1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * OrdinalClassClassifier.java |
---|
19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.SingleClassifierEnhancer; |
---|
28 | import weka.classifiers.rules.ZeroR; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.Option; |
---|
33 | import weka.core.OptionHandler; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.TechnicalInformation; |
---|
36 | import weka.core.TechnicalInformationHandler; |
---|
37 | import weka.core.Utils; |
---|
38 | import weka.core.Capabilities.Capability; |
---|
39 | import weka.core.TechnicalInformation.Field; |
---|
40 | import weka.core.TechnicalInformation.Type; |
---|
41 | import weka.filters.Filter; |
---|
42 | import weka.filters.unsupervised.attribute.MakeIndicator; |
---|
43 | |
---|
44 | import java.util.Enumeration; |
---|
45 | import java.util.Vector; |
---|
46 | |
---|
47 | /** |
---|
48 | <!-- globalinfo-start --> |
---|
49 | * Meta classifier that allows standard classification algorithms to be applied to ordinal class problems.<br/> |
---|
50 | * <br/> |
---|
51 | * For more information see: <br/> |
---|
52 | * <br/> |
---|
53 | * Eibe Frank, Mark Hall: A Simple Approach to Ordinal Classification. In: 12th European Conference on Machine Learning, 145-156, 2001.<br/> |
---|
54 | * <br/> |
---|
55 | * Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, Janos A. Csirik: Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation. In: Machine Learning, Proceedings of the Nineteenth International Conference (ICML 2002), 546-553, 2002. |
---|
56 | * <p/> |
---|
57 | <!-- globalinfo-end --> |
---|
58 | * |
---|
59 | <!-- technical-bibtex-start --> |
---|
60 | * BibTeX: |
---|
61 | * <pre> |
---|
62 | * @inproceedings{Frank2001, |
---|
63 | * author = {Eibe Frank and Mark Hall}, |
---|
64 | * booktitle = {12th European Conference on Machine Learning}, |
---|
65 | * pages = {145-156}, |
---|
66 | * publisher = {Springer}, |
---|
67 | * title = {A Simple Approach to Ordinal Classification}, |
---|
68 | * year = {2001} |
---|
69 | * } |
---|
70 | * |
---|
71 | * @inproceedings{Schapire2002, |
---|
72 | * author = {Robert E. Schapire and Peter Stone and David A. McAllester and Michael L. Littman and Janos A. Csirik}, |
---|
73 | * booktitle = {Machine Learning, Proceedings of the Nineteenth International Conference (ICML 2002)}, |
---|
74 | * pages = {546-553}, |
---|
75 | * publisher = {Morgan Kaufmann}, |
---|
76 | * title = {Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation}, |
---|
77 | * year = {2002} |
---|
78 | * } |
---|
79 | * </pre> |
---|
80 | * <p/> |
---|
81 | <!-- technical-bibtex-end --> |
---|
82 | * |
---|
83 | <!-- options-start --> |
---|
84 | * Valid options are: <p/> |
---|
85 | * |
---|
86 | * <pre> -S |
---|
87 | * Turn off Schapire et al.'s smoothing heuristic (ICML02, pp. 550).</pre> |
---|
88 | * |
---|
89 | * <pre> -D |
---|
90 | * If set, classifier is run in debug mode and |
---|
91 | * may output additional info to the console</pre> |
---|
92 | * |
---|
93 | * <pre> -W |
---|
94 | * Full name of base classifier. |
---|
95 | * (default: weka.classifiers.trees.J48)</pre> |
---|
96 | * |
---|
97 | * <pre> |
---|
98 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
99 | * </pre> |
---|
100 | * |
---|
101 | * <pre> -U |
---|
102 | * Use unpruned tree.</pre> |
---|
103 | * |
---|
104 | * <pre> -C <pruning confidence> |
---|
105 | * Set confidence threshold for pruning. |
---|
106 | * (default 0.25)</pre> |
---|
107 | * |
---|
