source: src/main/java/weka/classifiers/meta/StackingC.java @ 7

Last change on this file since 7 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 11.1 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    StackingC.java
19 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.meta;
24
25import weka.classifiers.Classifier;
26import weka.classifiers.AbstractClassifier;
27import weka.classifiers.functions.LinearRegression;
28import weka.core.Instance;
29import weka.core.Instances;
30import weka.core.OptionHandler;
31import weka.core.RevisionUtils;
32import weka.core.TechnicalInformation;
33import weka.core.TechnicalInformationHandler;
34import weka.core.Utils;
35import weka.core.TechnicalInformation.Field;
36import weka.core.TechnicalInformation.Type;
37import weka.filters.Filter;
38import weka.filters.unsupervised.attribute.MakeIndicator;
39import weka.filters.unsupervised.attribute.Remove;
40
41import java.util.Random;
42
43/**
44 <!-- globalinfo-start -->
45 * Implements StackingC (more efficient version of stacking).<br/>
46 * <br/>
47 * For more information, see<br/>
48 * <br/>
49 * A.K. Seewald: How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness. In: Nineteenth International Conference on Machine Learning, 554-561, 2002.<br/>
50 * <br/>
51 * Note: requires meta classifier to be a numeric prediction scheme.
52 * <p/>
53 <!-- globalinfo-end -->
54 *
55 <!-- technical-bibtex-start -->
56 * BibTeX:
57 * <pre>
58 * &#64;inproceedings{Seewald2002,
59 *    author = {A.K. Seewald},
60 *    booktitle = {Nineteenth International Conference on Machine Learning},
61 *    editor = {C. Sammut and A. Hoffmann},
62 *    pages = {554-561},
63 *    publisher = {Morgan Kaufmann Publishers},
64 *    title = {How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness},
65 *    year = {2002}
66 * }
67 * </pre>
68 * <p/>
69 <!-- technical-bibtex-end -->
70 *
71 <!-- options-start -->
72 * Valid options are: <p/>
73 *
74 * <pre> -M &lt;scheme specification&gt;
75 *  Full name of meta classifier, followed by options.
76 *  Must be a numeric prediction scheme. Default: Linear Regression.</pre>
77 *
78 * <pre> -X &lt;number of folds&gt;
79 *  Sets the number of cross-validation folds.</pre>
80 *
81 * <pre> -S &lt;num&gt;
82 *  Random number seed.
83 *  (default 1)</pre>
84 *
85 * <pre> -B &lt;classifier specification&gt;
86 *  Full class name of classifier to include, followed
87 *  by scheme options. May be specified multiple times.
88 *  (default: "weka.classifiers.rules.ZeroR")</pre>
89 *
90 * <pre> -D
91 *  If set, classifier is run in debug mode and
92 *  may output additional info to the console</pre>
93 *
94 <!-- options-end -->
95 *
96 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
97 * @author Alexander K. Seewald (alex@seewald.at)
98 * @version $Revision: 5928 $
99 */
100public class StackingC 
101  extends Stacking
102  implements OptionHandler, TechnicalInformationHandler {
103 
104  /** for serialization */
105  static final long serialVersionUID = -6717545616603725198L;
106 
107  /** The meta classifiers (one for each class, like in ClassificationViaRegression) */
108  protected Classifier [] m_MetaClassifiers = null;
109 
110  /** Filter to transform metaData - Remove */
111  protected Remove m_attrFilter = null;
112  /** Filter to transform metaData - MakeIndicator */
113  protected MakeIndicator m_makeIndicatorFilter = null;
114
115  /**
116   * The constructor.
117   */
118  public StackingC() {
119    m_MetaClassifier = new weka.classifiers.functions.LinearRegression();
120    ((LinearRegression)(getMetaClassifier())).
