| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * RandomCommittee.java |
|---|
| 19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.meta; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.Classifier; |
|---|
| 26 | import weka.classifiers.AbstractClassifier; |
|---|
| 27 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
|---|
| 28 | import weka.classifiers.RandomizableParallelIteratedSingleClassifierEnhancer; |
|---|
| 29 | import weka.core.Instance; |
|---|
| 30 | import weka.core.Instances; |
|---|
| 31 | import weka.core.Randomizable; |
|---|
| 32 | import weka.core.RevisionUtils; |
|---|
| 33 | import weka.core.Utils; |
|---|
| 34 | import weka.core.WeightedInstancesHandler; |
|---|
| 35 | |
|---|
| 36 | import java.util.Random; |
|---|
| 37 | |
|---|
| 38 | /** |
|---|
| 39 | <!-- globalinfo-start --> |
|---|
| 40 | * Class for building an ensemble of randomizable base classifiers. Each base classifiers is built using a different random number seed (but based one the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. |
|---|
| 41 | * <p/> |
|---|
| 42 | <!-- globalinfo-end --> |
|---|
| 43 | * |
|---|
| 44 | <!-- options-start --> |
|---|
| 45 | * Valid options are: <p/> |
|---|
| 46 | * |
|---|
| 47 | * <pre> -S <num> |
|---|
| 48 | * Random number seed. |
|---|
| 49 | * (default 1)</pre> |
|---|
| 50 | * |
|---|
| 51 | * <pre> -I <num> |
|---|
| 52 | * Number of iterations. |
|---|
| 53 | * (default 10)</pre> |
|---|
| 54 | * |
|---|
| 55 | * <pre> -D |
|---|
| 56 | * If set, classifier is run in debug mode and |
|---|
| 57 | * may output additional info to the console</pre> |
|---|
| 58 | * |
|---|
| 59 | * <pre> -W |
|---|
| 60 | * Full name of base classifier. |
|---|
| 61 | * (default: weka.classifiers.trees.RandomTree)</pre> |
|---|
| 62 | * |
|---|
| 63 | * <pre> |
|---|
| 64 | * Options specific to classifier weka.classifiers.trees.RandomTree: |
|---|
| 65 | * </pre> |
|---|
| 66 | * |
|---|
| 67 | * <pre> -K <number of attributes> |
|---|
| 68 | * Number of attributes to randomly investigate |
|---|
| 69 | * (<1 = int(log(#attributes)+1)).</pre> |
|---|
| 70 | * |
|---|
| 71 | * <pre> -M <minimum number of instances> |
|---|
| 72 | * Set minimum number of instances per leaf.</pre> |
|---|
| 73 | * |
|---|
| 74 | * <pre> -S <num> |
|---|
| 75 | * Seed for random number generator. |
|---|
| 76 | * (default 1)</pre> |
|---|
| 77 | * |
|---|
| 78 | * <pre> -depth <num> |
|---|
| 79 | * The maximum depth of the tree, 0 for unlimited. |
|---|
| 80 | * (default 0)</pre> |
|---|
| 81 | * |
|---|
| 82 | * <pre> -D |
|---|
| 83 | * If set, classifier is run in debug mode and |
|---|
| 84 | * may output additional info to the console</pre> |
|---|
| 85 | * |
|---|
| 86 | <!-- options-end --> |
|---|
| 87 | * |
|---|
| 88 | * Options after -- are passed to the designated classifier.<p> |
|---|
| 89 | * |
|---|
| 90 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
|---|
| 91 | * @version $Revision: 5928 $ |
|---|
| 92 | */ |
|---|
| 93 | public class RandomCommittee |
|---|
| 94 | extends RandomizableParallelIteratedSingleClassifierEnhancer |
|---|
| 95 | implements WeightedInstancesHandler { |
|---|
| 96 | |
|---|
| 97 | /** for serialization */ |
|---|
| 98 | static final long serialVersionUID = -9204394360557300092L; |
|---|
| 99 | |
|---|
| 100 | /** training data */ |
|---|
| 101 | protected Instances m_data; |
|---|
| 102 | |
|---|
| 103 | /** |
|---|
| 104 | * Constructor. |
|---|
| 105 | */ |
|---|
| 106 | public RandomCommittee() { |
|---|
| 107 | |
|---|
| 108 | m_Classifier = new weka.classifiers.trees.RandomTree(); |
|---|
| 109 | } |
|---|
| 110 | |
|---|
| 111 | /** |
|---|
| 112 | * String describing default classifier. |
|---|
| 113 | * |
|---|
| 114 | * @return the default classifier classname |
|---|
| 115 | */ |
|---|
| 116 | protected String defaultClassifierString() { |
|---|
| 117 | |
|---|
| 118 | return "weka.classifiers.trees.RandomTree"; |
|---|
| 119 | } |
|---|
| 120 | |
|---|
| 121 | /** |
|---|
| 122 | * Returns a string describing classifier |
|---|
| 123 | * @return a description suitable for |
|---|
| 124 | * displaying in the explorer/experimenter gui |
|---|
| 125 | */ |
|---|
| 126 | public String globalInfo() { |
|---|
| 127 | |
|---|
| 128 | return "Class for building an ensemble of randomizable base classifiers. Each " |
|---|
| 129 | + "base classifiers is built using a different random number seed (but based " |
|---|
| 130 | + "one the same data). The final prediction is a straight average of the " |
|---|
| 131 | + "predictions generated by the individual base classifiers."; |
|---|
| 132 | } |
|---|
| 133 | |
|---|
| 134 | /** |
|---|
| 135 | * Builds the committee of randomizable classifiers. |
|---|
| 136 | * |
|---|
| 137 | * @param data the training data to be used for generating the |
