training set"), |
---|
150 | new Tag(EVAL_TUNED_SPLIT, "Single tuned fold"), |
---|
151 | new Tag(EVAL_CROSS_VALIDATION, "N-Fold cross validation") |
---|
152 | }; |
---|
153 | |
---|
154 | /** first class value */ |
---|
155 | public static final int OPTIMIZE_0 = 0; |
---|
156 | /** second class value */ |
---|
157 | public static final int OPTIMIZE_1 = 1; |
---|
158 | /** least frequent class value */ |
---|
159 | public static final int OPTIMIZE_LFREQ = 2; |
---|
160 | /** most frequent class value */ |
---|
161 | public static final int OPTIMIZE_MFREQ = 3; |
---|
162 | /** class value name, either 'yes' or 'pos(itive)' */ |
---|
163 | public static final int OPTIMIZE_POS_NAME = 4; |
---|
164 | /** How to determine which class value to optimize for */ |
---|
165 | public static final Tag [] TAGS_OPTIMIZE = { |
---|
166 | new Tag(OPTIMIZE_0, "First class value"), |
---|
167 | new Tag(OPTIMIZE_1, "Second class value"), |
---|
168 | new Tag(OPTIMIZE_LFREQ, "Least frequent class value"), |
---|
169 | new Tag(OPTIMIZE_MFREQ, "Most frequent class value"), |
---|
170 | new Tag(OPTIMIZE_POS_NAME, "Class value named: \"yes\", \"pos(itive)\",\"1\"") |
---|
171 | }; |
---|
172 | |
---|
173 | /** F-measure */ |
---|
174 | public static final int FMEASURE = 1; |
---|
175 | /** accuracy */ |
---|
176 | public static final int ACCURACY = 2; |
---|
177 | /** true-positive */ |
---|
178 | public static final int TRUE_POS = 3; |
---|
179 | /** true-negative */ |
---|
180 | public static final int TRUE_NEG = 4; |
---|
181 | /** true-positive rate */ |
---|
182 | public static final int TP_RATE = 5; |
---|
183 | /** precision */ |
---|
184 | public static final int PRECISION = 6; |
---|
185 | /** recall */ |
---|
186 | public static final int RECALL = 7; |
---|
187 | /** the measure to use */ |
---|
188 | public static final Tag[] TAGS_MEASURE = { |
---|
189 | new Tag(FMEASURE, "FMEASURE"), |
---|
190 | new Tag(ACCURACY, "ACCURACY"), |
---|
191 | new Tag(TRUE_POS, "TRUE_POS"), |
---|
192 | new Tag(TRUE_NEG, "TRUE_NEG"), |
---|
193 | new Tag(TP_RATE, "TP_RATE"), |
---|
194 | new Tag(PRECISION, "PRECISION"), |
---|
195 | new Tag(RECALL, "RECALL") |
---|
196 | }; |
---|
197 | |
---|
198 | /** The upper threshold used as the basis of correction */ |
---|
199 | protected double m_HighThreshold = 1; |
---|
200 | |
---|
201 | /** The lower threshold used as the basis of correction */ |
---|
202 | protected double m_LowThreshold = 0; |
---|
203 | |
---|
204 | /** The threshold that lead to the best performance */ |
---|
205 | protected double m_BestThreshold = -Double.MAX_VALUE; |
---|
206 | |
---|
207 | /** The best value that has been observed */ |
---|
208 | protected double m_BestValue = - Double.MAX_VALUE; |
---|
209 | |
---|
210 | /** The number of folds used in cross-validation */ |
---|
211 | protected int m_NumXValFolds = 3; |
---|
212 | |
---|
213 | /** Designated class value, determined during building */ |
---|
214 | protected int m_DesignatedClass = 0; |
---|
215 | |
---|
216 | /** Method to determine which class to optimize for */ |
---|
217 | protected int m_ClassMode = OPTIMIZE_POS_NAME; |
---|
218 | |
---|
219 | /** The evaluation mode */ |
---|
220 | protected int m_EvalMode = EVAL_TUNED_SPLIT; |
---|
221 | |
---|
222 | /** The range correction mode */ |
---|
223 | protected int m_RangeMode = RANGE_NONE; |
---|
224 | |
---|
225 | /** evaluation measure used for determining threshold **/ |
---|
226 | int m_nMeasure = FMEASURE; |
---|
227 | |
---|
228 | /** True if a manually set threshold is being used */ |
---|
229 | protected boolean m_manualThreshold = false; |
---|
230 | /** -1 = not used by default */ |
---|
231 | protected double m_manualThresholdValue = -1; |
---|
232 | |
---|
233 | /** The minimum value for the criterion. If threshold adjustment |
---|
234 | yields less than that, the default threshold of 0.5 is used. */ |
---|
235 | protected static final double MIN_VALUE = 0.05; |
---|
236 | |
---|
237 | /** |
---|
238 | * Constructor. |
---|
239 | */ |
---|
240 | public ThresholdSelector() { |
---|
241 | |
---|
242 | m_Classifier = new weka.classifiers.functions.Logistic(); |
---|
243 | } |
---|
244 | |
---|
245 | /** |
---|
246 | * String describing default classifier. |
---|
247 | * |
---|
248 | * @return the default classifier classname |
---|
249 | */ |
---|
250 | protected String defaultClassifierString() { |
---|
251 | |
---|
252 | return "weka.classifiers.functions.Logistic"; |
---|
253 | } |
---|
254 | |
---|
255 | /** |
---|
256 | * Collects the classifier predictions using the specified evaluation method. |
---|
257 | * |
---|
258 | * @param instances the set of <code>Instances</code> to generate |
---|
259 | * predictions for. |
---|
260 | * @param mode the evaluation mode. |
---|
261 | * @param numFolds the number of folds to use if not evaluating on the |
