1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RealAdaBoost.java |
---|
19 | * Copyright (C) 1999, 2009 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Evaluation; |
---|
28 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.Option; |
---|
33 | import weka.core.Randomizable; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.TechnicalInformation; |
---|
36 | import weka.core.TechnicalInformationHandler; |
---|
37 | import weka.core.Utils; |
---|
38 | import weka.core.WeightedInstancesHandler; |
---|
39 | import weka.core.Capabilities.Capability; |
---|
40 | import weka.core.TechnicalInformation.Field; |
---|
41 | import weka.core.TechnicalInformation.Type; |
---|
42 | |
---|
43 | import java.util.Enumeration; |
---|
44 | import java.util.Random; |
---|
45 | import java.util.Vector; |
---|
46 | |
---|
47 | /** |
---|
48 | <!-- globalinfo-start --> |
---|
49 | * Class for boosting a 2-class classifier using the Real Adaboost method.<br/> |
---|
50 | * <br/> |
---|
51 | * For more information, see<br/> |
---|
52 | * <br/> |
---|
53 | * J. Friedman, T. Hastie, R. Tibshirani (2000). Additive Logistic Regression: a Statistical View of Boosting. Annals of Statistics. 95(2):337-407. |
---|
54 | * <p/> |
---|
55 | <!-- globalinfo-end --> |
---|
56 | * |
---|
57 | <!-- technical-bibtex-start --> |
---|
58 | * BibTeX: |
---|
59 | * <pre> |
---|
60 | * @article{Friedman2000, |
---|
61 | * author = {J. Friedman and T. Hastie and R. Tibshirani}, |
---|
62 | * journal = {Annals of Statistics}, |
---|
63 | * number = {2}, |
---|
64 | * pages = {337-407}, |
---|
65 | * title = {Additive Logistic Regression: a Statistical View of Boosting}, |
---|
66 | * volume = {95}, |
---|
67 | * year = {2000} |
---|
68 | * } |
---|
69 | * </pre> |
---|
70 | * <p/> |
---|
71 | <!-- technical-bibtex-end --> |
---|
72 | * |
---|
73 | <!-- options-start --> |
---|
74 | * Valid options are: <p/> |
---|
75 | * |
---|
76 | * <pre> -P <num> |
---|
77 | * Percentage of weight mass to base training on. |
---|
78 | * (default 100, reduce to around 90 speed up)</pre> |
---|
79 | * |
---|
80 | * <pre> -Q |
---|
81 | * Use resampling for boosting.</pre> |
---|
82 | * |
---|
83 | * <pre> -H <num> |
---|
84 | * Shrinkage parameter. |
---|
85 | * (default 1)</pre> |
---|
86 | * |
---|
87 | * <pre> -S <num> |
---|
88 | * Random number seed. |
---|
89 | * (default 1)</pre> |
---|
90 | * |
---|
91 | * <pre> -I <num> |
---|
92 | * Number of iterations. |
---|
93 | * (default 10)</pre> |
---|
94 | * |
---|
95 | * <pre> -D |
---|
96 | * If set, classifier is run in debug mode and |
---|
97 | * may output additional info to the console</pre> |
---|
98 | * |
---|
99 | * <pre> -W |
---|
100 | * Full name of base classifier. |
---|
101 | * (default: weka.classifiers.trees.DecisionStump)</pre> |
---|
102 | * |
---|
103 | * <pre> |
---|
104 | * Options specific to classifier weka.classifiers.trees.DecisionStump: |
---|
105 | * </pre> |
---|
106 | * |
---|
107 | * <pre> -D |
---|
108 | * If set, classifier is run in debug mode and |
---|
109 | * may output additional info to the console</pre> |
---|
110 | * |
---|
111 | <!-- options-end --> |
---|
112 | * |
---|
113 | * Options after -- are passed to the designated classifier.<p> |
---|
114 | * |
---|
115 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
116 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
117 | * @version $Revision: 6136 $ |
---|
118 | */ |
---|
119 | public class RealAdaBoost |
---|