|---|
| 138 | * bagged classifier. |
|---|
| 139 | * @exception Exception if the classifier could not be built successfully |
|---|
| 140 | */ |
|---|
| 141 | public void buildClassifier(Instances data) throws Exception { |
|---|
| 142 | |
|---|
| 143 | // can classifier handle the data? |
|---|
| 144 | getCapabilities().testWithFail(data); |
|---|
| 145 | |
|---|
| 146 | // remove instances with missing class |
|---|
| 147 | m_data = new Instances(data); |
|---|
| 148 | m_data.deleteWithMissingClass(); |
|---|
| 149 | super.buildClassifier(m_data); |
|---|
| 150 | |
|---|
| 151 | if (!(m_Classifier instanceof Randomizable)) { |
|---|
| 152 | throw new IllegalArgumentException("Base learner must implement Randomizable!"); |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_NumIterations); |
|---|
| 156 | |
|---|
| 157 | Random random = m_data.getRandomNumberGenerator(m_Seed); |
|---|
| 158 | for (int j = 0; j < m_Classifiers.length; j++) { |
|---|
| 159 | |
|---|
| 160 | // Set the random number seed for the current classifier. |
|---|
| 161 | ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt()); |
|---|
| 162 | |
|---|
| 163 | // Build the classifier. |
|---|
| 164 | // m_Classifiers[j].buildClassifier(m_data); |
|---|
| 165 | } |
|---|
| 166 | |
|---|
| 167 | buildClassifiers(); |
|---|
| 168 | |
|---|
| 169 | // save memory |
|---|
| 170 | m_data = null; |
|---|
| 171 | } |
|---|
| 172 | |
|---|
| 173 | /** |
|---|
| 174 | * Returns a training set for a particular iteration. |
|---|
| 175 | * |
|---|
| 176 | * @param iteration the number of the iteration for the requested training set. |
|---|
| 177 | * @return the training set for the supplied iteration number |
|---|
| 178 | * @throws Exception if something goes wrong when generating a training set. |
|---|
| 179 | */ |
|---|
| 180 | protected synchronized Instances getTrainingSet(int iteration) throws Exception { |
|---|
| 181 | |
|---|
| 182 | // we don't manipulate the training data in any way. |
|---|
| 183 | return m_data; |
|---|
| 184 | } |
|---|
| 185 | |
|---|
| 186 | /** |
|---|
| 187 | * Calculates the class membership probabilities for the given test |
|---|
| 188 | * instance. |
|---|
| 189 | * |
|---|
| 190 | * @param instance the instance to be classified |
|---|
| 191 | * @return preedicted class probability distribution |
|---|
| 192 | * @exception Exception if distribution can't be computed successfully |
|---|
| 193 | */ |
|---|
| 194 | public double[] distributionForInstance(Instance instance) throws Exception { |
|---|
| 195 | |
|---|
| 196 | double [] sums = new double [instance.numClasses()], newProbs; |
|---|
| 197 | |
|---|
| 198 | for (int i = 0; i < m_NumIterations; i++) { |
|---|
| 199 | if (instance.classAttribute().isNumeric() == true) { |
|---|
| 200 | sums[0] += m_Classifiers[i].classifyInstance(instance); |
|---|
| 201 | } else { |
|---|
| 202 | newProbs = m_Classifiers[i].distributionForInstance(instance); |
|---|
| 203 | for (int j = 0; j < newProbs.length; j++) |
|---|
| 204 | sums[j] += newProbs[j]; |
|---|
| 205 | } |
|---|
| 206 | } |
|---|
| 207 | if (instance.classAttribute().isNumeric() == true) { |
|---|
| 208 | sums[0] /= (double)m_NumIterations; |
|---|
| 209 | return sums; |
|---|
| 210 | } else if (Utils.eq(Utils.sum(sums), 0)) { |
|---|
| 211 | return sums; |
|---|
| 212 | } else { |
|---|
| 213 | Utils.normalize(sums); |
|---|
| 214 | return sums; |
|---|
| 215 | } |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | /** |
|---|
| 219 | * Returns description of the committee. |
|---|
| 220 | * |
|---|
| 221 | * @return description of the committee as a string |
|---|
| 222 | */ |
|---|
| 223 | public String toString() { |
|---|
| 224 | |
|---|
| 225 | if (m_Classifiers == null) { |
|---|
| 226 | return "RandomCommittee: No model built yet."; |
|---|
| 227 | } |
|---|
| 228 | StringBuffer text = new StringBuffer(); |
|---|
| 229 | text.append("All the base classifiers: \n\n"); |
|---|
| 230 | for (int i = 0; i < m_Classifiers.length; i++) |
|---|
| 231 | text.append(m_Classifiers[i].toString() + "\n\n"); |
|---|
| 232 | |
|---|
| 233 | return text.toString(); |
|---|
| 234 | } |
|---|
| 235 | |
|---|
| 236 | /** |
|---|
| 237 | * Returns the revision string. |
|---|
| 238 | * |
|---|
| 239 | * @return the revision |
|---|
| 240 | */ |
|---|
| 241 | public String getRevision() { |
|---|
| 242 | return RevisionUtils.extract("$Revision: 5928 $"); |
|---|
| 243 | } |
|---|
| 244 | |
|---|
| 245 | /** |
|---|
| 246 | * Main method for testing this class. |
|---|
| 247 | * |
|---|
| 248 | * @param argv the options |
|---|
| 249 | */ |
|---|
| 250 | public static void main(String [] argv) { |
|---|
| 251 | runClassifier(new RandomCommittee(), argv); |
|---|
| 252 | } |
|---|
| 253 | } |
|---|
| 254 | |
|---|