---|
262 | * full training set. |
---|
263 | * @return a <code>FastVector</code> containing the predictions. |
---|
264 | * @throws Exception if an error occurs generating the predictions. |
---|
265 | */ |
---|
266 | protected FastVector getPredictions(Instances instances, int mode, int numFolds) |
---|
267 | throws Exception { |
---|
268 | |
---|
269 | EvaluationUtils eu = new EvaluationUtils(); |
---|
270 | eu.setSeed(m_Seed); |
---|
271 | |
---|
272 | switch (mode) { |
---|
273 | case EVAL_TUNED_SPLIT: |
---|
274 | Instances trainData = null, evalData = null; |
---|
275 | Instances data = new Instances(instances); |
---|
276 | Random random = new Random(m_Seed); |
---|
277 | data.randomize(random); |
---|
278 | data.stratify(numFolds); |
---|
279 | |
---|
280 | // Make sure that both subsets contain at least one positive instance |
---|
281 | for (int subsetIndex = 0; subsetIndex < numFolds; subsetIndex++) { |
---|
282 | trainData = data.trainCV(numFolds, subsetIndex, random); |
---|
283 | evalData = data.testCV(numFolds, subsetIndex); |
---|
284 | if (checkForInstance(trainData) && checkForInstance(evalData)) { |
---|
285 | break; |
---|
286 | } |
---|
287 | } |
---|
288 | return eu.getTrainTestPredictions(m_Classifier, trainData, evalData); |
---|
289 | case EVAL_TRAINING_SET: |
---|
290 | return eu.getTrainTestPredictions(m_Classifier, instances, instances); |
---|
291 | case EVAL_CROSS_VALIDATION: |
---|
292 | return eu.getCVPredictions(m_Classifier, instances, numFolds); |
---|
293 | default: |
---|
294 | throw new RuntimeException("Unrecognized evaluation mode"); |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | /** |
---|
299 | * Tooltip for this property. |
---|
300 | * |
---|
301 | * @return tip text for this property suitable for |
---|
302 | * displaying in the explorer/experimenter gui |
---|
303 | */ |
---|
304 | public String measureTipText() { |
---|
305 | return "Sets the measure for determining the threshold."; |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * set measure used for determining threshold |
---|
310 | * |
---|
311 | * @param newMeasure Tag representing measure to be used |
---|
312 | */ |
---|
313 | public void setMeasure(SelectedTag newMeasure) { |
---|
314 | if (newMeasure.getTags() == TAGS_MEASURE) { |
---|
315 | m_nMeasure = newMeasure.getSelectedTag().getID(); |
---|
316 | } |
---|
317 | } |
---|
318 | |
---|
319 | /** |
---|
320 | * get measure used for determining threshold |
---|
321 | * |
---|
322 | * @return Tag representing measure used |
---|
323 | */ |
---|
324 | public SelectedTag getMeasure() { |
---|
325 | return new SelectedTag(m_nMeasure, TAGS_MEASURE); |
---|
326 | } |
---|
327 | |
---|
328 | |
---|
329 | /** |
---|
330 | * Finds the best threshold, this implementation searches for the |
---|
331 | * highest FMeasure. If no FMeasure higher than MIN_VALUE is found, |
---|
332 | * the default threshold of 0.5 is used. |
---|
333 | * |
---|
334 | * @param predictions a <code>FastVector</code> containing the predictions. |
---|
335 | */ |
---|
336 | protected void findThreshold(FastVector predictions) { |
---|
337 | |
---|
338 | Instances curve = (new ThresholdCurve()).getCurve(predictions, m_DesignatedClass); |
---|
339 | |
---|
340 | double low = 1.0; |
---|
341 | double high = 0.0; |
---|
342 | |
---|
343 | //System.err.println(curve); |
---|
344 | if (curve.numInstances() > 0) { |
---|
345 | Instance maxInst = curve.instance(0); |
---|
346 | double maxValue = 0; |
---|
347 | int index1 = 0; |
---|
348 | int index2 = 0; |
---|
349 | switch (m_nMeasure) { |
---|
350 | case FMEASURE: |
---|
351 | index1 = curve.attribute(ThresholdCurve.FMEASURE_NAME).index(); |
---|
352 | maxValue = maxInst.value(index1); |
---|
353 | break; |
---|
354 | case TRUE_POS: |
---|
355 | index1 = curve.attribute(ThresholdCurve.TRUE_POS_NAME).index(); |
---|
356 | maxValue = maxInst.value(index1); |
---|
357 | break; |
---|
358 | case TRUE_NEG: |
---|
359 | index1 = curve.attribute(ThresholdCurve.TRUE_NEG_NAME).index(); |
---|
360 | maxValue = maxInst.value(index1); |
---|
361 | break; |
---|
362 | case TP_RATE: |
---|
363 | index1 = curve.attribute(ThresholdCurve.TP_RATE_NAME).index(); |
---|
364 | maxValue = maxInst.value(index1); |
---|
365 | break; |
---|
366 | case PRECISION: |
---|
367 | index1 = curve.attribute(ThresholdCurve.PRECISION_NAME).index(); |
---|
368 | maxValue = maxInst.value(index1); |
---|
369 | break; |
---|
370 | case RECALL: |
---|
371 | index1 = curve.attribute(ThresholdCurve.RECALL_NAME).index(); |
---|
372 | maxValue = maxInst.value(index1); |
---|
373 | break; |
---|
374 | case ACCURACY: |
---|
375 | index1 = curve.attribute(ThresholdCurve.TRUE_POS_NAME).index(); |
---|
376 | index2 = curve.attribute(ThresholdCurve.TRUE_NEG_NAME).index(); |
---|
377 | maxValue = maxInst.value(index1) + maxInst.value(index2); |