108 | * <pre> -M <minimum number of instances> |
---|
109 | * Set minimum number of instances per leaf. |
---|
110 | * (default 2)</pre> |
---|
111 | * |
---|
112 | * <pre> -R |
---|
113 | * Use reduced error pruning.</pre> |
---|
114 | * |
---|
115 | * <pre> -N <number of folds> |
---|
116 | * Set number of folds for reduced error |
---|
117 | * pruning. One fold is used as pruning set. |
---|
118 | * (default 3)</pre> |
---|
119 | * |
---|
120 | * <pre> -B |
---|
121 | * Use binary splits only.</pre> |
---|
122 | * |
---|
123 | * <pre> -S |
---|
124 | * Don't perform subtree raising.</pre> |
---|
125 | * |
---|
126 | * <pre> -L |
---|
127 | * Do not clean up after the tree has been built.</pre> |
---|
128 | * |
---|
129 | * <pre> -A |
---|
130 | * Laplace smoothing for predicted probabilities.</pre> |
---|
131 | * |
---|
132 | * <pre> -Q <seed> |
---|
133 | * Seed for random data shuffling (default 1).</pre> |
---|
134 | * |
---|
135 | <!-- options-end --> |
---|
136 | * |
---|
137 | * @author Mark Hall |
---|
138 | * @author Eibe Frank |
---|
139 | * @version $Revision: 5928 $ |
---|
140 | * @see OptionHandler |
---|
141 | */ |
---|
142 | public class OrdinalClassClassifier |
---|
143 | extends SingleClassifierEnhancer |
---|
144 | implements OptionHandler, TechnicalInformationHandler { |
---|
145 | |
---|
146 | /** for serialization */ |
---|
147 | static final long serialVersionUID = -3461971774059603636L; |
---|
148 | |
---|
149 | /** The classifiers. (One for each class.) */ |
---|
150 | private Classifier [] m_Classifiers; |
---|
151 | |
---|
152 | /** The filters used to transform the class. */ |
---|
153 | private MakeIndicator[] m_ClassFilters; |
---|
154 | |
---|
155 | /** ZeroR classifier for when all base classifier return zero probability. */ |
---|
156 | private ZeroR m_ZeroR; |
---|
157 | |
---|
158 | /** Whether to use smoothing to prevent negative "probabilities". */ |
---|
159 | private boolean m_UseSmoothing = true; |
---|
160 | |
---|
161 | /** |
---|
162 | * String describing default classifier. |
---|
163 | * |
---|
164 | * @return the default classifier classname |
---|
165 | */ |
---|
166 | protected String defaultClassifierString() { |
---|
167 | |
---|
168 | return "weka.classifiers.trees.J48"; |
---|
169 | } |
---|
170 | |
---|
171 | /** |
---|
172 | * Default constructor. |
---|
173 | */ |
---|
174 | public OrdinalClassClassifier() { |
---|
175 | m_Classifier = new weka.classifiers.trees.J48(); |
---|
176 | } |
---|
177 | |
---|
178 | /** |
---|
179 | * Returns a string describing this attribute evaluator |
---|
180 | * @return a description of the evaluator suitable for |
---|
181 | * displaying in the explorer/experimenter gui |
---|
182 | */ |
---|
183 | public String globalInfo() { |
---|
184 | return "Meta classifier that allows standard classification algorithms " |
---|
185 | +"to be applied to ordinal class problems.\n\n" |
---|
186 | + "For more information see: \n\n" |
---|
187 | + getTechnicalInformation().toString(); |
---|
188 | } |
---|
189 | |
---|
190 | /** |
---|
191 | * Returns an instance of a TechnicalInformation object, containing |
---|
192 | * detailed information about the technical background of this class, |
---|
193 | * e.g., paper reference or book this class is based on. |
---|
194 | * |
---|
195 | * @return the technical information about this class |
---|
196 | */ |
---|
197 | public TechnicalInformation getTechnicalInformation() { |
---|
198 | TechnicalInformation result; |
---|
199 | TechnicalInformation additional; |
---|
200 | |
---|
