1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Stacking.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.RandomizableMultipleClassifiersCombiner; |
---|
28 | import weka.classifiers.RandomizableParallelMultipleClassifiersCombiner; |
---|
29 | import weka.classifiers.rules.ZeroR; |
---|
30 | import weka.core.Attribute; |
---|
31 | import weka.core.Capabilities; |
---|
32 | import weka.core.FastVector; |
---|
33 | import weka.core.Instance; |
---|
34 | import weka.core.DenseInstance; |
---|
35 | import weka.core.Instances; |
---|
36 | import weka.core.Option; |
---|
37 | import weka.core.OptionHandler; |
---|
38 | import weka.core.RevisionUtils; |
---|
39 | import weka.core.TechnicalInformation; |
---|
40 | import weka.core.TechnicalInformationHandler; |
---|
41 | import weka.core.Utils; |
---|
42 | import weka.core.TechnicalInformation.Field; |
---|
43 | import weka.core.TechnicalInformation.Type; |
---|
44 | |
---|
45 | import java.util.Enumeration; |
---|
46 | import java.util.Random; |
---|
47 | import java.util.Vector; |
---|
48 | |
---|
49 | /** |
---|
50 | <!-- globalinfo-start --> |
---|
51 | * Combines several classifiers using the stacking method. Can do classification or regression.<br/> |
---|
52 | * <br/> |
---|
53 | * For more information, see<br/> |
---|
54 | * <br/> |
---|
55 | * David H. Wolpert (1992). Stacked generalization. Neural Networks. 5:241-259. |
---|
56 | * <p/> |
---|
57 | <!-- globalinfo-end --> |
---|
58 | * |
---|
59 | <!-- technical-bibtex-start --> |
---|
60 | * BibTeX: |
---|
61 | * <pre> |
---|
62 | * @article{Wolpert1992, |
---|
63 | * author = {David H. Wolpert}, |
---|
64 | * journal = {Neural Networks}, |
---|
65 | * pages = {241-259}, |
---|
66 | * publisher = {Pergamon Press}, |
---|
67 | * title = {Stacked generalization}, |
---|
68 | * volume = {5}, |
---|
69 | * year = {1992} |
---|
70 | * } |
---|
71 | * </pre> |
---|
72 | * <p/> |
---|
73 | <!-- technical-bibtex-end --> |
---|
74 | * |
---|
75 | <!-- options-start --> |
---|
76 | * Valid options are: <p/> |
---|
77 | * |
---|
78 | * <pre> -M <scheme specification> |
---|
79 | * Full name of meta classifier, followed by options. |
---|
80 | * (default: "weka.classifiers.rules.Zero")</pre> |
---|
81 | * |
---|
82 | * <pre> -X <number of folds> |
---|
83 | * Sets the number of cross-validation folds.</pre> |
---|
84 | * |
---|
85 | * <pre> -S <num> |
---|
86 | * Random number seed. |
---|
87 | * (default 1)</pre> |
---|
88 | * |
---|
89 | * <pre> -B <classifier specification> |
---|
90 | * Full class name of classifier to include, followed |
---|
91 | * by scheme options. May be specified multiple times. |
---|
92 | * (default: "weka.classifiers.rules.ZeroR")</pre> |
---|
93 | * |
---|
94 | * <pre> -D |
---|
95 | * If set, classifier is run in debug mode and |
---|
96 | * may output additional info to the console</pre> |
---|
97 | * |
---|
98 | <!-- options-end --> |
---|
99 | * |
---|
100 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
101 | * @version $Revision: 5987 $ |
---|
102 | */ |
---|
103 | public class Stacking |
---|
104 | extends RandomizableParallelMultipleClassifiersCombiner |
---|
105 | implements TechnicalInformationHandler { |
---|
106 | |
---|
107 | /** for serialization */ |
---|
108 | static final long serialVersionUID = 5134738557155845452L; |
---|
109 | |
---|
110 | /** The meta classifier */ |
---|
111 | protected Classifier m_MetaClassifier = new ZeroR(); |
---|
112 | |
---|
113 | /** Format for meta data */ |
---|
114 | protected Instances m_MetaFormat = null; |
---|
115 | |
---|
116 | /** Format for base data */ |
---|
117 | protected Instances m_BaseFormat = null; |
---|
118 | |
---|
119 | /** Set the number of folds for the cross-validation */ |
---|
120 | protected int m_NumFolds = 10; |
---|
121 | |
---|
122 | /** |
---|
123 | * Returns a string describing classifier |
---|
124 | * @return a description suitable for |
---|
125 | * displaying in the explorer/experimenter gui |
---|
126 | */ |
---|
127 | public String globalInfo() { |
---|
128 | |
---|
