/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * RealAdaBoost.java * Copyright (C) 1999, 2009 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.meta; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.classifiers.Evaluation; import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.Randomizable; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.util.Enumeration; import java.util.Random; import java.util.Vector; /** * Class for boosting a 2-class classifier using the Real Adaboost method.
*
* For more information, see
*
* J. Friedman, T. Hastie, R. Tibshirani (2000). Additive Logistic Regression: a Statistical View of Boosting. Annals of Statistics. 95(2):337-407. *

* * BibTeX: *

 * @article{Friedman2000,
 *    author = {J. Friedman and T. Hastie and R. Tibshirani},
 *    journal = {Annals of Statistics},
 *    number = {2},
 *    pages = {337-407},
 *    title = {Additive Logistic Regression: a Statistical View of Boosting},
 *    volume = {95},
 *    year = {2000}
 * }
 * 
*

* * Valid options are:

* *

 -P <num>
 *  Percentage of weight mass to base training on.
 *  (default 100, reduce to around 90 speed up)
* *
 -Q
 *  Use resampling for boosting.
* *
 -H <num>
 *  Shrinkage parameter.
 *  (default 1)
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -I <num>
 *  Number of iterations.
 *  (default 10)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)
* *
 
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * Options after -- are passed to the designated classifier.

* * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 6136 $ */ public class RealAdaBoost extends RandomizableIteratedSingleClassifierEnhancer implements WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -7378109809933197974L; /** The number of successfully generated base classifiers. */ protected int m_NumIterationsPerformed; /** Weight Threshold. The percentage of weight mass used in training */ protected int m_WeightThreshold = 100; /** The value of the shrinkage parameter */ protected double m_Shrinkage = 1; /** Use boosting with reweighting? */ protected boolean m_UseResampling; /** a ZeroR model in case no model can be built from the data */ protected Classifier m_ZeroR; /** Sum of weights on training data */ protected double m_SumOfWeights; /** * Constructor. */ public RealAdaBoost() { m_Classifier = new weka.classifiers.trees.DecisionStump(); } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for boosting a 2-class classifier using the Real Adaboost method.\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "J. Friedman and T. Hastie and R. Tibshirani"); result.setValue(Field.TITLE, "Additive Logistic Regression: a Statistical View of Boosting"); result.setValue(Field.JOURNAL, "Annals of Statistics"); result.setValue(Field.VOLUME, "95"); result.setValue(Field.NUMBER, "2"); result.setValue(Field.PAGES, "337-407"); result.setValue(Field.YEAR, "2000"); return result; } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.DecisionStump"; } /** * Select only instances with weights that contribute to * the specified quantile of the weight distribution * * @param data the input instances * @param quantile the specified quantile eg 0.9 to select * 90% of the weight mass * @return the selected instances */ protected Instances selectWeightQuantile(Instances data, double quantile) { int numInstances = data.numInstances(); Instances trainData = new Instances(data, numInstances); double [] weights = new double [numInstances]; double sumOfWeights = 0; for(int i = 0; i < numInstances; i++) { weights[i] = data.instance(i).weight(); sumOfWeights += weights[i]; } double weightMassToSelect = sumOfWeights * quantile; int [] sortedIndices = Utils.sort(weights); // Select the instances sumOfWeights = 0; for(int i = numInstances - 1; i >= 0; i--) { Instance instance = (Instance)data.instance(sortedIndices[i]).copy(); trainData.add(instance); sumOfWeights += weights[sortedIndices[i]]; if ((sumOfWeights > weightMassToSelect) && (i > 0) && (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) { break; } } if (m_Debug) { System.err.println("Selected " + trainData.numInstances() + " out of " + numInstances); } return trainData; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option( "\tPercentage of weight mass to base training on.\n" +"\t(default 100, reduce to around 90 speed up)", "P", 1, "-P ")); newVector.addElement(new Option( "\tUse resampling for boosting.", "Q", 0, "-Q")); newVector.addElement(new Option( "\tShrinkage parameter.\n" +"\t(default 1)", "H", 1, "-H ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -P <num>
   *  Percentage of weight mass to base training on.
   *  (default 100, reduce to around 90 speed up)
* *
 -Q
   *  Use resampling for boosting.
* *
 -H <num>
   *  Shrinkage parameter.
   *  (default 1)
* *
 -S <num>
   *  Random number seed.
   *  (default 1)
* *
 -I <num>
   *  Number of iterations.
   *  (default 10)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -W
   *  Full name of base classifier.
   *  (default: weka.classifiers.trees.DecisionStump)
* *
 
   * Options specific to classifier weka.classifiers.trees.DecisionStump:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * Options after -- are passed to the designated classifier.