---|
378 | break; |
---|
379 | } |
---|
380 | int indexThreshold = curve.attribute(ThresholdCurve.THRESHOLD_NAME).index(); |
---|
381 | for (int i = 1; i < curve.numInstances(); i++) { |
---|
382 | Instance current = curve.instance(i); |
---|
383 | double currentValue = 0; |
---|
384 | if (m_nMeasure == ACCURACY) { |
---|
385 | currentValue= current.value(index1) + current.value(index2); |
---|
386 | } else { |
---|
387 | currentValue= current.value(index1); |
---|
388 | } |
---|
389 | |
---|
390 | if (currentValue> maxValue) { |
---|
391 | maxInst = current; |
---|
392 | maxValue = currentValue; |
---|
393 | } |
---|
394 | if (m_RangeMode == RANGE_BOUNDS) { |
---|
395 | double thresh = current.value(indexThreshold); |
---|
396 | if (thresh < low) { |
---|
397 | low = thresh; |
---|
398 | } |
---|
399 | if (thresh > high) { |
---|
400 | high = thresh; |
---|
401 | } |
---|
402 | } |
---|
403 | } |
---|
404 | if (maxValue > MIN_VALUE) { |
---|
405 | m_BestThreshold = maxInst.value(indexThreshold); |
---|
406 | m_BestValue = maxValue; |
---|
407 | //System.err.println("maxFM: " + maxFM); |
---|
408 | } |
---|
409 | if (m_RangeMode == RANGE_BOUNDS) { |
---|
410 | m_LowThreshold = low; |
---|
411 | m_HighThreshold = high; |
---|
412 | //System.err.println("Threshold range: " + low + " - " + high); |
---|
413 | } |
---|
414 | } |
---|
415 | |
---|
416 | } |
---|
417 | |
---|
418 | /** |
---|
419 | * Returns an enumeration describing the available options. |
---|
420 | * |
---|
421 | * @return an enumeration of all the available options. |
---|
422 | */ |
---|
423 | public Enumeration listOptions() { |
---|
424 | |
---|
425 | Vector newVector = new Vector(5); |
---|
426 | |
---|
427 | newVector.addElement(new Option( |
---|
428 | "\tThe class for which threshold is determined. Valid values are:\n" + |
---|
429 | "\t1, 2 (for first and second classes, respectively), 3 (for whichever\n" + |
---|
430 | "\tclass is least frequent), and 4 (for whichever class value is most\n" + |
---|
431 | "\tfrequent), and 5 (for the first class named any of \"yes\",\"pos(itive)\"\n" + |
---|
432 | "\t\"1\", or method 3 if no matches). (default 5).", |
---|
433 | "C", 1, "-C <integer>")); |
---|
434 | |
---|
435 | newVector.addElement(new Option( |
---|
436 | "\tNumber of folds used for cross validation. If just a\n" + |
---|
437 | "\thold-out set is used, this determines the size of the hold-out set\n" + |
---|
438 | "\t(default 3).", |
---|
439 | "X", 1, "-X <number of folds>")); |
---|
440 | |
---|
441 | newVector.addElement(new Option( |
---|
442 | "\tSets whether confidence range correction is applied. This\n" + |
---|
443 | "\tcan be used to ensure the confidences range from 0 to 1.\n" + |
---|
444 | "\tUse 0 for no range correction, 1 for correction based on\n" + |
---|
445 | "\tthe min/max values seen during threshold selection\n"+ |
---|
446 | "\t(default 0).", |
---|
447 | "R", 1, "-R <integer>")); |
---|
448 | |
---|
449 | newVector.addElement(new Option( |
---|
450 | "\tSets the evaluation mode. Use 0 for\n" + |
---|
451 | "\tevaluation using cross-validation,\n" + |
---|
452 | "\t1 for evaluation using hold-out set,\n" + |
---|
453 | "\tand 2 for evaluation on the\n" + |
---|
454 | "\ttraining data (default 1).", |
---|
455 | "E", 1, "-E <integer>")); |
---|
456 | |
---|
457 | newVector.addElement(new Option( |
---|
458 | "\tMeasure used for evaluation (default is FMEASURE).\n", |
---|
459 | "M", 1, "-M [FMEASURE|ACCURACY|TRUE_POS|TRUE_NEG|TP_RATE|PRECISION|RECALL]")); |
---|
460 | |
---|
461 | newVector.addElement(new Option( |
---|
462 | "\tSet a manual threshold to use. This option overrides\n" |
---|
463 | + "\tautomatic selection and options pertaining to\n" |
---|
464 | + "\tautomatic selection will be ignored.\n" |
---|
465 | + "\t(default -1, i.e. do not use a manual threshold).", |
---|
466 | "manual", 1, "-manual <real>")); |
---|
467 | |
---|
468 | Enumeration enu = super.listOptions(); |
---|
469 | while (enu.hasMoreElements()) { |
---|
470 | newVector.addElement(enu.nextElement()); |
---|
471 | } |
---|
472 | return newVector.elements(); |
---|
473 | } |
---|
474 | |
---|
475 | /** |
---|
476 | * Parses a given list of options. <p/> |
---|
477 | * |
---|
478 | <!-- options-start --> |
---|
479 | * Valid options are: <p/> |
---|
480 | * |
---|
481 | * <pre> -C <integer> |
---|
482 | * The class for which threshold is determined. Valid values are: |
---|
483 | * 1, 2 (for first and second classes, respectively), 3 (for whichever |
---|
484 | * class is least frequent), and 4 (for whichever class value is most |
---|
485 | * frequent), and 5 (for the first class named any of "yes","pos(itive)" |
---|
486 | * "1", or method 3 if no matches). (default 5).</pre> |
---|
487 | * |
---|
488 | * <pre> -X <number of folds> |
---|