120 | extends RandomizableIteratedSingleClassifierEnhancer |
---|
121 | implements WeightedInstancesHandler, TechnicalInformationHandler { |
---|
122 | |
---|
123 | /** for serialization */ |
---|
124 | static final long serialVersionUID = -7378109809933197974L; |
---|
125 | |
---|
126 | /** The number of successfully generated base classifiers. */ |
---|
127 | protected int m_NumIterationsPerformed; |
---|
128 | |
---|
129 | /** Weight Threshold. The percentage of weight mass used in training */ |
---|
130 | protected int m_WeightThreshold = 100; |
---|
131 | |
---|
132 | /** The value of the shrinkage parameter */ |
---|
133 | protected double m_Shrinkage = 1; |
---|
134 | |
---|
135 | /** Use boosting with reweighting? */ |
---|
136 | protected boolean m_UseResampling; |
---|
137 | |
---|
138 | /** a ZeroR model in case no model can be built from the data */ |
---|
139 | protected Classifier m_ZeroR; |
---|
140 | |
---|
141 | /** Sum of weights on training data */ |
---|
142 | protected double m_SumOfWeights; |
---|
143 | |
---|
144 | /** |
---|
145 | * Constructor. |
---|
146 | */ |
---|
147 | public RealAdaBoost() { |
---|
148 | |
---|
149 | m_Classifier = new weka.classifiers.trees.DecisionStump(); |
---|
150 | } |
---|
151 | |
---|
152 | /** |
---|
153 | * Returns a string describing classifier |
---|
154 | * @return a description suitable for |
---|
155 | * displaying in the explorer/experimenter gui |
---|
156 | */ |
---|
157 | public String globalInfo() { |
---|
158 | |
---|
159 | return "Class for boosting a 2-class classifier using the Real Adaboost method.\n\n" |
---|
160 | + "For more information, see\n\n" |
---|
161 | + getTechnicalInformation().toString(); |
---|
162 | } |
---|
163 | |
---|
164 | /** |
---|
165 | * Returns an instance of a TechnicalInformation object, containing |
---|
166 | * detailed information about the technical background of this class, |
---|
167 | * e.g., paper reference or book this class is based on. |
---|
168 | * |
---|
169 | * @return the technical information about this class |
---|
170 | */ |
---|
171 | public TechnicalInformation getTechnicalInformation() { |
---|
172 | TechnicalInformation result; |
---|
173 | |
---|
174 | result = new TechnicalInformation(Type.ARTICLE); |
---|
175 | result.setValue(Field.AUTHOR, "J. Friedman and T. Hastie and R. Tibshirani"); |
---|
176 | result.setValue(Field.TITLE, "Additive Logistic Regression: a Statistical View of Boosting"); |
---|
177 | result.setValue(Field.JOURNAL, "Annals of Statistics"); |
---|
178 | result.setValue(Field.VOLUME, "95"); |
---|
179 | result.setValue(Field.NUMBER, "2"); |
---|
180 | result.setValue(Field.PAGES, "337-407"); |
---|
181 | result.setValue(Field.YEAR, "2000"); |
---|
182 | |
---|
183 | return result; |
---|
184 | } |
---|
185 | |
---|
186 | /** |
---|
187 | * String describing default classifier. |
---|
188 | * |
---|
189 | * @return the default classifier classname |
---|
190 | */ |
---|
191 | protected String defaultClassifierString() { |
---|
192 | |
---|
193 | return "weka.classifiers.trees.DecisionStump"; |
---|
194 | } |
---|
195 | |
---|
196 | /** |
---|
197 | * Select only instances with weights that contribute to |
---|
198 | * the specified quantile of the weight distribution |
---|
199 | * |
---|
200 | * @param data the input instances |
---|
201 | * @param quantile the specified quantile eg 0.9 to select |
---|
202 | * 90% of the weight mass |
---|
203 | * @return the selected instances |
---|
204 | */ |