129 | return "Combines several classifiers using the stacking method. " |
---|
130 | + "Can do classification or regression.\n\n" |
---|
131 | + "For more information, see\n\n" |
---|
132 | + getTechnicalInformation().toString(); |
---|
133 | } |
---|
134 | |
---|
135 | /** |
---|
136 | * Returns an instance of a TechnicalInformation object, containing |
---|
137 | * detailed information about the technical background of this class, |
---|
138 | * e.g., paper reference or book this class is based on. |
---|
139 | * |
---|
140 | * @return the technical information about this class |
---|
141 | */ |
---|
142 | public TechnicalInformation getTechnicalInformation() { |
---|
143 | TechnicalInformation result; |
---|
144 | |
---|
145 | result = new TechnicalInformation(Type.ARTICLE); |
---|
146 | result.setValue(Field.AUTHOR, "David H. Wolpert"); |
---|
147 | result.setValue(Field.YEAR, "1992"); |
---|
148 | result.setValue(Field.TITLE, "Stacked generalization"); |
---|
149 | result.setValue(Field.JOURNAL, "Neural Networks"); |
---|
150 | result.setValue(Field.VOLUME, "5"); |
---|
151 | result.setValue(Field.PAGES, "241-259"); |
---|
152 | result.setValue(Field.PUBLISHER, "Pergamon Press"); |
---|
153 | |
---|
154 | return result; |
---|
155 | } |
---|
156 | |
---|
157 | /** |
---|
158 | * Returns an enumeration describing the available options. |
---|
159 | * |
---|
160 | * @return an enumeration of all the available options. |
---|
161 | */ |
---|
162 | public Enumeration listOptions() { |
---|
163 | |
---|
164 | Vector newVector = new Vector(2); |
---|
165 | newVector.addElement(new Option( |
---|
166 | metaOption(), |
---|
167 | "M", 0, "-M <scheme specification>")); |
---|
168 | newVector.addElement(new Option( |
---|
169 | "\tSets the number of cross-validation folds.", |
---|
170 | "X", 1, "-X <number of folds>")); |
---|
171 | |
---|
172 | Enumeration enu = super.listOptions(); |
---|
173 | while (enu.hasMoreElements()) { |
---|
174 | newVector.addElement(enu.nextElement()); |
---|
175 | } |
---|
176 | return newVector.elements(); |
---|
177 | } |
---|
178 | |
---|
179 | /** |
---|
180 | * String describing option for setting meta classifier |
---|
181 | * |
---|
182 | * @return the string describing the option |
---|
183 | */ |
---|
184 | protected String metaOption() { |
---|
185 | |
---|
186 | return "\tFull name of meta classifier, followed by options.\n" + |
---|
187 | "\t(default: \"weka.classifiers.rules.Zero\")"; |
---|
188 | } |
---|
189 | |
---|
190 | /** |
---|
191 | * Parses a given list of options. <p/> |
---|
192 | * |
---|
193 | <!-- options-start --> |
---|
194 | * Valid options are: <p/> |
---|
195 | * |
---|
196 | * <pre> -M <scheme specification> |
---|
197 | * Full name of meta classifier, followed by options. |
---|
198 | * (default: "weka.classifiers.rules.Zero")</pre> |
---|
199 | * |
---|
200 | * <pre> -X <number of folds> |
---|
201 | * Sets the number of cross-validation folds.</pre> |
---|
202 | * |
---|
203 | * <pre> -S <num> |
---|
204 | * Random number seed. |
---|
205 | * (default 1)</pre> |
---|
206 | * |
---|
207 | * <pre> -B <classifier specification> |
---|
208 | * Full class name of classifier to include, followed |
---|
209 | * by scheme options. May be specified multiple times. |
---|
210 | * (default: "weka.classifiers.rules.ZeroR")</pre> |
---|
211 | * |
---|
212 | * <pre> -D |
---|
213 | * If set, classifier is run in debug mode and |
---|
214 | * may output additional info to the console</pre> |
---|
215 | * |
---|
216 | <!-- options-end --> |
---|
217 | * |
---|
218 | * @param options the list of options as an array of strings |
---|
219 | * @throws Exception if an option is not supported |
---|
220 | */ |
---|
221 | public void setOptions(String[] options) throws Exception { |
---|
222 | |
---|
223 | String numFoldsString = Utils.getOption('X', options); |
---|
224 | if (numFoldsString.length() != 0) { |
---|
225 | setNumFolds(Integer.parseInt(numFoldsString)); |
---|
226 | } else { |
---|
227 | setNumFolds(10); |
---|
228 | } |
---|
229 | processMetaOptions(options); |