489 | * Number of folds used for cross validation. If just a |
---|
490 | * hold-out set is used, this determines the size of the hold-out set |
---|
491 | * (default 3).</pre> |
---|
492 | * |
---|
493 | * <pre> -R <integer> |
---|
494 | * Sets whether confidence range correction is applied. This |
---|
495 | * can be used to ensure the confidences range from 0 to 1. |
---|
496 | * Use 0 for no range correction, 1 for correction based on |
---|
497 | * the min/max values seen during threshold selection |
---|
498 | * (default 0).</pre> |
---|
499 | * |
---|
500 | * <pre> -E <integer> |
---|
501 | * Sets the evaluation mode. Use 0 for |
---|
502 | * evaluation using cross-validation, |
---|
503 | * 1 for evaluation using hold-out set, |
---|
504 | * and 2 for evaluation on the |
---|
505 | * training data (default 1).</pre> |
---|
506 | * |
---|
507 | * <pre> -M [FMEASURE|ACCURACY|TRUE_POS|TRUE_NEG|TP_RATE|PRECISION|RECALL] |
---|
508 | * Measure used for evaluation (default is FMEASURE). |
---|
509 | * </pre> |
---|
510 | * |
---|
511 | * <pre> -manual <real> |
---|
512 | * Set a manual threshold to use. This option overrides |
---|
513 | * automatic selection and options pertaining to |
---|
514 | * automatic selection will be ignored. |
---|
515 | * (default -1, i.e. do not use a manual threshold).</pre> |
---|
516 | * |
---|
517 | * <pre> -S <num> |
---|
518 | * Random number seed. |
---|
519 | * (default 1)</pre> |
---|
520 | * |
---|
521 | * <pre> -D |
---|
522 | * If set, classifier is run in debug mode and |
---|
523 | * may output additional info to the console</pre> |
---|
524 | * |
---|
525 | * <pre> -W |
---|
526 | * Full name of base classifier. |
---|
527 | * (default: weka.classifiers.functions.Logistic)</pre> |
---|
528 | * |
---|
529 | * <pre> |
---|
530 | * Options specific to classifier weka.classifiers.functions.Logistic: |
---|
531 | * </pre> |
---|
532 | * |
---|
533 | * <pre> -D |
---|
534 | * Turn on debugging output.</pre> |
---|
535 | * |
---|
536 | * <pre> -R <ridge> |
---|
537 | * Set the ridge in the log-likelihood.</pre> |
---|
538 | * |
---|
539 | * <pre> -M <number> |
---|
540 | * Set the maximum number of iterations (default -1, until convergence).</pre> |
---|
541 | * |
---|
542 | <!-- options-end --> |
---|
543 | * |
---|
544 | * Options after -- are passed to the designated sub-classifier. <p> |
---|
545 | * |
---|
546 | * @param options the list of options as an array of strings |
---|
547 | * @throws Exception if an option is not supported |
---|
548 | */ |
---|
549 | public void setOptions(String[] options) throws Exception { |
---|
550 | |
---|
551 | String manualS = Utils.getOption("manual", options); |
---|
552 | if (manualS.length() > 0) { |
---|
553 | double val = Double.parseDouble(manualS); |
---|
554 | if (val >= 0.0) { |
---|
555 | setManualThresholdValue(val); |
---|
556 | } |
---|
557 | } |
---|
558 | |
---|
559 | String classString = Utils.getOption('C', options); |
---|
560 | if (classString.length() != 0) { |
---|
561 | setDesignatedClass(new SelectedTag(Integer.parseInt(classString) - 1, |
---|
562 | TAGS_OPTIMIZE)); |
---|
563 | } else { |
---|
564 | setDesignatedClass(new SelectedTag(OPTIMIZE_POS_NAME, TAGS_OPTIMIZE)); |
---|
565 | } |
---|
566 | |
---|
567 | String modeString = Utils.getOption('E', options); |
---|
568 | if (modeString.length() != 0) { |
---|
569 | setEvaluationMode(new SelectedTag(Integer.parseInt(modeString), |
---|
570 | TAGS_EVAL)); |
---|
571 | } else { |
---|
572 | setEvaluationMode(new SelectedTag(EVAL_TUNED_SPLIT, TAGS_EVAL)); |
---|
573 | } |
---|
574 | |
---|
575 | String rangeString = Utils.getOption('R', options); |
---|
576 | if (rangeString.length() != 0) { |
---|
577 | setRangeCorrection(new SelectedTag(Integer.parseInt(rangeString), |
---|
578 | TAGS_RANGE)); |
---|
579 | } else { |
---|
580 | setRangeCorrection(new SelectedTag(RANGE_NONE, TAGS_RANGE)); |
---|
581 | } |
---|
582 | |
---|
583 | String measureString = Utils.getOption('M', options); |
---|
584 | if (measureString.length() != 0) { |
---|
585 | setMeasure(new SelectedTag(measureString, TAGS_MEASURE)); |
---|
586 | } else { |
---|
587 | setMeasure(new SelectedTag(FMEASURE, TAGS_MEASURE)); |
---|
588 | } |
---|
589 | |
---|
590 | String foldsString = Utils.getOption('X', options); |
---|
591 | if (foldsString.length() != 0) { |
---|
592 | setNumXValFolds(Integer.parseInt(foldsString)); |
---|
593 | } else { |
---|
594 | setNumXValFolds(3); |
---|
595 | } |
---|
596 | |
---|
597 | super.setOptions(options); |
---|
598 | } |
---|
599 | |
---|
600 | /** |
---|
601 | * Gets the current settings of the Classifier. |
---|
602 | * |
---|
603 | * @return an array of strings suitable for passing to setOptions |
---|
604 | */ |
---|
605 | public String [] getOptions() { |
---|
606 | |
---|
607 | String [] superOptions = super.getOptions(); |
---|