---|
205 | protected Instances selectWeightQuantile(Instances data, double quantile) { |
---|
206 | |
---|
207 | int numInstances = data.numInstances(); |
---|
208 | Instances trainData = new Instances(data, numInstances); |
---|
209 | double [] weights = new double [numInstances]; |
---|
210 | |
---|
211 | double sumOfWeights = 0; |
---|
212 | for(int i = 0; i < numInstances; i++) { |
---|
213 | weights[i] = data.instance(i).weight(); |
---|
214 | sumOfWeights += weights[i]; |
---|
215 | } |
---|
216 | double weightMassToSelect = sumOfWeights * quantile; |
---|
217 | int [] sortedIndices = Utils.sort(weights); |
---|
218 | |
---|
219 | // Select the instances |
---|
220 | sumOfWeights = 0; |
---|
221 | for(int i = numInstances - 1; i >= 0; i--) { |
---|
222 | Instance instance = (Instance)data.instance(sortedIndices[i]).copy(); |
---|
223 | trainData.add(instance); |
---|
224 | sumOfWeights += weights[sortedIndices[i]]; |
---|
225 | if ((sumOfWeights > weightMassToSelect) && |
---|
226 | (i > 0) && |
---|
227 | (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) { |
---|
228 | break; |
---|
229 | } |
---|
230 | } |
---|
231 | if (m_Debug) { |
---|
232 | System.err.println("Selected " + trainData.numInstances() |
---|
233 | + " out of " + numInstances); |
---|
234 | } |
---|
235 | return trainData; |
---|
236 | } |
---|
237 | |
---|
238 | /** |
---|
239 | * Returns an enumeration describing the available options. |
---|
240 | * |
---|
241 | * @return an enumeration of all the available options. |
---|
242 | */ |
---|
243 | public Enumeration listOptions() { |
---|
244 | |
---|
245 | Vector newVector = new Vector(); |
---|
246 | |
---|
247 | newVector.addElement(new Option( |
---|
248 | "\tPercentage of weight mass to base training on.\n" |
---|
249 | +"\t(default 100, reduce to around 90 speed up)", |
---|
250 | "P", 1, "-P <num>")); |
---|
251 | |
---|
252 | newVector.addElement(new Option( |
---|
253 | "\tUse resampling for boosting.", |
---|
254 | "Q", 0, "-Q")); |
---|
255 | |
---|
256 | newVector.addElement(new Option( |
---|
257 | "\tShrinkage parameter.\n" |
---|
258 | +"\t(default 1)", |
---|
259 | "H", 1, "-H <num>")); |
---|
260 | |
---|
261 | Enumeration enu = super.listOptions(); |
---|
262 | while (enu.hasMoreElements()) { |
---|
263 | newVector.addElement(enu.nextElement()); |
---|
264 | } |
---|
265 | |
---|
266 | return newVector.elements(); |
---|
267 | } |
---|
268 | |
---|
269 | |
---|
270 | /** |
---|
271 | * Parses a given list of options. <p/> |
---|
272 | * |
---|
273 | <!-- options-start --> |
---|
274 | * Valid options are: <p/> |
---|
275 | * |
---|
276 | * <pre> -P <num> |
---|
277 | * Percentage of weight mass to base training on. |
---|
278 | * (default 100, reduce to around 90 speed up)</pre> |
---|
279 | * |
---|
280 | * <pre> -Q |
---|
281 | * Use resampling for boosting.</pre> |
---|
282 | * |
---|
283 | * <pre> -H <num> |
---|
284 | * Shrinkage parameter. |
---|
285 | * (default 1)</pre> |
---|
286 | * |
---|
287 | * <pre> -S <num> |
---|
288 | * Random number seed. |
---|
289 | * (default 1)</pre> |
---|
290 | * |
---|
291 | * <pre> -I <num> |
---|
292 | * Number of iterations. |
---|
293 | * (default 10)</pre> |
---|
294 | * |
---|
295 | * <pre> -D |
---|
296 | * If set, classifier is run in debug mode and |
---|
297 | * may output additional info to the console</pre> |
---|
298 | * |
---|
299 | * <pre> -W |
---|
300 | * Full name of base classifier. |
---|
301 | * (default: weka.classifiers.trees.DecisionStump)</pre> |