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String thresholdString = Utils.getOption('P', options); if (thresholdString.length() != 0) { setWeightThreshold(Integer.parseInt(thresholdString)); } else { setWeightThreshold(100); } String shrinkageString = Utils.getOption('H', options); if (shrinkageString.length() != 0) { setShrinkage(new Double(shrinkageString). doubleValue()); } else { setShrinkage(1.0); } setUseResampling(Utils.getFlag('Q', options)); super.setOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); if (getUseResampling()) result.add("-Q"); result.add("-P"); result.add("" + getWeightThreshold()); result.add("-H"); result.add("" + getShrinkage()); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String shrinkageTipText() { return "Shrinkage parameter (use small value like 0.1 to reduce " + "overfitting)."; } /** * Get the value of Shrinkage. * * @return Value of Shrinkage. */ public double getShrinkage() { return m_Shrinkage; } /** * Set the value of Shrinkage. * * @param newShrinkage Value to assign to Shrinkage. */ public void setShrinkage(double newShrinkage) { m_Shrinkage = newShrinkage; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String weightThresholdTipText() { return "Weight threshold for weight pruning."; } /** * Set weight threshold * * @param threshold the percentage of weight mass used for training */ public void setWeightThreshold(int threshold) { m_WeightThreshold = threshold; } /** * Get the degree of weight thresholding * * @return the percentage of weight mass used for training */ public int getWeightThreshold() { return m_WeightThreshold; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useResamplingTipText() { return "Whether resampling is used instead of reweighting."; } /** * Set resampling mode * * @param r true if resampling should be done */ public void setUseResampling(boolean r) { m_UseResampling = r; } /** * Get whether resampling is turned on * * @return true if resampling output is on */ public boolean getUseResampling() { return m_UseResampling; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.disableAllClassDependencies(); if (super.getCapabilities().handles(Capability.BINARY_CLASS)) result.enable(Capability.BINARY_CLASS); return result; } /** * Boosting method. * * @param data the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { super.buildClassifier(data); // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); m_SumOfWeights = data.sumOfWeights(); if ((!m_UseResampling) && (m_Classifier instanceof WeightedInstancesHandler)) { buildClassifierWithWeights(data); } else { buildClassifierUsingResampling(data); } } /** * Boosting method. Boosts using resampling * * @param data the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ protected void buildClassifierUsingResampling(Instances data) throws Exception { Instances trainData, sample, training, trainingWeightsNotNormalized; double sumProbs; int numInstances = data.numInstances(); Random randomInstance = new Random(m_Seed); double minLoss = Double.MAX_VALUE; // Create a copy of the data so that when the weights are diddled // with it doesn't mess up the weights for anyone else trainingWeightsNotNormalized = new Instances(data, 0, numInstances); // Do boostrap iterations for (m_NumIterationsPerformed = -1; m_NumIterationsPerformed < m_Classifiers.length; m_NumIterationsPerformed++) { if (m_Debug) { System.err.println("Training classifier " + (m_NumIterationsPerformed + 1)); } training = new Instances(trainingWeightsNotNormalized); normalizeWeights(training, 1.0); // Select instances to train the classifier on if (m_WeightThreshold < 100) { trainData = selectWeightQuantile(training, (double)m_WeightThreshold / 100); } else { trainData = new Instances(training); } // Resample double[] weights = new double[trainData.numInstances()]; for (int i = 0; i < weights.length; i++) { weights[i] = trainData.instance(i).weight(); } sample = trainData.resampleWithWeights(randomInstance, weights); // Build classifier if (m_NumIterationsPerformed == -1) { m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(data); } else { m_Classifiers[m_NumIterationsPerformed].buildClassifier(sample); } // Update instance weights setWeights(trainingWeightsNotNormalized, m_NumIterationsPerformed); // Has progress been made? double loss = 0; for (Instance inst : trainingWeightsNotNormalized) { loss += Math.log(inst.weight()); } if (m_Debug) { System.err.println("Current loss on log scale: " + loss); } if ((m_NumIterationsPerformed > -1) && (loss > minLoss)) { if (m_Debug) { System.err.println("Loss has increased: bailing out."); } break; } minLoss = loss; } } /** * Sets the weights for