121      setAttributeSelectionMethod(new 
122        weka.core.SelectedTag(1, LinearRegression.TAGS_SELECTION));
123  } 
124     
125  /**
126   * Returns a string describing classifier
127   * @return a description suitable for
128   * displaying in the explorer/experimenter gui
129   */
130  public String globalInfo() {
131
132    return  "Implements StackingC (more efficient version of stacking).\n\n"
133      + "For more information, see\n\n"
134      + getTechnicalInformation().toString() + "\n\n"
135      + "Note: requires meta classifier to be a numeric prediction scheme.";
136  }
137
138  /**
139   * Returns an instance of a TechnicalInformation object, containing
140   * detailed information about the technical background of this class,
141   * e.g., paper reference or book this class is based on.
142   *
143   * @return the technical information about this class
144   */
145  public TechnicalInformation getTechnicalInformation() {
146    TechnicalInformation        result;
147   
148    result = new TechnicalInformation(Type.INPROCEEDINGS);
149    result.setValue(Field.AUTHOR, "A.K. Seewald");
150    result.setValue(Field.TITLE, "How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness");
151    result.setValue(Field.BOOKTITLE, "Nineteenth International Conference on Machine Learning");
152    result.setValue(Field.EDITOR, "C. Sammut and A. Hoffmann");
153    result.setValue(Field.YEAR, "2002");
154    result.setValue(Field.PAGES, "554-561");
155    result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers");
156   
157    return result;
158  }
159
160  /**
161   * String describing option for setting meta classifier
162   *
163   * @return string describing the option
164   */
165  protected String metaOption() {
166
167    return "\tFull name of meta classifier, followed by options.\n"
168      + "\tMust be a numeric prediction scheme. Default: Linear Regression.";
169  }
170
171  /**
172   * Process options setting meta classifier.
173   *
174   * @param options the meta options to parse
175   * @throws Exception if parsing fails
176   */
177  protected void processMetaOptions(String[] options) throws Exception {
178
179    String classifierString = Utils.getOption('M', options);
180    String [] classifierSpec = Utils.splitOptions(classifierString);
181    if (classifierSpec.length != 0) {
182      String classifierName = classifierSpec[0];
183      classifierSpec[0] = "";
184      setMetaClassifier(AbstractClassifier.forName(classifierName, classifierSpec));
185    } else {
186        ((LinearRegression)(getMetaClassifier())).
187          setAttributeSelectionMethod(new 
188            weka.core.SelectedTag(1,LinearRegression.TAGS_SELECTION));
189    }
190  }
191
192  /**
193   * Method that builds meta level.
194   *
195   * @param newData the data to work with
196   * @param random the random number generator to use for cross-validation
197   * @throws Exception if generation fails
198   */
199  protected void generateMetaLevel(Instances newData, Random random) 
200    throws Exception {
201
202    Instances metaData = metaFormat(newData);
203    m_MetaFormat = new Instances(metaData, 0);
204    for (int j = 0; j < m_NumFolds; j++) {
205      Instances train = newData.trainCV(m_NumFolds, j, random);
206
207      // Build base classifiers
208      for (int i = 0; i < m_Classifiers.length; i++) {
209        getClassifier(i).buildClassifier(train);
210      }
211
212      // Classify test instances and add to meta data
213      Instances test = newData.testCV(m_NumFolds, j);
214      for (int i = 0; i < test.numInstances(); i++) {
215        metaData.add(metaInstance(test.instance(i)));
216      }
217    }
218   
219    m_MetaClassifiers = AbstractClassifier.makeCopies(m_MetaClassifier,
220                                              m_BaseFormat.numClasses());
221   
222    int [] arrIdc = new int[m_Classifiers.length + 1];
223    arrIdc[m_Classifiers.length] = metaData.numAttributes() - 1;
224    Instances newInsts;
225    for (int i = 0; i < m_MetaClassifiers.length; i++) {
226      for (int j = 0; j < m_Classifiers.length; j++) {
227        arrIdc[j] = m_BaseFormat.numClasses() * j + i;
228      }
229      m_makeIndicatorFilter = new weka.filters.unsupervised.attribute.MakeIndicator();
230      m_makeIndicatorFilter.setAttributeIndex("" + (metaData.classIndex() + 1));
231      m_makeIndicatorFilter.setNumeric(true);
232      m_makeIndicatorFilter.setValueIndex(i);
233      m_makeIndicatorFilter.setInputFormat(metaData);
234      newInsts = Filter.useFilter(metaData,m_makeIndicatorFilter);
235     
236      m_attrFilter = new weka.filters.unsupervised.attribute.Remove();
237      m_attrFilter.setInvertSelection(true);
238      m_attrFilter.setAttributeIndicesArray(arrIdc);
239      m_attrFilter.setInputFormat(m_makeIndicatorFilter.getOutputFormat());
240      newInsts = Filter.useFilter(newInsts,m_attrFilter);
241     
242      newInsts.setClassIndex(newInsts.numAttributes()-1);
243     
244      m_MetaClassifiers[i].buildClassifier(newInsts);
245    }
246  }
247
248  /**
249   * Classifies a given instance using the stacked classifier.
