/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * StackingC.java * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.meta; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.classifiers.functions.LinearRegression; import weka.core.Instance; import weka.core.Instances; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.filters.Filter; import weka.filters.unsupervised.attribute.MakeIndicator; import weka.filters.unsupervised.attribute.Remove; import java.util.Random; /** * Implements StackingC (more efficient version of stacking).
*
* For more information, see
*
* A.K. Seewald: How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness. In: Nineteenth International Conference on Machine Learning, 554-561, 2002.
*
* Note: requires meta classifier to be a numeric prediction scheme. *

* * BibTeX: *

 * @inproceedings{Seewald2002,
 *    author = {A.K. Seewald},
 *    booktitle = {Nineteenth International Conference on Machine Learning},
 *    editor = {C. Sammut and A. Hoffmann},
 *    pages = {554-561},
 *    publisher = {Morgan Kaufmann Publishers},
 *    title = {How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness},
 *    year = {2002}
 * }
 * 
*

* * Valid options are:

* *

 -M <scheme specification>
 *  Full name of meta classifier, followed by options.
 *  Must be a numeric prediction scheme. Default: Linear Regression.
* *
 -X <number of folds>
 *  Sets the number of cross-validation folds.
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -B <classifier specification>
 *  Full class name of classifier to include, followed
 *  by scheme options. May be specified multiple times.
 *  (default: "weka.classifiers.rules.ZeroR")
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Alexander K. Seewald (alex@seewald.at) * @version $Revision: 5928 $ */ public class StackingC extends Stacking implements OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -6717545616603725198L; /** The meta classifiers (one for each class, like in ClassificationViaRegression) */ protected Classifier [] m_MetaClassifiers = null; /** Filter to transform metaData - Remove */ protected Remove m_attrFilter = null; /** Filter to transform metaData - MakeIndicator */ protected MakeIndicator m_makeIndicatorFilter = null; /** * The constructor. */ public StackingC() { m_MetaClassifier = new weka.classifiers.functions.LinearRegression(); ((LinearRegression)(getMetaClassifier())). setAttributeSelectionMethod(new weka.core.SelectedTag(1, LinearRegression.TAGS_SELECTION)); } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Implements StackingC (more efficient version of stacking).\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString() + "\n\n" + "Note: requires meta classifier to be a numeric prediction scheme."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "A.K. Seewald"); result.setValue(Field.TITLE, "How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness"); result.setValue(Field.BOOKTITLE, "Nineteenth International Conference on Machine Learning"); result.setValue(Field.EDITOR, "C. Sammut and A. Hoffmann"); result.setValue(Field.YEAR, "2002"); result.setValue(Field.PAGES, "554-561"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); return result; } /** * String describing option for setting meta classifier * * @return string describing the option */ protected String metaOption() { return "\tFull name of meta classifier, followed by options.\n" + "\tMust be a numeric prediction scheme. Default: Linear Regression."; } /** * Process options setting meta classifier. * * @param options the meta options to parse * @throws Exception if parsing fails */ protected void processMetaOptions(String[] options) throws Exception { String classifierString = Utils.getOption('M', options); String [] classifierSpec = Utils.splitOptions(classifierString); if (classifierSpec.length != 0) { String classifierName = classifierSpec[0]; classifierSpec[0] = ""; setMetaClassifier(AbstractClassifier.forName(classifierName, classifierSpec)); } else { ((LinearRegression)(getMetaClassifier())). setAttributeSelectionMethod(new weka.core.SelectedTag(1,LinearRegression.TAGS_SELECTION)); } } /** * Method