the next iteration. * * @param training the training instances * @throws Exception if something goes wrong */ protected void setWeights(Instances training, int iteration) throws Exception { for (Instance instance: training) { double reweight = 1; double prob = 1, shrinkage = m_Shrinkage; if (iteration == -1) { prob = m_ZeroR.distributionForInstance(instance)[0]; shrinkage = 1.0; } else { prob = m_Classifiers[iteration].distributionForInstance(instance)[0]; // Make sure that probabilities are never 0 or 1 using ad-hoc smoothing prob = (m_SumOfWeights * prob + 1) / (m_SumOfWeights + 2); } if (instance.classValue() == 1) { reweight = shrinkage * 0.5 * (Math.log(prob) - Math.log(1 - prob)); } else { reweight = shrinkage * 0.5 * (Math.log(1 - prob) - Math.log(prob)); } instance.setWeight(instance.weight() * Math.exp(reweight)); } } /** * Normalize the weights for the next iteration. * * @param training the training instances * @throws Exception if something goes wrong */ protected void normalizeWeights(Instances training, double oldSumOfWeights) throws Exception { // Renormalize weights double newSumOfWeights = training.sumOfWeights(); for (Instance instance: training) { instance.setWeight(instance.weight() * oldSumOfWeights / newSumOfWeights); } } /** * Boosting method. Boosts any classifier that can handle weighted * instances. * * @param data the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ protected void buildClassifierWithWeights(Instances data) throws Exception { Instances trainData, training, trainingWeightsNotNormalized; int numInstances = data.numInstances(); Random randomInstance = new Random(m_Seed); double minLoss = Double.MAX_VALUE; // Create a copy of the data so that when the weights are diddled // with it doesn't mess up the weights for anyone else trainingWeightsNotNormalized = new Instances(data, 0, numInstances); // Do boostrap iterations for (m_NumIterationsPerformed = -1; m_NumIterationsPerformed < m_Classifiers.length; m_NumIterationsPerformed++) { if (m_Debug) { System.err.println("Training classifier " + (m_NumIterationsPerformed + 1)); } training = new Instances(trainingWeightsNotNormalized); normalizeWeights(training, m_SumOfWeights); // Select instances to train the classifier on if (m_WeightThreshold < 100) { trainData = selectWeightQuantile(training, (double)m_WeightThreshold / 100); } else { trainData = new Instances(training, 0, numInstances); } // Build classifier if (m_NumIterationsPerformed == -1) { m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(data); } else { if (m_Classifiers[m_NumIterationsPerformed] instanceof Randomizable) ((Randomizable) m_Classifiers[m_NumIterationsPerformed]).setSeed(randomInstance.nextInt()); m_Classifiers[m_NumIterationsPerformed].buildClassifier(trainData); } // Update instance weights setWeights(trainingWeightsNotNormalized, m_NumIterationsPerformed); // Has progress been made? double loss = 0; for (Instance inst : trainingWeightsNotNormalized) { loss += Math.log(inst.weight()); } if (m_Debug) { System.err.println("Current loss on log scale: " + loss); } if ((m_NumIterationsPerformed > -1) && (loss > minLoss)) { if (m_Debug) { System.err.println("Loss has increased: bailing out."); } break; } minLoss = loss; } } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if instance could not be classified * successfully */ public double [] distributionForInstance(Instance instance) throws Exception { double [] sums = new double [instance.numClasses()]; for (int i = -1; i < m_NumIterationsPerformed; i++) { double prob = 1, shrinkage = m_Shrinkage; if (i == -1) { prob = m_ZeroR.distributionForInstance(instance)[0]; shrinkage = 1.0; } else { prob = m_Classifiers[i].distributionForInstance(instance)[0]; // Make sure that probabilities are never 0 or 1 using ad-hoc smoothing prob = (m_SumOfWeights * prob + 1) / (m_SumOfWeights + 2); } sums[0] += shrinkage * 0.5 * (Math.log(prob) - Math.log(1 - prob)); } sums[1] = -sums[0]; return Utils.logs2probs(sums); } /** * Returns description of the boosted classifier. * * @return description of the boosted classifier as a string */ public String toString() { StringBuffer text = new StringBuffer(); if (m_ZeroR == null) { text.append("No model built yet.\n\n"); } else { text.append("RealAdaBoost: Base classifiers: \n\n"); text.append(m_ZeroR.toString() + "\n\n"); for (int i = 0; i < m_NumIterationsPerformed ; i++) { text.append(m_Classifiers[i].toString() + "\n\n"); } text.append("Number of performed Iterations: " + m_NumIterationsPerformed + "\n"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 6136 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new RealAdaBoost(), argv); } }