---|
230 | super.setOptions(options); |
---|
231 | } |
---|
232 | |
---|
233 | /** |
---|
234 | * Process options setting meta classifier. |
---|
235 | * |
---|
236 | * @param options the options to parse |
---|
237 | * @throws Exception if the parsing fails |
---|
238 | */ |
---|
239 | protected void processMetaOptions(String[] options) throws Exception { |
---|
240 | |
---|
241 | String classifierString = Utils.getOption('M', options); |
---|
242 | String [] classifierSpec = Utils.splitOptions(classifierString); |
---|
243 | String classifierName; |
---|
244 | if (classifierSpec.length == 0) { |
---|
245 | classifierName = "weka.classifiers.rules.ZeroR"; |
---|
246 | } else { |
---|
247 | classifierName = classifierSpec[0]; |
---|
248 | classifierSpec[0] = ""; |
---|
249 | } |
---|
250 | setMetaClassifier(AbstractClassifier.forName(classifierName, classifierSpec)); |
---|
251 | } |
---|
252 | |
---|
253 | /** |
---|
254 | * Gets the current settings of the Classifier. |
---|
255 | * |
---|
256 | * @return an array of strings suitable for passing to setOptions |
---|
257 | */ |
---|
258 | public String [] getOptions() { |
---|
259 | |
---|
260 | String [] superOptions = super.getOptions(); |
---|
261 | String [] options = new String [superOptions.length + 4]; |
---|
262 | |
---|
263 | int current = 0; |
---|
264 | options[current++] = "-X"; options[current++] = "" + getNumFolds(); |
---|
265 | options[current++] = "-M"; |
---|
266 | options[current++] = getMetaClassifier().getClass().getName() + " " |
---|
267 | + Utils.joinOptions(((OptionHandler)getMetaClassifier()).getOptions()); |
---|
268 | |
---|
269 | System.arraycopy(superOptions, 0, options, current, |
---|
270 | superOptions.length); |
---|
271 | return options; |
---|
272 | } |
---|
273 | |
---|
274 | /** |
---|
275 | * Returns the tip text for this property |
---|
276 | * @return tip text for this property suitable for |
---|
277 | * displaying in the explorer/experimenter gui |
---|
278 | */ |
---|
279 | public String numFoldsTipText() { |
---|
280 | return "The number of folds used for cross-validation."; |
---|
281 | } |
---|
282 | |
---|
283 | /** |
---|
284 | * Gets the number of folds for the cross-validation. |
---|
285 | * |
---|
286 | * @return the number of folds for the cross-validation |
---|
287 | */ |
---|
288 | public int getNumFolds() { |
---|
289 | |
---|
290 | return m_NumFolds; |
---|
291 | } |
---|
292 | |
---|
293 | /** |
---|
294 | * Sets the number of folds for the cross-validation. |
---|
295 | * |
---|
296 | * @param numFolds the number of folds for the cross-validation |
---|
297 | * @throws Exception if parameter illegal |
---|
298 | */ |
---|
299 | public void setNumFolds(int numFolds) throws Exception { |
---|
300 | |
---|
301 | if (numFolds < 0) { |
---|
302 | throw new IllegalArgumentException("Stacking: Number of cross-validation " + |
---|
303 | "folds must be positive."); |
---|
304 | } |
---|
305 | m_NumFolds = numFolds; |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * Returns the tip text for this property |
---|
310 | * @return tip text for this property suitable for |
---|
311 | * displaying in the explorer/experimenter gui |
---|
312 | */ |
---|
313 | public String metaClassifierTipText() { |
---|
314 | return "The meta classifiers to be used."; |
---|
315 | } |
---|
316 | |
---|
317 | /** |
---|
318 | * Adds meta classifier |
---|
319 | * |
---|
320 | * @param classifier the classifier with all options set. |
---|
321 | */ |
---|
322 | public void setMetaClassifier(Classifier classifier) { |
---|
323 | |
---|
324 | m_MetaClassifier = classifier; |
---|
325 | } |
---|
326 | |
---|
327 | /** |
---|
328 | * Gets the meta classifier. |
---|
329 | * |
---|
330 | * @return the meta classifier |
---|
331 | */ |
---|
332 | public Classifier getMetaClassifier() { |
---|
333 | |
---|
334 | return m_MetaClassifier; |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * Returns combined capabilities of the base classifiers, i.e., the |
---|
339 | * capabilities all of them have in common. |