---|
302 | * |
---|
303 | * <pre> |
---|
304 | * Options specific to classifier weka.classifiers.trees.DecisionStump: |
---|
305 | * </pre> |
---|
306 | * |
---|
307 | * <pre> -D |
---|
308 | * If set, classifier is run in debug mode and |
---|
309 | * may output additional info to the console</pre> |
---|
310 | * |
---|
311 | <!-- options-end --> |
---|
312 | * |
---|
313 | * Options after -- are passed to the designated classifier.<p> |
---|
314 | * |
---|
315 | * @param options the list of options as an array of strings |
---|
316 | * @throws Exception if an option is not supported |
---|
317 | */ |
---|
318 | public void setOptions(String[] options) throws Exception { |
---|
319 | |
---|
320 | String thresholdString = Utils.getOption('P', options); |
---|
321 | if (thresholdString.length() != 0) { |
---|
322 | setWeightThreshold(Integer.parseInt(thresholdString)); |
---|
323 | } else { |
---|
324 | setWeightThreshold(100); |
---|
325 | } |
---|
326 | |
---|
327 | String shrinkageString = Utils.getOption('H', options); |
---|
328 | if (shrinkageString.length() != 0) { |
---|
329 | setShrinkage(new Double(shrinkageString). |
---|
330 | doubleValue()); |
---|
331 | } else { |
---|
332 | setShrinkage(1.0); |
---|
333 | } |
---|
334 | |
---|
335 | setUseResampling(Utils.getFlag('Q', options)); |
---|
336 | |
---|
337 | super.setOptions(options); |
---|
338 | } |
---|
339 | |
---|
340 | /** |
---|
341 | * Gets the current settings of the Classifier. |
---|
342 | * |
---|
343 | * @return an array of strings suitable for passing to setOptions |
---|
344 | */ |
---|
345 | public String[] getOptions() { |
---|
346 | Vector result; |
---|
347 | String[] options; |
---|
348 | int i; |
---|
349 | |
---|
350 | result = new Vector(); |
---|
351 | |
---|
352 | if (getUseResampling()) |
---|
353 | result.add("-Q"); |
---|
354 | |
---|
355 | result.add("-P"); |
---|
356 | result.add("" + getWeightThreshold()); |
---|
357 | |
---|
358 | result.add("-H"); |
---|
359 | result.add("" + getShrinkage()); |
---|
360 | |
---|
361 | options = super.getOptions(); |
---|
362 | for (i = 0; i < options.length; i++) |
---|
363 | result.add(options[i]); |
---|
364 | |
---|
365 | return (String[]) result.toArray(new String[result.size()]); |
---|
366 | } |
---|
367 | |
---|
368 | /** |
---|
369 | * Returns the tip text for this property |
---|
370 | * @return tip text for this property suitable for |
---|
371 | * displaying in the explorer/experimenter gui |
---|
372 | */ |
---|
373 | public String shrinkageTipText() { |
---|
374 | return "Shrinkage parameter (use small value like 0.1 to reduce " |
---|
375 | + "overfitting)."; |
---|
376 | } |
---|
377 | |
---|
378 | /** |
---|
379 | * Get the value of Shrinkage. |
---|
380 | * |
---|
381 | * @return Value of Shrinkage. |
---|
382 | */ |
---|
383 | public double getShrinkage() { |
---|
384 | |
---|
385 | return m_Shrinkage; |
---|
386 | } |
---|
387 | |
---|
388 | /** |
---|
389 | * Set the value of Shrinkage. |
---|
390 | * |
---|
391 | * @param newShrinkage Value to assign to Shrinkage. |
---|
392 | */ |
---|
393 | public void setShrinkage(double newShrinkage) { |
---|
394 | |
---|
395 | m_Shrinkage = newShrinkage; |
---|
396 | } |
---|
397 | |
---|
398 | /** |
---|
399 | * Returns the tip text for this property |
---|
400 | * @return tip text for this property suitable for |
---|
401 | * displaying in the explorer/experimenter gui |
---|
402 | */ |
---|