201 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
202 | result.setValue(Field.AUTHOR, "Eibe Frank and Mark Hall"); |
---|
203 | result.setValue(Field.TITLE, "A Simple Approach to Ordinal Classification"); |
---|
204 | result.setValue(Field.BOOKTITLE, "12th European Conference on Machine Learning"); |
---|
205 | result.setValue(Field.YEAR, "2001"); |
---|
206 | result.setValue(Field.PAGES, "145-156"); |
---|
207 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
208 | |
---|
209 | additional = result.add(Type.INPROCEEDINGS); |
---|
210 | additional.setValue(Field.AUTHOR, "Robert E. Schapire and Peter Stone and David A. McAllester " + |
---|
211 | "and Michael L. Littman and Janos A. Csirik"); |
---|
212 | additional.setValue(Field.TITLE, "Modeling Auction Price Uncertainty Using Boosting-based " + |
---|
213 | "Conditional Density Estimation"); |
---|
214 | additional.setValue(Field.BOOKTITLE, "Machine Learning, Proceedings of the Nineteenth " + |
---|
215 | "International Conference (ICML 2002)"); |
---|
216 | additional.setValue(Field.YEAR, "2002"); |
---|
217 | additional.setValue(Field.PAGES, "546-553"); |
---|
218 | additional.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
219 | |
---|
220 | return result; |
---|
221 | } |
---|
222 | |
---|
223 | /** |
---|
224 | * Returns default capabilities of the classifier. |
---|
225 | * |
---|
226 | * @return the capabilities of this classifier |
---|
227 | */ |
---|
228 | public Capabilities getCapabilities() { |
---|
229 | Capabilities result = super.getCapabilities(); |
---|
230 | |
---|
231 | // class |
---|
232 | result.disableAllClasses(); |
---|
233 | result.disableAllClassDependencies(); |
---|
234 | result.enable(Capability.NOMINAL_CLASS); |
---|
235 | |
---|
236 | return result; |
---|
237 | } |
---|
238 | |
---|
239 | /** |
---|
240 | * Builds the classifiers. |
---|
241 | * |
---|
242 | * @param insts the training data. |
---|
243 | * @throws Exception if a classifier can't be built |
---|
244 | */ |
---|
245 | public void buildClassifier(Instances insts) throws Exception { |
---|
246 | |
---|
247 | Instances newInsts; |
---|
248 | |
---|
249 | // can classifier handle the data? |
---|
250 | getCapabilities().testWithFail(insts); |
---|
251 | |
---|
252 | // remove instances with missing class |
---|
253 | insts = new Instances(insts); |
---|
254 | insts.deleteWithMissingClass(); |
---|
255 | |
---|
256 | if (m_Classifier == null) { |
---|
257 | throw new Exception("No base classifier has been set!"); |
---|
258 | } |
---|
259 | m_ZeroR = new ZeroR(); |
---|
260 | m_ZeroR.buildClassifier(insts); |
---|
261 | |
---|
262 | int numClassifiers = insts.numClasses() - 1; |
---|
263 | |
---|
264 | numClassifiers = (numClassifiers == 0) ? 1 : numClassifiers; |
---|
265 | |
---|
266 | if (numClassifiers == 1) { |
---|
267 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, 1); |
---|
268 | m_Classifiers[0].buildClassifier(insts); |
---|
269 | } else { |
---|
270 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, numClassifiers); |
---|
271 | m_ClassFilters = new MakeIndicator[numClassifiers]; |
---|
272 | |
---|
273 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
274 | m_ClassFilters[i] = new MakeIndicator(); |
---|
275 | m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1)); |
---|
276 | m_ClassFilters[i].setValueIndices(""+(i+2)+"-last"); |
---|
277 | m_ClassFilters[i].setNumeric(false); |
---|
278 | m_ClassFilters[i].setInputFormat(insts); |
---|
279 | newInsts = Filter.useFilter(insts, m_ClassFilters[i]); |