608 | String [] options = new String [superOptions.length + 12]; |
---|
609 | |
---|
610 | int current = 0; |
---|
611 | |
---|
612 | if (m_manualThreshold) { |
---|
613 | options[current++] = "-manual"; options[current++] = "" + getManualThresholdValue(); |
---|
614 | } |
---|
615 | options[current++] = "-C"; options[current++] = "" + (m_ClassMode + 1); |
---|
616 | options[current++] = "-X"; options[current++] = "" + getNumXValFolds(); |
---|
617 | options[current++] = "-E"; options[current++] = "" + m_EvalMode; |
---|
618 | options[current++] = "-R"; options[current++] = "" + m_RangeMode; |
---|
619 | options[current++] = "-M"; options[current++] = "" + getMeasure().getSelectedTag().getReadable(); |
---|
620 | |
---|
621 | System.arraycopy(superOptions, 0, options, current, |
---|
622 | superOptions.length); |
---|
623 | |
---|
624 | current += superOptions.length; |
---|
625 | while (current < options.length) { |
---|
626 | options[current++] = ""; |
---|
627 | } |
---|
628 | return options; |
---|
629 | } |
---|
630 | |
---|
631 | /** |
---|
632 | * Returns default capabilities of the classifier. |
---|
633 | * |
---|
634 | * @return the capabilities of this classifier |
---|
635 | */ |
---|
636 | public Capabilities getCapabilities() { |
---|
637 | Capabilities result = super.getCapabilities(); |
---|
638 | |
---|
639 | // class |
---|
640 | result.disableAllClasses(); |
---|
641 | result.disableAllClassDependencies(); |
---|
642 | result.enable(Capability.BINARY_CLASS); |
---|
643 | |
---|
644 | return result; |
---|
645 | } |
---|
646 | |
---|
647 | /** |
---|
648 | * Generates the classifier. |
---|
649 | * |
---|
650 | * @param instances set of instances serving as training data |
---|
651 | * @throws Exception if the classifier has not been generated successfully |
---|
652 | */ |
---|
653 | public void buildClassifier(Instances instances) |
---|
654 | throws Exception { |
---|
655 | |
---|
656 | // can classifier handle the data? |
---|
657 | getCapabilities().testWithFail(instances); |
---|
658 | |
---|
659 | // remove instances with missing class |
---|
660 | instances = new Instances(instances); |
---|
661 | instances.deleteWithMissingClass(); |
---|
662 | |
---|
663 | AttributeStats stats = instances.attributeStats(instances.classIndex()); |
---|
664 | if (m_manualThreshold) { |
---|
665 | m_BestThreshold = m_manualThresholdValue; |
---|
666 | } else { |
---|
667 | m_BestThreshold = 0.5; |
---|
668 | } |
---|
669 | m_BestValue = MIN_VALUE; |
---|
670 | m_HighThreshold = 1; |
---|
671 | m_LowThreshold = 0; |
---|
672 | |
---|
673 | // If data contains only one instance of positive data |
---|
674 | // optimize on training data |
---|
675 | if (stats.distinctCount != 2) { |
---|
676 | System.err.println("Couldn't find examples of both classes. No adjustment."); |
---|
677 | m_Classifier.buildClassifier(instances); |
---|
678 | } else { |
---|
679 | |
---|
680 | // Determine which class value to look for |
---|
681 | switch (m_ClassMode) { |
---|
682 | case OPTIMIZE_0: |
---|
683 | m_DesignatedClass = 0; |
---|
684 | break; |
---|
685 | case OPTIMIZE_1: |
---|
686 | m_DesignatedClass = 1; |
---|
687 | break; |
---|
688 | case OPTIMIZE_POS_NAME: |
---|
689 | Attribute cAtt = instances.classAttribute(); |
---|
690 | boolean found = false; |
---|
691 | for (int i = 0; i < cAtt.numValues() && !found; i++) { |
---|
692 | String name = cAtt.value(i).toLowerCase(); |
---|
693 | if (name.startsWith("yes") || name.equals("1") || |
---|
694 | name.startsWith("pos")) { |
---|
695 | found = true; |
---|
696 | m_DesignatedClass = i; |
---|
697 | } |
---|
698 | } |
---|
699 | if (found) { |
---|
700 | break; |
---|
701 | } |
---|
702 | // No named class found, so fall through to default of least frequent |
---|
703 | case OPTIMIZE_LFREQ: |
---|
704 | m_DesignatedClass = (stats.nominalCounts[0] > stats.nominalCounts[1]) ? 1 : 0; |
---|
705 | break; |
---|
706 | case OPTIMIZE_MFREQ: |
---|
707 | m_DesignatedClass = (stats.nominalCounts[0] > stats.nominalCounts[1]) ? 0 : 1; |
---|
708 | break; |
---|
709 | default: |
---|
710 | throw new Exception("Unrecognized class value selection mode"); |
---|
711 | } |
---|
712 | |
---|
713 | /* |
---|
714 | System.err.println("ThresholdSelector: Using mode=" |
---|
715 | + TAGS_OPTIMIZE[m_ClassMode].getReadable()); |
---|
716 | System.err.println("ThresholdSelector: Optimizing using class " |
---|
717 | + m_DesignatedClass + "/" |
---|
718 | + instances.classAttribute().value(m_DesignatedClass)); |
---|
719 | */ |
---|
720 | |
---|
721 | if (m_manualThreshold) { |
---|
722 | m_Classifier.buildClassifier(instances); |
---|
723 | return; |
---|
724 | } |
---|
725 | |
---|
726 | if (stats.nominalCounts[m_DesignatedClass] == 1) { |
---|
727 | System.err.println("Only 1 positive found: optimizing on training data"); |
---|