403 | public String weightThresholdTipText() { |
---|
404 | return "Weight threshold for weight pruning."; |
---|
405 | } |
---|
406 | |
---|
407 | /** |
---|
408 | * Set weight threshold |
---|
409 | * |
---|
410 | * @param threshold the percentage of weight mass used for training |
---|
411 | */ |
---|
412 | public void setWeightThreshold(int threshold) { |
---|
413 | |
---|
414 | m_WeightThreshold = threshold; |
---|
415 | } |
---|
416 | |
---|
417 | /** |
---|
418 | * Get the degree of weight thresholding |
---|
419 | * |
---|
420 | * @return the percentage of weight mass used for training |
---|
421 | */ |
---|
422 | public int getWeightThreshold() { |
---|
423 | |
---|
424 | return m_WeightThreshold; |
---|
425 | } |
---|
426 | |
---|
427 | /** |
---|
428 | * Returns the tip text for this property |
---|
429 | * @return tip text for this property suitable for |
---|
430 | * displaying in the explorer/experimenter gui |
---|
431 | */ |
---|
432 | public String useResamplingTipText() { |
---|
433 | return "Whether resampling is used instead of reweighting."; |
---|
434 | } |
---|
435 | |
---|
436 | /** |
---|
437 | * Set resampling mode |
---|
438 | * |
---|
439 | * @param r true if resampling should be done |
---|
440 | */ |
---|
441 | public void setUseResampling(boolean r) { |
---|
442 | |
---|
443 | m_UseResampling = r; |
---|
444 | } |
---|
445 | |
---|
446 | /** |
---|
447 | * Get whether resampling is turned on |
---|
448 | * |
---|
449 | * @return true if resampling output is on |
---|
450 | */ |
---|
451 | public boolean getUseResampling() { |
---|
452 | |
---|
453 | return m_UseResampling; |
---|
454 | } |
---|
455 | |
---|
456 | /** |
---|
457 | * Returns default capabilities of the classifier. |
---|
458 | * |
---|
459 | * @return the capabilities of this classifier |
---|
460 | */ |
---|
461 | public Capabilities getCapabilities() { |
---|
462 | Capabilities result = super.getCapabilities(); |
---|
463 | |
---|
464 | // class |
---|
465 | result.disableAllClasses(); |
---|
466 | result.disableAllClassDependencies(); |
---|
467 | if (super.getCapabilities().handles(Capability.BINARY_CLASS)) |
---|
468 | result.enable(Capability.BINARY_CLASS); |
---|
469 | |
---|
470 | return result; |
---|
471 | } |
---|
472 | |
---|
473 | /** |
---|
474 | * Boosting method. |
---|
475 | * |
---|
476 | * @param data the training data to be used for generating the |
---|
477 | * boosted classifier. |
---|
478 | * @throws Exception if the classifier could not be built successfully |
---|
479 | */ |
---|
480 | |
---|
481 | public void buildClassifier(Instances data) throws Exception { |
---|
482 | |
---|
483 | super.buildClassifier(data); |
---|
484 | |
---|
485 | // can classifier handle the data? |
---|
486 | getCapabilities().testWithFail(data); |
---|
487 | |
---|
488 | // remove instances with missing class |
---|
489 | data = new Instances(data); |
---|
490 | data.deleteWithMissingClass(); |
---|
491 | |
---|
492 | m_SumOfWeights = data.sumOfWeights(); |
---|
493 | |
---|
494 | if ((!m_UseResampling) && |
---|
495 | (m_Classifier instanceof WeightedInstancesHandler)) { |
---|
496 | buildClassifierWithWeights(data); |
---|
497 | } else { |
---|
498 | buildClassifierUsingResampling(data); |
---|
499 | } |
---|
500 | } |
---|
501 | |
---|
502 | /** |
---|
503 | * Boosting method. Boosts using resampling |
---|
504 | * |
---|
505 | * @param data the training data to be used for generating the |
---|
506 | * boosted classifier. |
---|