---|
280 | m_Classifiers[i].buildClassifier(newInsts); |
---|
281 | } |
---|
282 | } |
---|
283 | } |
---|
284 | |
---|
285 | /** |
---|
286 | * Returns the distribution for an instance. |
---|
287 | * |
---|
288 | * @param inst the instance to compute the distribution for |
---|
289 | * @return the class distribution for the given instance |
---|
290 | * @throws Exception if the distribution can't be computed successfully |
---|
291 | */ |
---|
292 | public double [] distributionForInstance(Instance inst) throws Exception { |
---|
293 | |
---|
294 | if (m_Classifiers.length == 1) { |
---|
295 | return m_Classifiers[0].distributionForInstance(inst); |
---|
296 | } |
---|
297 | |
---|
298 | double [] probs = new double[inst.numClasses()]; |
---|
299 | |
---|
300 | double [][] distributions = new double[m_ClassFilters.length][0]; |
---|
301 | for(int i = 0; i < m_ClassFilters.length; i++) { |
---|
302 | m_ClassFilters[i].input(inst); |
---|
303 | m_ClassFilters[i].batchFinished(); |
---|
304 | |
---|
305 | distributions[i] = m_Classifiers[i]. |
---|
306 | distributionForInstance(m_ClassFilters[i].output()); |
---|
307 | |
---|
308 | } |
---|
309 | |
---|
310 | // Use Schapire et al.'s smoothing heuristic? |
---|
311 | if (getUseSmoothing()) { |
---|
312 | |
---|
313 | double[] fScores = new double[distributions.length + 2]; |
---|
314 | fScores[0] = 1; |
---|
315 | fScores[distributions.length + 1] = 0; |
---|
316 | for (int i = 0; i < distributions.length; i++) { |
---|
317 | fScores[i + 1] = distributions[i][1]; |
---|
318 | } |
---|
319 | |
---|
320 | // Sort scores in ascending order |
---|
321 | int[] sortOrder = Utils.sort(fScores); |
---|
322 | |
---|
323 | // Compute pointwise maximum of lower bound |
---|
324 | int minSoFar = sortOrder[0]; |
---|
325 | int index = 0; |
---|
326 | double[] pointwiseMaxLowerBound = new double[fScores.length]; |
---|
327 | for (int i = 0; i < sortOrder.length; i++) { |
---|
328 | |
---|
329 | // Progress to next higher value if possible |
---|
330 | while (minSoFar > sortOrder.length - i - 1) { |
---|
331 | minSoFar = sortOrder[++index]; |
---|
332 | } |
---|
333 | pointwiseMaxLowerBound[sortOrder.length - i - 1] = fScores[minSoFar]; |
---|
334 | } |
---|
335 | |
---|
336 | // Get scores in descending order |
---|
337 | int[] newSortOrder = new int[sortOrder.length]; |
---|
338 | for (int i = sortOrder.length - 1; i >= 0; i--) { |
---|
339 | newSortOrder[sortOrder.length - i - 1] = sortOrder[i]; |
---|
340 | } |
---|
341 | sortOrder = newSortOrder; |
---|
342 | |
---|
343 | // Compute pointwise minimum of upper bound |
---|
344 | int maxSoFar = sortOrder[0]; |
---|
345 | index = 0; |
---|
346 | double[] pointwiseMinUpperBound = new double[fScores.length]; |
---|
347 | for (int i = 0; i < sortOrder.length; i++) { |
---|
348 | |
---|
349 | // Progress to next lower value if possible |
---|
350 | while (maxSoFar < i) { |
---|
351 | maxSoFar = sortOrder[++index]; |
---|
352 | } |
---|
353 | pointwiseMinUpperBound[i] = fScores[maxSoFar]; |
---|
354 | } |
---|
355 | |
---|
356 | // Compute average |
---|
357 | for (int i = 0; i < distributions.length; i++) { |
---|
358 | distributions[i][1] = (pointwiseMinUpperBound[i + 1] + |
---|
359 | pointwiseMaxLowerBound[i + 1]) / 2.0; |
---|
360 | } |
---|
361 | } |
---|
362 | |
---|
363 | for (int i = 0; i < inst.numClasses(); i++) { |
---|
364 | if (i == 0) { |
---|
365 | probs[i] = 1.0 - distributions[0][1]; |
---|
366 | } else if (i == inst.numClasses() - 1) { |
---|