---|
340 | * |
---|
341 | * @return the capabilities of the base classifiers |
---|
342 | */ |
---|
343 | public Capabilities getCapabilities() { |
---|
344 | Capabilities result; |
---|
345 | |
---|
346 | result = super.getCapabilities(); |
---|
347 | result.setMinimumNumberInstances(getNumFolds()); |
---|
348 | |
---|
349 | return result; |
---|
350 | } |
---|
351 | |
---|
352 | /** |
---|
353 | * Buildclassifier selects a classifier from the set of classifiers |
---|
354 | * by minimising error on the training data. |
---|
355 | * |
---|
356 | * @param data the training data to be used for generating the |
---|
357 | * boosted classifier. |
---|
358 | * @throws Exception if the classifier could not be built successfully |
---|
359 | */ |
---|
360 | public void buildClassifier(Instances data) throws Exception { |
---|
361 | |
---|
362 | if (m_MetaClassifier == null) { |
---|
363 | throw new IllegalArgumentException("No meta classifier has been set"); |
---|
364 | } |
---|
365 | |
---|
366 | // can classifier handle the data? |
---|
367 | getCapabilities().testWithFail(data); |
---|
368 | |
---|
369 | // remove instances with missing class |
---|
370 | Instances newData = new Instances(data); |
---|
371 | m_BaseFormat = new Instances(data, 0); |
---|
372 | newData.deleteWithMissingClass(); |
---|
373 | |
---|
374 | Random random = new Random(m_Seed); |
---|
375 | newData.randomize(random); |
---|
376 | if (newData.classAttribute().isNominal()) { |
---|
377 | newData.stratify(m_NumFolds); |
---|
378 | } |
---|
379 | |
---|
380 | // Create meta level |
---|
381 | generateMetaLevel(newData, random); |
---|
382 | |
---|
383 | // restart the executor pool because at the end of processing |
---|
384 | // a set of classifiers it gets shutdown to prevent the program |
---|
385 | // executing as a server |
---|
386 | super.buildClassifier(newData); |
---|
387 | |
---|
388 | // Rebuild all the base classifiers on the full training data |
---|
389 | buildClassifiers(newData); |
---|
390 | } |
---|
391 | |
---|
392 | /** |
---|
393 | * Generates the meta data |
---|
394 | * |
---|
395 | * @param newData the data to work on |
---|
396 | * @param random the random number generator to use for cross-validation |
---|
397 | * @throws Exception if generation fails |
---|
398 | */ |
---|
399 | protected void generateMetaLevel(Instances newData, Random random) |
---|
400 | throws Exception { |
---|
401 | |
---|
402 | Instances metaData = metaFormat(newData); |
---|
403 | m_MetaFormat = new Instances(metaData, 0); |
---|
404 | for (int j = 0; j < m_NumFolds; j++) { |
---|
405 | Instances train = newData.trainCV(m_NumFolds, j, random); |
---|
406 | |
---|
407 | // start the executor pool (if necessary) |
---|
408 | // has to be done after each set of classifiers as the |
---|
409 | // executor pool gets shut down in order to prevent the |
---|
410 | // program executing as a server (and not returning to |
---|
411 | // the command prompt when run from the command line |
---|
412 | super.buildClassifier(train); |
---|
413 | |
---|
414 | // construct the actual classifiers |
---|
415 | buildClassifiers(train); |
---|
416 | |
---|
417 | // Classify test instances and add to meta data |
---|
418 | Instances test = newData.testCV(m_NumFolds, j); |
---|
419 | for (int i = 0; i < test.numInstances(); i++) { |
---|
420 | metaData.add(metaInstance(test.instance(i))); |
---|
421 | } |
---|
422 | } |
---|
423 | |
---|
424 | m_MetaClassifier.buildClassifier(metaData); |
---|
425 | } |
---|
426 | |
---|
427 | /** |
---|
428 | * Returns class probabilities. |
---|
429 | * |
---|
430 | * @param instance the instance to be classified |
---|
431 | * @return the distribution |
---|
432 | * @throws Exception if instance could not be classified |
---|
433 | * successfully |
---|
434 | */ |
---|
435 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
436 | |
---|
437 | return m_MetaClassifier.distributionForInstance(metaInstance(instance)); |
---|
438 | } |
---|
439 | |
---|
440 | /** |
---|
441 | * Output a representation of this classifier |