250   *
251   * @param instance the instance to be classified
252   * @return the distribution
253   * @throws Exception if instance could not be classified
254   * successfully
255   */
256  public double[] distributionForInstance(Instance instance) throws Exception {
257
258    int [] arrIdc = new int[m_Classifiers.length+1];
259    arrIdc[m_Classifiers.length] = m_MetaFormat.numAttributes() - 1;
260    double [] classProbs = new double[m_BaseFormat.numClasses()];
261    Instance newInst;
262    double sum = 0;
263
264    for (int i = 0; i < m_MetaClassifiers.length; i++) {
265      for (int j = 0; j < m_Classifiers.length; j++) {
266          arrIdc[j] = m_BaseFormat.numClasses() * j + i;
267      }
268      m_makeIndicatorFilter.setAttributeIndex("" + (m_MetaFormat.classIndex() + 1));
269      m_makeIndicatorFilter.setNumeric(true);
270      m_makeIndicatorFilter.setValueIndex(i);
271      m_makeIndicatorFilter.setInputFormat(m_MetaFormat);
272      m_makeIndicatorFilter.input(metaInstance(instance));
273      m_makeIndicatorFilter.batchFinished();
274      newInst = m_makeIndicatorFilter.output();
275
276      m_attrFilter.setAttributeIndicesArray(arrIdc);
277      m_attrFilter.setInvertSelection(true);
278      m_attrFilter.setInputFormat(m_makeIndicatorFilter.getOutputFormat());
279      m_attrFilter.input(newInst);
280      m_attrFilter.batchFinished();
281      newInst = m_attrFilter.output();
282
283      classProbs[i]=m_MetaClassifiers[i].classifyInstance(newInst);
284      if (classProbs[i] > 1) { classProbs[i] = 1; }
285      if (classProbs[i] < 0) { classProbs[i] = 0; }
286      sum += classProbs[i];
287    }
288
289    if (sum!=0) Utils.normalize(classProbs,sum);
290
291    return classProbs;
292  }
293
294  /**
295   * Output a representation of this classifier
296   *
297   * @return a string representation of the classifier
298   */
299  public String toString() {
300
301    if (m_MetaFormat == null) {
302      return "StackingC: No model built yet.";
303    }
304    String result = "StackingC\n\nBase classifiers\n\n";
305    for (int i = 0; i < m_Classifiers.length; i++) {
306      result += getClassifier(i).toString() +"\n\n";
307    }
308   
309    result += "\n\nMeta classifiers (one for each class)\n\n";
310    for (int i = 0; i< m_MetaClassifiers.length; i++) {
311      result += m_MetaClassifiers[i].toString() +"\n\n";
312    }
313
314    return result;
315  }
316 
317  /**
318   * Returns the revision string.
319   *
320   * @return            the revision
321   */
322  public String getRevision() {
323    return RevisionUtils.extract("$Revision: 5928 $");
324  }
325
326  /**
327   * Main method for testing this class.
328   *
329   * @param argv should contain the following arguments:
330   * -t training file [-T test file] [-c class index]
331   */
332  public static void main(String [] argv) {
333    runClassifier(new StackingC(), argv);
334  }
335}
Note: See TracBrowser for help on using the repository browser.