367 | probs[i] = distributions[i - 1][1]; |
---|
368 | } else { |
---|
369 | probs[i] = distributions[i - 1][1] - distributions[i][1]; |
---|
370 | if (!(probs[i] >= 0)) { |
---|
371 | System.err.println("Warning: estimated probability " + probs[i] + |
---|
372 | ". Rounding to 0."); |
---|
373 | probs[i] = 0; |
---|
374 | } |
---|
375 | } |
---|
376 | } |
---|
377 | |
---|
378 | if (Utils.gr(Utils.sum(probs), 0)) { |
---|
379 | Utils.normalize(probs); |
---|
380 | return probs; |
---|
381 | } else { |
---|
382 | return m_ZeroR.distributionForInstance(inst); |
---|
383 | } |
---|
384 | } |
---|
385 | |
---|
386 | /** |
---|
387 | * Returns an enumeration describing the available options. |
---|
388 | * |
---|
389 | * @return an enumeration of all the available options. |
---|
390 | */ |
---|
391 | public Enumeration listOptions() { |
---|
392 | |
---|
393 | Vector vec = new Vector(); |
---|
394 | vec.addElement(new Option( |
---|
395 | "\tTurn off Schapire et al.'s smoothing " + |
---|
396 | "heuristic (ICML02, pp. 550).", |
---|
397 | "S", 0, "-S")); |
---|
398 | |
---|
399 | Enumeration enu = super.listOptions(); |
---|
400 | while (enu.hasMoreElements()) { |
---|
401 | vec.addElement(enu.nextElement()); |
---|
402 | } |
---|
403 | return vec.elements(); |
---|
404 | } |
---|
405 | /** |
---|
406 | * Parses a given list of options. <p/> |
---|
407 | * |
---|
408 | <!-- options-start --> |
---|
409 | * Valid options are: <p/> |
---|
410 | * |
---|
411 | * <pre> -S |
---|
412 | * Turn off Schapire et al.'s smoothing heuristic (ICML02, pp. 550).</pre> |
---|
413 | * |
---|
414 | * <pre> -D |
---|
415 | * If set, classifier is run in debug mode and |
---|
416 | * may output additional info to the console</pre> |
---|
417 | * |
---|
418 | * <pre> -W |
---|
419 | * Full name of base classifier. |
---|
420 | * (default: weka.classifiers.trees.J48)</pre> |
---|
421 | * |
---|
422 | * <pre> |
---|
423 | * Options specific to classifier weka.classifiers.trees.J48: |
---|
424 | * </pre> |
---|
425 | * |
---|
426 | * <pre> -U |
---|
427 | * Use unpruned tree.</pre> |
---|
428 | * |
---|
429 | * <pre> -C <pruning confidence> |
---|
430 | * Set confidence threshold for pruning. |
---|
431 | * (default 0.25)</pre> |
---|
432 | * |
---|
433 | * <pre> -M <minimum number of instances> |
---|
434 | * Set minimum number of instances per leaf. |
---|
435 | * (default 2)</pre> |
---|
436 | * |
---|
437 | * <pre> -R |
---|
438 | * Use reduced error pruning.</pre> |
---|
439 | * |
---|
440 | * <pre> -N <number of folds> |
---|
441 | * Set number of folds for reduced error |
---|
442 | * pruning. One fold is used as pruning set. |
---|
443 | * (default 3)</pre> |
---|
444 | * |
---|
445 | * <pre> -B |
---|
446 | * Use binary splits only.</pre> |
---|
447 | * |
---|
448 | * <pre> -S |
---|
449 | * Don't perform subtree raising.</pre> |
---|
450 | * |
---|
451 | * <pre> -L |
---|
452 | * Do not clean up after the tree has been built.</pre> |
---|
453 | * |
---|
454 | * <pre> -A |
---|
455 | * Laplace smoothing for predicted probabilities.</pre> |
---|
456 | * |
---|
457 | * <pre> -Q <seed> |
---|
458 | * Seed for random data shuffling (default 1).</pre> |
---|
459 | * |
---|
460 | <!-- options-end --> |
---|
461 | * |
---|
462 | * @param options the list of options as an array of strings |
---|
463 | * @throws Exception if an option is not supported |
---|
464 | */ |
---|
465 | public void setOptions(String[] options) throws Exception { |
---|
466 | |
---|
467 | setUseSmoothing(!Utils.getFlag('S', options)); |