728 | findThreshold(getPredictions(instances, EVAL_TRAINING_SET, 0)); |
---|
729 | } else { |
---|
730 | int numFolds = Math.min(m_NumXValFolds, stats.nominalCounts[m_DesignatedClass]); |
---|
731 | //System.err.println("Number of folds for threshold selector: " + numFolds); |
---|
732 | findThreshold(getPredictions(instances, m_EvalMode, numFolds)); |
---|
733 | if (m_EvalMode != EVAL_TRAINING_SET) { |
---|
734 | m_Classifier.buildClassifier(instances); |
---|
735 | } |
---|
736 | } |
---|
737 | } |
---|
738 | } |
---|
739 | |
---|
740 | /** |
---|
741 | * Checks whether instance of designated class is in subset. |
---|
742 | * |
---|
743 | * @param data the data to check for instance |
---|
744 | * @return true if the instance is in the subset |
---|
745 | * @throws Exception if checking fails |
---|
746 | */ |
---|
747 | private boolean checkForInstance(Instances data) throws Exception { |
---|
748 | |
---|
749 | for (int i = 0; i < data.numInstances(); i++) { |
---|
750 | if (((int)data.instance(i).classValue()) == m_DesignatedClass) { |
---|
751 | return true; |
---|
752 | } |
---|
753 | } |
---|
754 | return false; |
---|
755 | } |
---|
756 | |
---|
757 | |
---|
758 | /** |
---|
759 | * Calculates the class membership probabilities for the given test instance. |
---|
760 | * |
---|
761 | * @param instance the instance to be classified |
---|
762 | * @return predicted class probability distribution |
---|
763 | * @throws Exception if instance could not be classified |
---|
764 | * successfully |
---|
765 | */ |
---|
766 | public double [] distributionForInstance(Instance instance) |
---|
767 | throws Exception { |
---|
768 | |
---|
769 | double [] pred = m_Classifier.distributionForInstance(instance); |
---|
770 | double prob = pred[m_DesignatedClass]; |
---|
771 | |
---|
772 | // Warp probability |
---|
773 | if (prob > m_BestThreshold) { |
---|
774 | prob = 0.5 + (prob - m_BestThreshold) / |
---|
775 | ((m_HighThreshold - m_BestThreshold) * 2); |
---|
776 | } else { |
---|
777 | prob = (prob - m_LowThreshold) / |
---|
778 | ((m_BestThreshold - m_LowThreshold) * 2); |
---|
779 | } |
---|
780 | if (prob < 0) { |
---|
781 | prob = 0.0; |
---|
782 | } else if (prob > 1) { |
---|
783 | prob = 1.0; |
---|
784 | } |
---|
785 | |
---|
786 | // Alter the distribution |
---|
787 | pred[m_DesignatedClass] = prob; |
---|
788 | if (pred.length == 2) { // Handle case when there's only one class |
---|
789 | pred[(m_DesignatedClass + 1) % 2] = 1.0 - prob; |
---|
790 | } |
---|
791 | return pred; |
---|
792 | } |
---|
793 | |
---|
794 | /** |
---|
795 | * @return a description of the classifier suitable for |
---|
796 | * displaying in the explorer/experimenter gui |
---|
797 | */ |
---|
798 | public String globalInfo() { |
---|
799 | |
---|
800 | return "A metaclassifier that selecting a mid-point threshold on the " |
---|
801 | + "probability output by a Classifier. The midpoint " |
---|
802 | + "threshold is set so that a given performance measure is optimized. " |
---|
803 | + "Currently this is the F-measure. Performance is measured either on " |
---|
804 | + "the training data, a hold-out set or using cross-validation. In " |
---|
805 | + "addition, the probabilities returned by the base learner can " |
---|
806 | + "have their range expanded so that the output probabilities will " |
---|
807 | + "reside between 0 and 1 (this is useful if the scheme normally " |
---|
808 | + "produces probabilities in a very narrow range)."; |
---|
809 | } |
---|
810 | |
---|
811 | /** |
---|
812 | * @return tip text for this property suitable for |
---|
813 | * displaying in the explorer/experimenter gui |
---|
814 | */ |
---|
815 | public String designatedClassTipText() { |
---|
816 | |
---|
817 | return "Sets the class value for which the optimization is performed. " |
---|
818 | + "The options are: pick the first class value; pick the second " |
---|
819 | + "class value; pick whichever class is least frequent; pick whichever " |
---|
820 | + "class value is most frequent; pick the first class named any of " |
---|
821 | + "\"yes\",\"pos(itive)\", \"1\", or the least frequent if no matches)."; |
---|
822 | } |
---|
823 | |
---|
824 | /** |
---|
825 | * Gets the method to determine which class value to optimize. Will |
---|
826 | * be one of OPTIMIZE_0, OPTIMIZE_1, OPTIMIZE_LFREQ, OPTIMIZE_MFREQ, |
---|
827 | * OPTIMIZE_POS_NAME. |
---|
828 | * |
---|
829 | * @return the class selection mode. |
---|
830 | */ |
---|
831 | public SelectedTag getDesignatedClass() { |
---|
832 | |
---|
833 | return new SelectedTag(m_ClassMode, TAGS_OPTIMIZE); |
---|
834 | } |
---|
835 | |
---|
836 | /** |
---|
837 | * Sets the method to determine which class value to optimize. Will |
---|
838 | * be one of OPTIMIZE_0, OPTIMIZE_1, OPTIMIZE_LFREQ, OPTIMIZE_MFREQ, |
---|
839 | * OPTIMIZE_POS_NAME. |
---|
840 | * |