---|
442 | * |
---|
443 | * @return a string representation of the classifier |
---|
444 | */ |
---|
445 | public String toString() { |
---|
446 | |
---|
447 | if (m_Classifiers.length == 0) { |
---|
448 | return "Stacking: No base schemes entered."; |
---|
449 | } |
---|
450 | if (m_MetaClassifier == null) { |
---|
451 | return "Stacking: No meta scheme selected."; |
---|
452 | } |
---|
453 | if (m_MetaFormat == null) { |
---|
454 | return "Stacking: No model built yet."; |
---|
455 | } |
---|
456 | String result = "Stacking\n\nBase classifiers\n\n"; |
---|
457 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
458 | result += getClassifier(i).toString() +"\n\n"; |
---|
459 | } |
---|
460 | |
---|
461 | result += "\n\nMeta classifier\n\n"; |
---|
462 | result += m_MetaClassifier.toString(); |
---|
463 | |
---|
464 | return result; |
---|
465 | } |
---|
466 | |
---|
467 | /** |
---|
468 | * Makes the format for the level-1 data. |
---|
469 | * |
---|
470 | * @param instances the level-0 format |
---|
471 | * @return the format for the meta data |
---|
472 | * @throws Exception if the format generation fails |
---|
473 | */ |
---|
474 | protected Instances metaFormat(Instances instances) throws Exception { |
---|
475 | |
---|
476 | FastVector attributes = new FastVector(); |
---|
477 | Instances metaFormat; |
---|
478 | |
---|
479 | for (int k = 0; k < m_Classifiers.length; k++) { |
---|
480 | Classifier classifier = (Classifier) getClassifier(k); |
---|
481 | String name = classifier.getClass().getName(); |
---|
482 | if (m_BaseFormat.classAttribute().isNumeric()) { |
---|
483 | attributes.addElement(new Attribute(name)); |
---|
484 | } else { |
---|
485 | for (int j = 0; j < m_BaseFormat.classAttribute().numValues(); j++) { |
---|
486 | attributes.addElement(new Attribute(name + ":" + |
---|
487 | m_BaseFormat |
---|
488 | .classAttribute().value(j))); |
---|
489 | } |
---|
490 | } |
---|
491 | } |
---|
492 | attributes.addElement(m_BaseFormat.classAttribute().copy()); |
---|
493 | metaFormat = new Instances("Meta format", attributes, 0); |
---|
494 | metaFormat.setClassIndex(metaFormat.numAttributes() - 1); |
---|
495 | return metaFormat; |
---|
496 | } |
---|
497 | |
---|
498 | /** |
---|
499 | * Makes a level-1 instance from the given instance. |
---|
500 | * |
---|
501 | * @param instance the instance to be transformed |
---|
502 | * @return the level-1 instance |
---|
503 | * @throws Exception if the instance generation fails |
---|
504 | */ |
---|
505 | protected Instance metaInstance(Instance instance) throws Exception { |
---|
506 | |
---|
507 | double[] values = new double[m_MetaFormat.numAttributes()]; |
---|
508 | Instance metaInstance; |
---|
509 | int i = 0; |
---|
510 | for (int k = 0; k < m_Classifiers.length; k++) { |
---|
511 | Classifier classifier = getClassifier(k); |
---|
512 | if (m_BaseFormat.classAttribute().isNumeric()) { |
---|
513 | values[i++] = classifier.classifyInstance(instance); |
---|
514 | } else { |
---|
515 | double[] dist = classifier.distributionForInstance(instance); |
---|
516 | for (int j = 0; j < dist.length; j++) { |
---|
517 | values[i++] = dist[j]; |
---|
518 | } |
---|
519 | } |
---|
520 | } |
---|
521 | values[i] = instance.classValue(); |
---|
522 | metaInstance = new DenseInstance(1, values); |
---|
523 | metaInstance.setDataset(m_MetaFormat); |
---|
524 | return metaInstance; |
---|
525 | } |
---|
526 | |
---|
527 | /** |
---|
528 | * Returns the revision string. |
---|
529 | * |
---|
530 | * @return the revision |
---|
531 | */ |
---|
532 | public String getRevision() { |
---|
533 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
534 | } |
---|
535 | |
---|
536 | /** |
---|
537 | * Main method for testing this class. |
---|
538 | * |
---|
539 | * @param argv should contain the following arguments: |
---|
540 | * -t training file [-T test file] [-c class index] |
---|
541 | */ |
---|
542 | public static void main(String [] argv) { |
---|
543 | runClassifier(new Stacking(), argv); |
---|
544 | } |
---|
545 | } |
---|