---|
468 | super.setOptions(options); |
---|
469 | } |
---|
470 | |
---|
471 | /** |
---|
472 | * Gets the current settings of the Classifier. |
---|
473 | * |
---|
474 | * @return an array of strings suitable for passing to setOptions |
---|
475 | */ |
---|
476 | public String [] getOptions() { |
---|
477 | |
---|
478 | String [] superOptions = super.getOptions(); |
---|
479 | String [] options = new String [superOptions.length + 1]; |
---|
480 | |
---|
481 | int current = 0; |
---|
482 | if (!getUseSmoothing()) { |
---|
483 | options[current++] = "-S"; |
---|
484 | } |
---|
485 | System.arraycopy(superOptions, 0, options, current, |
---|
486 | superOptions.length); |
---|
487 | |
---|
488 | current += superOptions.length; |
---|
489 | while (current < options.length) { |
---|
490 | options[current++] = ""; |
---|
491 | } |
---|
492 | |
---|
493 | return options; |
---|
494 | } |
---|
495 | |
---|
496 | /** |
---|
497 | * Tip text method. |
---|
498 | * |
---|
499 | * @return a tip text string suitable for displaying as a popup in the GUI. |
---|
500 | */ |
---|
501 | public String useSmoothingTipText() { |
---|
502 | return "If true, use Schapire et al.'s heuristic (ICML02, pp. 550)."; |
---|
503 | } |
---|
504 | |
---|
505 | /** |
---|
506 | * Determines whether Schapire et al.'s smoothing method is used. |
---|
507 | * |
---|
508 | * @param b true if the smoothing heuristic is to be used. |
---|
509 | */ |
---|
510 | public void setUseSmoothing(boolean b) { |
---|
511 | |
---|
512 | m_UseSmoothing = b; |
---|
513 | } |
---|
514 | |
---|
515 | /** |
---|
516 | * Checks whether Schapire et al.'s smoothing method is used. |
---|
517 | * |
---|
518 | * @return true if the smoothing heuristic is to be used. |
---|
519 | */ |
---|
520 | public boolean getUseSmoothing() { |
---|
521 | |
---|
522 | return m_UseSmoothing; |
---|
523 | } |
---|
524 | |
---|
525 | |
---|
526 | /** |
---|
527 | * Prints the classifiers. |
---|
528 | * |
---|
529 | * @return a string representation of this classifier |
---|
530 | */ |
---|
531 | public String toString() { |
---|
532 | |
---|
533 | if (m_Classifiers == null) { |
---|
534 | return "OrdinalClassClassifier: No model built yet."; |
---|
535 | } |
---|
536 | StringBuffer text = new StringBuffer(); |
---|
537 | text.append("OrdinalClassClassifier\n\n"); |
---|
538 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
539 | text.append("Classifier ").append(i + 1); |
---|
540 | if (m_Classifiers[i] != null) { |
---|
541 | if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) { |
---|
542 | text.append(", using indicator values: "); |
---|
543 | text.append(m_ClassFilters[i].getValueRange()); |
---|
544 | } |
---|
545 | text.append('\n'); |
---|
546 | text.append(m_Classifiers[i].toString() + "\n"); |
---|
547 | } else { |
---|
548 | text.append(" Skipped (no training examples)\n"); |
---|
549 | } |
---|
550 | } |
---|
551 | |
---|
552 | return text.toString(); |
---|
553 | } |
---|
554 | |
---|
555 | /** |
---|
556 | * Returns the revision string. |
---|
557 | * |
---|
558 | * @return the revision |
---|
559 | */ |
---|
560 | public String getRevision() { |
---|
561 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
562 | } |
---|
563 | |
---|
564 | /** |
---|
565 | * Main method for testing this class. |
---|
566 | * |
---|
567 | * @param argv the options |
---|
568 | */ |
---|
569 | public static void main(String [] argv) { |
---|
570 | runClassifier(new OrdinalClassClassifier(), argv); |
---|
571 | } |
---|
572 | } |
---|
573 | |
---|