---|
841 | * @param newMethod the new class selection mode. |
---|
842 | */ |
---|
843 | public void setDesignatedClass(SelectedTag newMethod) { |
---|
844 | |
---|
845 | if (newMethod.getTags() == TAGS_OPTIMIZE) { |
---|
846 | m_ClassMode = newMethod.getSelectedTag().getID(); |
---|
847 | } |
---|
848 | } |
---|
849 | |
---|
850 | /** |
---|
851 | * @return tip text for this property suitable for |
---|
852 | * displaying in the explorer/experimenter gui |
---|
853 | */ |
---|
854 | public String evaluationModeTipText() { |
---|
855 | |
---|
856 | return "Sets the method used to determine the threshold/performance " |
---|
857 | + "curve. The options are: perform optimization based on the entire " |
---|
858 | + "training set (may result in overfitting); perform an n-fold " |
---|
859 | + "cross-validation (may be time consuming); perform one fold of " |
---|
860 | + "an n-fold cross-validation (faster but likely less accurate)."; |
---|
861 | } |
---|
862 | |
---|
863 | /** |
---|
864 | * Sets the evaluation mode used. Will be one of |
---|
865 | * EVAL_TRAINING, EVAL_TUNED_SPLIT, or EVAL_CROSS_VALIDATION |
---|
866 | * |
---|
867 | * @param newMethod the new evaluation mode. |
---|
868 | */ |
---|
869 | public void setEvaluationMode(SelectedTag newMethod) { |
---|
870 | |
---|
871 | if (newMethod.getTags() == TAGS_EVAL) { |
---|
872 | m_EvalMode = newMethod.getSelectedTag().getID(); |
---|
873 | } |
---|
874 | } |
---|
875 | |
---|
876 | /** |
---|
877 | * Gets the evaluation mode used. Will be one of |
---|
878 | * EVAL_TRAINING, EVAL_TUNED_SPLIT, or EVAL_CROSS_VALIDATION |
---|
879 | * |
---|
880 | * @return the evaluation mode. |
---|
881 | */ |
---|
882 | public SelectedTag getEvaluationMode() { |
---|
883 | |
---|
884 | return new SelectedTag(m_EvalMode, TAGS_EVAL); |
---|
885 | } |
---|
886 | |
---|
887 | /** |
---|
888 | * @return tip text for this property suitable for |
---|
889 | * displaying in the explorer/experimenter gui |
---|
890 | */ |
---|
891 | public String rangeCorrectionTipText() { |
---|
892 | |
---|
893 | return "Sets the type of prediction range correction performed. " |
---|
894 | + "The options are: do not do any range correction; " |
---|
895 | + "expand predicted probabilities so that the minimum probability " |
---|
896 | + "observed during the optimization maps to 0, and the maximum " |
---|
897 | + "maps to 1 (values outside this range are clipped to 0 and 1)."; |
---|
898 | } |
---|
899 | |
---|
900 | /** |
---|
901 | * Sets the confidence range correction mode used. Will be one of |
---|
902 | * RANGE_NONE, or RANGE_BOUNDS |
---|
903 | * |
---|
904 | * @param newMethod the new correciton mode. |
---|
905 | */ |
---|
906 | public void setRangeCorrection(SelectedTag newMethod) { |
---|
907 | |
---|
908 | if (newMethod.getTags() == TAGS_RANGE) { |
---|
909 | m_RangeMode = newMethod.getSelectedTag().getID(); |
---|
910 | } |
---|
911 | } |
---|
912 | |
---|
913 | /** |
---|
914 | * Gets the confidence range correction mode used. Will be one of |
---|
915 | * RANGE_NONE, or RANGE_BOUNDS |
---|
916 | * |
---|
917 | * @return the confidence correction mode. |
---|
918 | */ |
---|
919 | public SelectedTag getRangeCorrection() { |
---|
920 | |
---|
921 | return new SelectedTag(m_RangeMode, TAGS_RANGE); |
---|
922 | } |
---|
923 | |
---|
924 | /** |
---|
925 | * @return tip text for this property suitable for |
---|
926 | * displaying in the explorer/experimenter gui |
---|
927 | */ |
---|
928 | public String numXValFoldsTipText() { |
---|
929 | |
---|
930 | return "Sets the number of folds used during full cross-validation " |
---|
931 | + "and tuned fold evaluation. This number will be automatically " |
---|
932 | + "reduced if there are insufficient positive examples."; |
---|
933 | } |
---|
934 | |
---|
935 | /** |
---|
936 | * Get the number of folds used for cross-validation. |
---|
937 | * |
---|
938 | * @return the number of folds used for cross-validation. |
---|
939 | */ |
---|
940 | public int getNumXValFolds() { |
---|
941 | |
---|
942 | return m_NumXValFolds; |
---|
943 | } |
---|
944 | |
---|
945 | /** |
---|
946 | * Set the number of folds used for cross-validation. |
---|
947 | * |
---|
948 | * @param newNumFolds the number of folds used for cross-validation. |
---|
949 | */ |
---|
950 | public void setNumXValFolds(int newNumFolds) { |
---|
951 | |
---|
952 | if (newNumFolds < 2) { |
---|
953 | throw new IllegalArgumentException("Number of folds must be greater than 1"); |
---|
954 | } |
---|
955 | m_NumXValFolds = newNumFolds; |
---|
956 | } |
---|
957 | |
---|
958 | /** |
---|
959 | * Returns the type of graph this classifier |
---|
960 | * represents. |
---|
961 | * |
---|
962 | * @return the type of graph this classifier represents |
---|
963 | */ |
---|
964 | public int graphType() { |
---|
965 | |
---|