507 | * @throws Exception if the classifier could not be built successfully |
---|
508 | */ |
---|
509 | protected void buildClassifierUsingResampling(Instances data) |
---|
510 | throws Exception { |
---|
511 | |
---|
512 | Instances trainData, sample, training, trainingWeightsNotNormalized; |
---|
513 | double sumProbs; |
---|
514 | int numInstances = data.numInstances(); |
---|
515 | Random randomInstance = new Random(m_Seed); |
---|
516 | double minLoss = Double.MAX_VALUE; |
---|
517 | |
---|
518 | // Create a copy of the data so that when the weights are diddled |
---|
519 | // with it doesn't mess up the weights for anyone else |
---|
520 | trainingWeightsNotNormalized = new Instances(data, 0, numInstances); |
---|
521 | |
---|
522 | // Do boostrap iterations |
---|
523 | for (m_NumIterationsPerformed = -1; m_NumIterationsPerformed < m_Classifiers.length; |
---|
524 | m_NumIterationsPerformed++) { |
---|
525 | if (m_Debug) { |
---|
526 | System.err.println("Training classifier " + (m_NumIterationsPerformed + 1)); |
---|
527 | } |
---|
528 | |
---|
529 | training = new Instances(trainingWeightsNotNormalized); |
---|
530 | normalizeWeights(training, 1.0); |
---|
531 | |
---|
532 | // Select instances to train the classifier on |
---|
533 | if (m_WeightThreshold < 100) { |
---|
534 | trainData = selectWeightQuantile(training, |
---|
535 | (double)m_WeightThreshold / 100); |
---|
536 | } else { |
---|
537 | trainData = new Instances(training); |
---|
538 | } |
---|
539 | |
---|
540 | // Resample |
---|
541 | double[] weights = new double[trainData.numInstances()]; |
---|
542 | for (int i = 0; i < weights.length; i++) { |
---|
543 | weights[i] = trainData.instance(i).weight(); |
---|
544 | } |
---|
545 | |
---|
546 | sample = trainData.resampleWithWeights(randomInstance, weights); |
---|
547 | |
---|
548 | // Build classifier |
---|
549 | if (m_NumIterationsPerformed == -1) { |
---|
550 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
551 | m_ZeroR.buildClassifier(data); |
---|
552 | } else { |
---|
553 | m_Classifiers[m_NumIterationsPerformed].buildClassifier(sample); |
---|
554 | } |
---|
555 | |
---|
556 | // Update instance weights |
---|
557 | setWeights(trainingWeightsNotNormalized, m_NumIterationsPerformed); |
---|
558 | |
---|
559 | // Has progress been made? |
---|
560 | double loss = 0; |
---|
561 | for (Instance inst : trainingWeightsNotNormalized) { |
---|
562 | loss += Math.log(inst.weight()); |
---|
563 | } |
---|
564 | if (m_Debug) { |
---|
565 | System.err.println("Current loss on log scale: " + loss); |
---|
566 | } |
---|
567 | if ((m_NumIterationsPerformed > -1) && (loss > minLoss)) { |
---|
568 | if (m_Debug) { |
---|
569 | System.err.println("Loss has increased: bailing out."); |
---|
570 | } |
---|
571 | break; |
---|
572 | } |
---|
573 | minLoss = loss; |
---|
574 | } |
---|
575 | } |
---|
576 | |
---|
577 | /** |
---|
578 | * Sets the weights for the next iteration. |
---|
579 | * |
---|
580 | * @param training the training instances |
---|
581 | * @throws Exception if something goes wrong |
---|
582 | */ |
---|
583 | protected void setWeights(Instances training, int iteration) |
---|
584 | throws Exception { |
---|
585 | |
---|
586 | for (Instance instance: training) { |
---|
587 | double reweight = 1; |
---|
588 | double prob = 1, shrinkage = m_Shrinkage; |
---|
589 | |
---|
590 | if (iteration == -1) { |
---|
591 | prob = m_ZeroR.distributionForInstance(instance)[0]; |
---|
592 | shrinkage = 1.0; |
---|