that builds meta level. * * @param newData the data to work with * @param random the random number generator to use for cross-validation * @throws Exception if generation fails */ protected void generateMetaLevel(Instances newData, Random random) throws Exception { Instances metaData = metaFormat(newData); m_MetaFormat = new Instances(metaData, 0); for (int j = 0; j < m_NumFolds; j++) { Instances train = newData.trainCV(m_NumFolds, j, random); // Build base classifiers for (int i = 0; i < m_Classifiers.length; i++) { getClassifier(i).buildClassifier(train); } // Classify test instances and add to meta data Instances test = newData.testCV(m_NumFolds, j); for (int i = 0; i < test.numInstances(); i++) { metaData.add(metaInstance(test.instance(i))); } } m_MetaClassifiers = AbstractClassifier.makeCopies(m_MetaClassifier, m_BaseFormat.numClasses()); int [] arrIdc = new int[m_Classifiers.length + 1]; arrIdc[m_Classifiers.length] = metaData.numAttributes() - 1; Instances newInsts; for (int i = 0; i < m_MetaClassifiers.length; i++) { for (int j = 0; j < m_Classifiers.length; j++) { arrIdc[j] = m_BaseFormat.numClasses() * j + i; } m_makeIndicatorFilter = new weka.filters.unsupervised.attribute.MakeIndicator(); m_makeIndicatorFilter.setAttributeIndex("" + (metaData.classIndex() + 1)); m_makeIndicatorFilter.setNumeric(true); m_makeIndicatorFilter.setValueIndex(i); m_makeIndicatorFilter.setInputFormat(metaData); newInsts = Filter.useFilter(metaData,m_makeIndicatorFilter); m_attrFilter = new weka.filters.unsupervised.attribute.Remove(); m_attrFilter.setInvertSelection(true); m_attrFilter.setAttributeIndicesArray(arrIdc); m_attrFilter.setInputFormat(m_makeIndicatorFilter.getOutputFormat()); newInsts = Filter.useFilter(newInsts,m_attrFilter); newInsts.setClassIndex(newInsts.numAttributes()-1); m_MetaClassifiers[i].buildClassifier(newInsts); } } /** * Classifies a given instance using the stacked classifier. * * @param instance the instance to be classified * @return the distribution * @throws Exception if instance could not be classified * successfully */ public double[] distributionForInstance(Instance instance) throws Exception { int [] arrIdc = new int[m_Classifiers.length+1]; arrIdc[m_Classifiers.length] = m_MetaFormat.numAttributes() - 1; double [] classProbs = new double[m_BaseFormat.numClasses()]; Instance newInst; double sum = 0; for (int i = 0; i < m_MetaClassifiers.length; i++) { for (int j = 0; j < m_Classifiers.length; j++) { arrIdc[j] = m_BaseFormat.numClasses() * j + i; } m_makeIndicatorFilter.setAttributeIndex("" + (m_MetaFormat.classIndex() + 1)); m_makeIndicatorFilter.setNumeric(true); m_makeIndicatorFilter.setValueIndex(i); m_makeIndicatorFilter.setInputFormat(m_MetaFormat); m_makeIndicatorFilter.input(metaInstance(instance)); m_makeIndicatorFilter.batchFinished(); newInst = m_makeIndicatorFilter.output(); m_attrFilter.setAttributeIndicesArray(arrIdc); m_attrFilter.setInvertSelection(true); m_attrFilter.setInputFormat(m_makeIndicatorFilter.getOutputFormat()); m_attrFilter.input(newInst); m_attrFilter.batchFinished(); newInst = m_attrFilter.output(); classProbs[i]=m_MetaClassifiers[i].classifyInstance(newInst); if (classProbs[i] > 1) { classProbs[i] = 1; } if (classProbs[i] < 0) { classProbs[i] = 0; } sum += classProbs[i]; } if (sum!=0) Utils.normalize(classProbs,sum); return classProbs; } /** * Output a representation of this classifier * * @return a string representation of the classifier */ public String toString() { if (m_MetaFormat == null) { return "StackingC: No model built yet."; } String result = "StackingC\n\nBase classifiers\n\n"; for (int i = 0; i < m_Classifiers.length; i++) { result += getClassifier(i).toString() +"\n\n"; } result += "\n\nMeta classifiers (one for each class)\n\n"; for (int i = 0; i< m_MetaClassifiers.length; i++) { result += m_MetaClassifiers[i].toString() +"\n\n"; } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for testing this class. * * @param argv should contain the following arguments: * -t training file [-T test file] [-c class index] */ public static void main(String [] argv) { runClassifier(new StackingC(), argv); } }