966 | if (m_Classifier instanceof Drawable) |
---|
967 | return ((Drawable)m_Classifier).graphType(); |
---|
968 | else |
---|
969 | return Drawable.NOT_DRAWABLE; |
---|
970 | } |
---|
971 | |
---|
972 | /** |
---|
973 | * Returns graph describing the classifier (if possible). |
---|
974 | * |
---|
975 | * @return the graph of the classifier in dotty format |
---|
976 | * @throws Exception if the classifier cannot be graphed |
---|
977 | */ |
---|
978 | public String graph() throws Exception { |
---|
979 | |
---|
980 | if (m_Classifier instanceof Drawable) |
---|
981 | return ((Drawable)m_Classifier).graph(); |
---|
982 | else throw new Exception("Classifier: " + getClassifierSpec() |
---|
983 | + " cannot be graphed"); |
---|
984 | } |
---|
985 | |
---|
986 | /** |
---|
987 | * @return tip text for this property suitable for |
---|
988 | * displaying in the explorer/experimenter gui |
---|
989 | */ |
---|
990 | public String manualThresholdValueTipText() { |
---|
991 | |
---|
992 | return "Sets a manual threshold value to use. " |
---|
993 | + "If this is set (non-negative value between 0 and 1), then " |
---|
994 | + "all options pertaining to automatic threshold selection are " |
---|
995 | + "ignored. "; |
---|
996 | } |
---|
997 | |
---|
998 | /** |
---|
999 | * Sets the value for a manual threshold. If this option |
---|
1000 | * is set (non-negative value between 0 and 1), then options |
---|
1001 | * pertaining to automatic threshold selection are ignored. |
---|
1002 | * |
---|
1003 | * @param threshold the manual threshold to use |
---|
1004 | */ |
---|
1005 | public void setManualThresholdValue(double threshold) throws Exception { |
---|
1006 | m_manualThresholdValue = threshold; |
---|
1007 | if (threshold >= 0.0 && threshold <= 1.0) { |
---|
1008 | m_manualThreshold = true; |
---|
1009 | } else { |
---|
1010 | m_manualThreshold = false; |
---|
1011 | if (threshold >= 0) { |
---|
1012 | throw new IllegalArgumentException("Threshold must be in the " |
---|
1013 | + "range 0..1."); |
---|
1014 | } |
---|
1015 | } |
---|
1016 | } |
---|
1017 | |
---|
1018 | /** |
---|
1019 | * Returns the value of the manual threshold. (a negative |
---|
1020 | * value indicates that no manual threshold is being used. |
---|
1021 | * |
---|
1022 | * @return the value of the manual threshold. |
---|
1023 | */ |
---|
1024 | public double getManualThresholdValue() { |
---|
1025 | return m_manualThresholdValue; |
---|
1026 | } |
---|
1027 | |
---|
1028 | /** |
---|
1029 | * Returns description of the cross-validated classifier. |
---|
1030 | * |
---|
1031 | * @return description of the cross-validated classifier as a string |
---|
1032 | */ |
---|
1033 | public String toString() { |
---|
1034 | |
---|
1035 | if (m_BestValue == -Double.MAX_VALUE) |
---|
1036 | return "ThresholdSelector: No model built yet."; |
---|
1037 | |
---|
1038 | String result = "Threshold Selector.\n" |
---|
1039 | + "Classifier: " + m_Classifier.getClass().getName() + "\n"; |
---|
1040 | |
---|
1041 | result += "Index of designated class: " + m_DesignatedClass + "\n"; |
---|
1042 | |
---|
1043 | if (m_manualThreshold) { |
---|
1044 | result += "User supplied threshold: " + m_BestThreshold + "\n"; |
---|
1045 | } else { |
---|
1046 | result += "Evaluation mode: "; |
---|
1047 | switch (m_EvalMode) { |
---|
1048 | case EVAL_CROSS_VALIDATION: |
---|
1049 | result += m_NumXValFolds + "-fold cross-validation"; |
---|
1050 | break; |
---|
1051 | case EVAL_TUNED_SPLIT: |
---|
1052 | result += "tuning on 1/" + m_NumXValFolds + " of the data"; |
---|
1053 | break; |
---|
1054 | case EVAL_TRAINING_SET: |
---|
1055 | default: |
---|
1056 | result += "tuning on the training data"; |
---|
1057 | } |
---|
1058 | result += "\n"; |
---|
1059 | |
---|
1060 | result += "Threshold: " + m_BestThreshold + "\n"; |
---|
1061 | result += "Best value: " + m_BestValue + "\n"; |
---|
1062 | if (m_RangeMode == RANGE_BOUNDS) { |
---|
1063 | result += "Expanding range [" + m_LowThreshold + "," + m_HighThreshold |
---|
1064 | + "] to [0, 1]\n"; |
---|
1065 | } |
---|
1066 | result += "Measure: " + getMeasure().getSelectedTag().getReadable() + "\n"; |
---|
1067 | } |
---|
1068 | result += m_Classifier.toString(); |
---|
1069 | return result; |
---|
1070 | } |
---|
1071 | |
---|
1072 | /** |
---|
1073 | * Returns the revision string. |
---|
1074 | * |
---|
1075 | * @return the revision |
---|
1076 | */ |
---|
1077 | public String getRevision() { |
---|
1078 | return RevisionUtils.extract("$Revision: 1.43 $"); |
---|
1079 | } |
---|
1080 | |
---|
1081 | /** |
---|
1082 | * Main method for testing this class. |
---|
1083 | * |
---|
1084 | * @param argv the options |
---|
1085 | */ |
---|
1086 | public static void main(String [] argv) { |
---|
1087 | runClassifier(new ThresholdSelector(), argv); |
---|
1088 | } |
---|
1089 | } |
---|
1090 | |
---|