593 | } else { |
---|
594 | prob = m_Classifiers[iteration].distributionForInstance(instance)[0]; |
---|
595 | |
---|
596 | // Make sure that probabilities are never 0 or 1 using ad-hoc smoothing |
---|
597 | prob = (m_SumOfWeights * prob + 1) / (m_SumOfWeights + 2); |
---|
598 | } |
---|
599 | |
---|
600 | if (instance.classValue() == 1) { |
---|
601 | reweight = shrinkage * 0.5 * (Math.log(prob) - Math.log(1 - prob)); |
---|
602 | } else { |
---|
603 | reweight = shrinkage * 0.5 * (Math.log(1 - prob) - Math.log(prob)); |
---|
604 | } |
---|
605 | instance.setWeight(instance.weight() * Math.exp(reweight)); |
---|
606 | } |
---|
607 | } |
---|
608 | |
---|
609 | /** |
---|
610 | * Normalize the weights for the next iteration. |
---|
611 | * |
---|
612 | * @param training the training instances |
---|
613 | * @throws Exception if something goes wrong |
---|
614 | */ |
---|
615 | protected void normalizeWeights(Instances training, double oldSumOfWeights) |
---|
616 | throws Exception { |
---|
617 | |
---|
618 | // Renormalize weights |
---|
619 | double newSumOfWeights = training.sumOfWeights(); |
---|
620 | for (Instance instance: training) { |
---|
621 | instance.setWeight(instance.weight() * oldSumOfWeights / newSumOfWeights); |
---|
622 | } |
---|
623 | } |
---|
624 | |
---|
625 | /** |
---|
626 | * Boosting method. Boosts any classifier that can handle weighted |
---|
627 | * instances. |
---|
628 | * |
---|
629 | * @param data the training data to be used for generating the |
---|
630 | * boosted classifier. |
---|
631 | * @throws Exception if the classifier could not be built successfully |
---|
632 | */ |
---|
633 | protected void buildClassifierWithWeights(Instances data) |
---|
634 | throws Exception { |
---|
635 | |
---|
636 | Instances trainData, training, trainingWeightsNotNormalized; |
---|
637 | int numInstances = data.numInstances(); |
---|
638 | Random randomInstance = new Random(m_Seed); |
---|
639 | double minLoss = Double.MAX_VALUE; |
---|
640 | |
---|
641 | // Create a copy of the data so that when the weights are diddled |
---|
642 | // with it doesn't mess up the weights for anyone else |
---|
643 | trainingWeightsNotNormalized = new Instances(data, 0, numInstances); |
---|
644 | |
---|
645 | // Do boostrap iterations |
---|
646 | for (m_NumIterationsPerformed = -1; m_NumIterationsPerformed < m_Classifiers.length; |
---|
647 | m_NumIterationsPerformed++) { |
---|
648 | if (m_Debug) { |
---|
649 | System.err.println("Training classifier " + (m_NumIterationsPerformed + 1)); |
---|
650 | } |
---|
651 | |
---|
652 | training = new Instances(trainingWeightsNotNormalized); |
---|
653 | normalizeWeights(training, m_SumOfWeights); |
---|
654 | |
---|
655 | // Select instances to train the classifier on |
---|
656 | if (m_WeightThreshold < 100) { |
---|
657 | trainData = selectWeightQuantile(training, |
---|
658 | (double)m_WeightThreshold / 100); |
---|
659 | } else { |
---|
660 | trainData = new Instances(training, 0, numInstances); |
---|
661 | } |
---|
662 | |
---|
663 | // Build classifier |
---|
664 | if (m_NumIterationsPerformed == -1) { |
---|
665 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
666 | m_ZeroR.buildClassifier(data); |
---|
667 | } else { |
---|
668 | if (m_Classifiers[m_NumIterationsPerformed] instanceof Randomizable) |
---|
669 | ((Randomizable) m_Classifiers[m_NumIterationsPerformed]).setSeed(randomInstance.nextInt()); |
---|
670 | m_Classifiers[m_NumIterationsPerformed].buildClassifier(trainData); |
---|
671 | } |
---|
672 | |
---|
673 | |
---|
674 | // Update instance weights |
---|
675 | setWeights(trainingWeightsNotNormalized, m_NumIterationsPerformed); |
---|
676 | |
---|
677 | // Has progress been made? |
---|
678 | double loss = 0; |
---|
679 | for (Instance inst : trainingWeightsNotNormalized) { |
---|
680 | loss += Math.log(inst.weight()); |
---|
681 | } |
---|
682 | if (m_Debug) { |
---|
683 | System.err.println("Current loss on log scale: " + loss); |
---|
684 | } |
---|
685 | if ((m_NumIterationsPerformed > -1) && (loss > minLoss)) { |
---|
686 | if (m_Debug) { |
---|
687 | System.err.println("Loss has increased: bailing out."); |
---|
688 | } |
---|
689 | break; |
---|
690 | } |
---|
691 | minLoss = loss; |
---|
692 | } |
---|
693 | } |
---|
694 | |
---|
695 | /** |
---|
696 | * Calculates the class membership probabilities for the given test instance. |
---|
697 | * |
---|
698 | * @param instance the instance to be classified |
---|
699 | * @return predicted class probability distribution |
---|
700 | * @throws Exception if instance could not be classified |
---|
701 | * successfully |
---|
702 | */ |
---|
703 | public double [] distributionForInstance(Instance instance) |
---|
704 | throws Exception { |
---|
705 | |
---|
706 | double [] sums = new double [instance.numClasses()]; |
---|
707 | for (int i = -1; i < m_NumIterationsPerformed; i++) { |
---|
708 | double prob = 1, shrinkage = m_Shrinkage; |
---|
709 | if (i == -1) { |
---|
710 | prob = m_ZeroR.distributionForInstance(instance)[0]; |
---|
711 | shrinkage = 1.0; |
---|
712 | } else { |
---|
713 | prob = m_Classifiers[i].distributionForInstance(instance)[0]; |
---|
714 | |
---|
715 | // Make sure that probabilities are never 0 or 1 using ad-hoc smoothing |
---|
716 | prob = (m_SumOfWeights * prob + 1) / (m_SumOfWeights + 2); |
---|
717 | } |
---|
718 | sums[0] += shrinkage * 0.5 * (Math.log(prob) - Math.log(1 - prob)); |
---|
719 | } |
---|
720 | sums[1] = -sums[0]; |
---|
721 | return Utils.logs2probs(sums); |
---|
722 | } |
---|
723 | |
---|
724 | /** |
---|
725 | * Returns description of the boosted classifier. |
---|
726 | * |
---|
727 | * @return description of the boosted classifier as a string |
---|
728 | */ |
---|
729 | public String toString() { |
---|
730 | |
---|
731 | StringBuffer text = new StringBuffer(); |
---|
732 | |
---|
733 | if (m_ZeroR == null) { |
---|
734 | text.append("No model built yet.\n\n"); |
---|
735 | } else { |
---|
736 | text.append("RealAdaBoost: Base classifiers: \n\n"); |
---|
737 | text.append(m_ZeroR.toString() + "\n\n"); |
---|
738 | for (int i = 0; i < m_NumIterationsPerformed ; i++) { |
---|
739 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
740 | } |
---|
741 | text.append("Number of performed Iterations: " |
---|
742 | + m_NumIterationsPerformed + "\n"); |
---|
743 | } |
---|
744 | |
---|
745 | return text.toString(); |
---|
746 | } |
---|
747 | |
---|
748 | /** |
---|
749 | * Returns the revision string. |
---|
750 | * |
---|
751 | * @return the revision |
---|
752 | */ |
---|
753 | public String getRevision() { |
---|
754 | return RevisionUtils.extract("$Revision: 6136 $"); |
---|
755 | } |
---|
756 | |
---|
757 | /** |
---|
758 | * Main method for testing this class. |
---|
759 | * |
---|
760 | * @param argv the options |
---|
761 | */ |
---|
762 | public static void main(String [] argv) { |
---|
763 | runClassifier(new RealAdaBoost(), argv); |
---|
764 | } |
---|
765 | } |
---|
766 | |
---|